JP3076493U - Microwave snow melting equipment - Google Patents

Microwave snow melting equipment

Info

Publication number
JP3076493U
JP3076493U JP2000007695U JP2000007695U JP3076493U JP 3076493 U JP3076493 U JP 3076493U JP 2000007695 U JP2000007695 U JP 2000007695U JP 2000007695 U JP2000007695 U JP 2000007695U JP 3076493 U JP3076493 U JP 3076493U
Authority
JP
Japan
Prior art keywords
medium liquid
hot water
water tank
circulating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000007695U
Other languages
Japanese (ja)
Inventor
和記 坂本
Original Assignee
坂本 和彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 坂本 和彦 filed Critical 坂本 和彦
Priority to JP2000007695U priority Critical patent/JP3076493U/en
Application granted granted Critical
Publication of JP3076493U publication Critical patent/JP3076493U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Abstract

(57)【要約】 (修正有) 【課題】運転コストが安価で、省エネルギー効果が大き
く、運転管理が容易な融雪装置を提供する。 【解決手段】耐熱性約200度のアニオン系エマルジョ
ン型高分子ポリマーを主成分としたアクリルアミド/ア
クリル酸ポリマーを水と混合し、高粘性コロイド状とな
した媒体液に不凍液を混合した循環媒体液を循環させる
配管の途中に循環媒体液が一時的に溜まる温水槽と、温
水槽の上部にマイクロ波発生装置を設け、温水槽中の循
環媒体液の温度を感知する温度センサーを介してマイク
ロ波発生装置の起動及び停止の自動制御する温度感知ス
イッチを作動させて温水槽に溜まる循環媒体液に直接マ
イクロ波を照射し加熱させる。降雪センサー及び融雪放
熱管内に設置した媒体液温度センサー等を介して循環ポ
ンプの起動と停止を自動的に運転させ、循環媒体液を強
制的に圧送循環させる。
(57) [Summary] (with correction) [Problem] To provide a snow melting apparatus which is inexpensive in operation cost, has a large energy saving effect, and is easy to operate and manage. A circulating medium liquid obtained by mixing an acrylamide / acrylic acid polymer mainly composed of an anionic emulsion polymer having a heat resistance of about 200 degrees with water, and mixing an antifreeze liquid with a medium liquid in a high-viscosity colloidal state. A hot water tank in which the circulating medium liquid temporarily accumulates in the middle of the piping that circulates the water, and a microwave generator provided at the top of the hot water tank, which is connected to a microwave through a temperature sensor that detects the temperature of the circulating medium liquid in the hot water tank The temperature sensing switch for automatically controlling the start and stop of the generator is operated to directly irradiate microwaves to the circulating medium liquid stored in the hot water tank to heat. The start and stop of the circulating pump are automatically operated via a snowfall sensor and a medium liquid temperature sensor installed in a snowmelt radiating pipe to forcibly circulate the circulating medium liquid under pressure.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は、本願請求項に係わる高粘性媒体液は、外観は半透明液体であり、イオ ン性はアニオニックでPHは1パーセント溶液で8.4である。又、耐熱性は約 200度の試験結果となっている。本媒体液は加熱速度も早く、冷却温度の低下 が遅い為、マイクロ波による電気加熱運転コストの削減を目的とした高粘性熱媒 体の循環による融雪技術であり、豪雪地域の除雪、排雪作業の運搬労費及び注油 の手間もなく維持管理費を減少させる事が可能となり、融雪における技術分野で の省エネルギーを目的とした高粘性熱媒体の循環液とマイクロ波照射を組み合わ せたマイクロ波融雪方法である。 According to the present invention, the high-viscosity medium liquid according to the present invention is a translucent liquid having an external appearance, anionicity is anionic, and PH is 8.4 in a 1% solution. The heat resistance is about 200 degrees. Since this medium liquid has a fast heating rate and a slow decrease in cooling temperature, it is a snow melting technology that circulates a high-viscosity heat medium for the purpose of reducing the cost of electric heating operation using microwaves. It is possible to reduce the maintenance labor cost without the labor of transporting the work and the lubrication, and the microwave snow melting that combines the circulating liquid of high viscous heat medium and microwave irradiation for the purpose of energy saving in the technical field of snow melting. Is the way.

【0002】[0002]

【従来の技術】[Prior art]

豪雪寒冷地で暮らす人々にとって、除雪・排雪作業は市民にとっては重労働であ り、特に高齢者にとっては非常に厳しいものである。融雪の自動化は今後、高齢 化に伴い必要不可欠な技術であり、運転コストの面からも大きな問題である。融 雪における技術分野では、地下水を利用し路面に埋設した配管から水を噴出させ 、雪を融かす散水消雪。融雪の必要部分に放熱管を埋設し、ボイラー及び太陽コ レクター等によって温められた熱媒体液を循環し、この熱エネルギーで融雪を行 う無散水融雪。電気抵抗体を通電加熱し、その熱利用にて融雪を図る電熱線融雪 。熱伝導率の高い電熱管で金属管内に金属毛管製のウイックを内張りし、内部を 真空にして水、フロンガス、アンモニアなどを少量充填したもので、パイプの蒸 発部を加熱するとウイック中の流体は蒸発して凝集部に移動するというヒートパ イプによる融雪。融雪溝や地下に雪の投入孔を設け、その孔まで雪を運搬投入し 、直接雪に加熱した湯を噴水したり、直接投入した雪にマイクロ波を照射し融雪 する方法等がある。しかし、これらの多くの融雪施設は積雪地域、特に豪雪地域 における融雪方法では電熱線による融雪方法は大熱量の電気を使用する事から電 気代が高く、ボイラー等は融雪可能な温度に加熱するまで媒体液の他、ボイラー 内部で媒体液を循環するパイプも加熱するという時間とそれに係わる燃料代や燃 料の注入作業が必ず必要である。本考案は媒体液を循環する方法ではボイラー方 式と同じであるが、ボイラーとは異なり、燃料を注油する事は全く無い。特に山 間部のトンネルの出入り口や高速道路等、街から遠距離の場所での融雪箇所は、 燃料の運搬や注油の手間からボイラー方式より電熱線によるロードヒーターの方 法が利用され、高い電気料で使用されている。又、自然エネルギーを取り入れ、 安価なランニングコストである太陽熱コレクターによる融雪方法では豪雪地域の 積雪では全く機能しない問題点や積雪量の重みでコレクターが破損する事や故障 の問題が多く、豪雪地域では一般に使用されていないのが現状である。又、消雪 用地下水の汲み上げによる地盤沈下の問題は典型的な公害の一つとなっており、 最近、新潟県南魚沼郡では消雪用地下水の汲み上げが原因と考えられており、一 年間で地盤の沈下量が約30センチメートルも沈下するなど大きな社会問題とな っている。さらに、最近、地下に雪の投入孔を設け、投入した雪に直接温水を噴 射して雪を融かしたり、投入した雪に直接マイクロ波を照射して融かす技術や、 流雪溝に雪を投入し雪処理問題に対処しているが、この方法は高齢者にとっては 雪を運搬する事自体が非常に重労働であり、特に寝たきり老人等は雪投入孔や流 雪溝まで雪を運搬する事は不可能である。しかしながら、家の周辺に積もる雪や 屋根に積雪する雪の重さに危険を感じながら生活している状況である。このよう に従来の融雪の施設には色々と、コストの問題や作業効率、特に今後、増加して いく高齢者の雪の除雪・排雪の運搬問題等で豪雪地域に住む人々にとって、従来 の消雪・融雪の方法では充分な技術とは言えず、融雪分野において低コストを含 む自動化等さらに新しい技術開発が求められている。 For people living in snowy and cold regions, snow removal and snow removal is hard work for the citizens, especially for the elderly. Automating snowmelt will be an indispensable technology with the aging of the population in the future, and will be a major issue in terms of operating costs. In the technical field of snow melting, water spouting melts snow by using groundwater to blow water out of pipes buried on the road surface. A non-sprinkling snowmelt system in which a radiator tube is buried in the required part of the snowmelt, circulates the heat medium liquid heated by a boiler, solar collector, etc., and uses this thermal energy to melt the snow. Electric wire melting snow that heats an electric resistor and uses it to melt snow. An electric heating tube with a high thermal conductivity, a metal capillary wick is lined inside a metal tube, and the inside is evacuated and filled with a small amount of water, chlorofluorocarbon, ammonia, etc. Is snow melting by a heat pipe that evaporates and moves to the agglomerated part. There is a method of providing snow injection holes in the snowmelt ditch or underground, carrying snow into the holes, directly fountain heated with snow, or irradiating microwaves directly to the snow to melt snow. However, many of these snowmelt facilities have a high electricity bill in the snowmelt area, especially in heavy snowfall areas, because the method using a hot wire uses a large amount of electricity, and the boiler heats to a temperature that can melt snow. Until the medium, the pipes that circulate the medium inside the boiler must be heated, and the associated fuel cost and fuel injection work are indispensable. In the present invention, the method of circulating the medium liquid is the same as the boiler method, but unlike the boiler, no fuel is injected at all. In particular, snowmelt points at locations far from the city, such as entrances and exits of tunnels in mountainous areas and highways, use a road heater method with a heating wire rather than a boiler method because of the burden of fuel transportation and lubrication. Used in the fee. In addition, the snow melting method using a solar heat collector, which incorporates natural energy and has a low running cost, does not work at all in snowfall in heavy snowfall areas, and the collectors are damaged or broken down by the weight of snowfall. At present, it is not generally used. Also, the problem of land subsidence due to the pumping of groundwater for snow removal is one of the typical pollutions.In Minami-Uonuma-gun, Niigata prefecture, the pumping of groundwater for snow removal has recently been considered a cause. It has become a major social problem, with the settlement amount of about 30 centimeters. Furthermore, recently, a snow injection hole has been established underground to melt snow by directly injecting hot water into the snow that has been thrown, or by directly irradiating microwaves to the snow that has been thrown, In this method, transporting snow is very hard work for the elderly, and especially for bedridden elderly people, snow is thrown up to the snow hole and snow ditch. It is impossible to transport. However, they are living with a sense of danger due to the weight of the snow piled up around the house and the snow piled up on the roof. As described above, conventional snow melting facilities have various problems, such as cost problems and work efficiency, especially for people living in heavy snowfall areas due to the problem of snow removal and snow removal for elderly people, which will increase in the future. Snow melting and snow melting methods cannot be said to be sufficient technologies, and there is a need for further new technology development in the snow melting field, including automation including low cost.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本考案は従来の融雪・消雪に使用されていない高粘性の熱媒体液にマイクロ波を 照射し、地下の適切な深度に配管布設した融雪配管を循環させてその融雪配管の 周辺の積雪を自動的に融かすという方法であり、本願請求項に使用する熱媒体液 は従来の熱媒体液に比較して、短時間で加熱出来る事や、循環の温度降下率も少 ないことからランニングコストも従来の循環融雪方法よりも安価となる為、省エ ネルギーの効果も大きい。又、自動的に熱媒体液の循環の運転や停止、媒体液の 温度調整も自動的に制御が可能な事や、無散水自動融雪方法である事から、特に 、高齢者にとっては運転管理が容易であり、雪を除雪、排雪する労力も必要とせ ず、運転コストも安価であり、従来のボイラーと異なり、マグネトロン発生器と 該媒体循環液の受水槽と循環ポンプの組み合わせだけで良い為、設置場所も狭い 場所でも設置可能であり、注油の手間もなく、維持管理も簡単な合理的な融雪方 法である The present invention irradiates microwaves to a high-viscosity heat medium liquid that has not been used for conventional snow melting and snow removal, circulates the snow melting pipe laid at an appropriate depth underground, and removes the snow around the snow melting pipe. This is a method of melting automatically, and the heating medium liquid used in the claims of the present invention can be heated in a shorter time and has a lower circulation temperature lowering rate than the conventional heating medium liquid. This method is also cheaper than the conventional circulating snow melting method, so the effect of energy saving is great. Also, since the operation and stop of circulation of the heat medium and the temperature adjustment of the medium can be automatically controlled, and the automatic snow melting method without water spraying, operation management is especially important for the elderly. It is easy, does not require the labor to remove snow and removes snow, the operation cost is low, and unlike a conventional boiler, only a combination of a magnetron generator, a tank for receiving the medium circulating fluid, and a circulation pump is required. It can be installed even in a small place, it is a reasonable snow melting method that requires no lubrication and easy maintenance.

【0004】[0004]

【問題点を解決する為の手段】[Means to solve the problem]

本考案の使用する熱媒体液はエチレングリコール水溶液、プロピレングリコール 水溶液、ポリグリコール水溶液等の不凍液と混合させたアニオン系エマルジョン 型高分子ポリマーを主成分としたアクリルアミド/アクリル酸に水を混合し共重 合体の高粘性液体の媒体循環液で不凍液が混入している為、凍結しない媒体液で あり、アクリルアミド/アクリル酸共重合体液は、耐熱性は約200度であり、 PH値は1パーセント溶液で8.4であり、飲料水の水質基準の範囲内でもあり マイクロ波照射に対する危険性もマイクロ波照射加熱実験によってもまったくな い。該アニオン系エマルジョン型高分子ポリマーを主成分としたアクリルアミド /アクリル酸は石油掘削や井戸温泉掘削等のボーリング技術にすでに使用されて おり、高粘性液体として掘り屑を地上に上昇する役割として活用されている。こ の高粘性媒体液の定積比熱は清水に比較して小さいことから、マイクロ波による 温度上昇が清水に比べて極めて早く、又、暖められた温度の冷却速度は清水に比 較して遅い為、融雪管内を流動する液体温度は冷却率も少なく、循環し帰ってく る循環液の温度差が少ない為、マイクロ波の発生回数も少なくなる。又、マイク ロ波は電磁波の一種であり、商用電力からマイクロ波電力に変換する時の損失が あるのみで装置内で熱として損失する事もなく被加熱物のみを加熱する為、熱効 率も良く他の加熱法よりも小電力、低料金で済む事で利用されている。本発明に 使用する高粘性コロイド状の媒体液にマイクロ波を照射する加熱方法は加熱上昇 速度の増加と媒体液の冷却速度が遅い為、熱効率の向上によりランニングコスト の低減化となり、省エネルギーを対象とした融雪方法といえる。又、マイクロ波 の発生させるマグネトロンを取り付けた温水槽は循環配管にジョイント・バルブ を取り付けて固定するだけで良い為、適用範囲に応じて設置する事ができ、ボイ ラー等と異なり、注油する事もなく、狭い場所での据え付けも可能であり、騒音 もほとんど出ない。 The heating medium used in the present invention is a mixture of acrylamide / acrylic acid mainly composed of an anionic emulsion type polymer mixed with an antifreeze such as an aqueous solution of ethylene glycol, aqueous propylene glycol, or aqueous solution of polyglycol. Since the antifreeze is mixed with the medium circulating liquid of the high-viscosity liquid, it is a medium liquid that does not freeze. The acrylamide / acrylic acid copolymer liquid has a heat resistance of about 200 degrees Celsius and a PH value of 1% solution. 8.4, which is also within the range of drinking water quality standards, and there is no danger to microwave irradiation even from microwave irradiation heating experiments. Acrylamide / acrylic acid containing the anionic emulsion type polymer as a main component has already been used for drilling technology such as oil drilling and well hot spring drilling, and is used as a highly viscous liquid to raise drilling dust to the ground. ing. Since the constant volume specific heat of this highly viscous medium liquid is smaller than that of Shimizu, the temperature rise by microwave is much faster than that of Shimizu, and the cooling rate of the heated temperature is slower than that of Shimizu. Therefore, the temperature of the liquid flowing through the snow-melting pipe has a low cooling rate, and the temperature difference between the circulating liquid returning and circulating is small, so that the number of generations of microwaves is also reduced. Microwaves are a type of electromagnetic wave, and only heat the object to be heated without loss as heat in the equipment, only when there is a loss when converting commercial power to microwave power. It is often used because it requires less power and lower costs than other heating methods. The heating method of irradiating microwave to the highly viscous colloidal medium liquid used in the present invention is intended to reduce the running cost by improving the thermal efficiency because the heating rate is increased and the cooling rate of the medium liquid is slow. It can be said that the method of melting snow. In addition, since a hot water tank equipped with a magnetron that generates microwaves only needs to be fixed by attaching a joint valve to the circulation pipe, it can be installed according to the applicable range, and unlike a boiler, lubrication must be performed. It can be installed in a small place, and there is almost no noise.

【0005】[0005]

【考案の実施の形態】[Embodiment of the invention]

本考案の装置には温水槽に取り付けたマグネトロンから発せられるマイクロ波を 利用し、温水槽に循環し、戻って溜まる高粘性コロイド状の媒体液に直接照射す る。これにより高粘性媒体液は高周波を内部に吸収し、振動する事により熱に変 換する。マイクロ波による加熱は加熱時間が短く、照射対象物(媒体液)だけが 加熱され温水槽自体がほとんど加熱されない事と、高粘性コロイド状の媒体液は 水と比較して熱上昇が早い為、ランニングコストは当然安価となる。又、地盤下 に放熱管を埋設して高粘性媒体液を循環して融雪を行うが、循環温度の到達温度 が従来の循環媒体液に比較して冷却温度が少ない事からマイクロ波照射の回数が 少なく出来、さらに省エネルギーを増す事になる。 The device of the present invention utilizes microwaves emitted from a magnetron attached to a hot water tank, circulates through the hot water tank, and directly irradiates the highly viscous colloidal medium liquid that accumulates back. As a result, the high-viscosity medium liquid absorbs the high frequency wave inside and is converted into heat by vibrating. The heating time by microwave is short, the heating time is short, only the object to be irradiated (medium liquid) is heated and the hot water tank itself is hardly heated, and the high viscous colloidal medium liquid heat rises faster than water. The running cost is naturally lower. In addition, a radiating pipe is buried under the ground to circulate a highly viscous medium liquid to melt snow.However, since the circulating temperature reaches a lower cooling temperature than the conventional circulating medium liquid, the number of microwave irradiations is reduced. Can be reduced and energy savings can be further increased.

【0006】 実際に媒体液に利用される液体にマイクロ波を照射して熱効率を調べた結果を 図1と図2に示す。マイクロ波発生装置のマグネトロンにより照射された液体は 不定長の放熱管を流動し、再び温水槽に戻ってくるため、液体の熱降下率は非常 に重要となり、熱降下率の小さい液体を用いる事が必要となってくる。本考案で 使用する高粘性コロイド状の液体は熱効率の実験により、本願請求1に記載した 高粘性コロイド状流体が最も熱上昇率が大きく、熱降下率が小さいという結果を 得た為、本願請求1に記載した媒体液を使用している。FIG. 1 and FIG. 2 show the results of examining the thermal efficiency by irradiating microwaves to a liquid actually used as a medium liquid. Since the liquid radiated by the magnetron of the microwave generator flows through the radiating pipe of indefinite length and returns to the hot water tank again, the heat drop rate of the liquid is very important. Is required. As for the highly viscous colloidal liquid used in the present invention, the result of the heat efficiency experiment shows that the highly viscous colloidal fluid described in claim 1 of the present application has the largest heat rise rate and the smallest heat drop rate. The medium liquid described in 1 is used.

【0007】[0007]

【実施例】【Example】

本考案の実施例を図面に依拠して説明する。図3は本装置の断面図であるが図中 の降雪センサー1とその信号ケーブル2によって、循環ポンプ4に取り付けた自 動電源スイッチ3は降雪時に自動的に循環ポンプ4の電源が入るようにする。又 優先的には融雪放熱管6に接続した媒体液温度を感知する温度センサー7とその 信号ケーブル8を介し、自動電源スイッチ3は媒体液温度が運転設定温度まで低 下すると循環ポンプ4の電源が自動的に入る様にし、融雪放熱管内の媒体液の運 転停止設定温度以上に温度が高くなると循環ポンプは自動的に停止となる。温水 槽5の上部に設置したマグネトロン9から発するマイクロ波10は温水槽5の中 にある高粘性循環媒体液11を直接照射し温める。高粘性循環媒体液11の温度 は温度センサー12で測定し、温度信号ケーブル13を介して温度表示板14に 表示される。又、温度センサー12は温水槽5内にある媒体液11の温度の高低 を判断して、温度センサー信号ケーブル15を介し、温水槽5に設置したマイク ロ波を発生させるマグネトロン9の温度制御自動スイッチ16がON,OFFと なる。媒体液11は温水槽5に配管された循環ポンプの吸い込み管17を通り循 環ポンプ(ギアーポンプ、ピストンポンプ)4に入り、循環ポンプ4から強制的 に圧送された媒体液11は送り管18を通り、地盤下に敷設された融雪放熱管6 へ流れる。放熱管6の下面には敷設用断熱板19を敷き詰め、地中に熱が放散さ れないようにし、放熱管6からの発散熱20は上部地盤面にのみ放出され、地盤 上の雪を融かすのに有効となる。高粘性媒体液循環量の調整は流量調整弁21で 行う。媒体液11は放熱管6から戻り管22を通り、再び温水槽5内に戻ってき てマイクロ波照射を受け再び強制循環する事になる。 An embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view of the apparatus. The automatic power switch 3 attached to the circulation pump 4 is automatically turned on when snow falls by the snow sensor 1 and the signal cable 2 in the figure. I do. Also, preferentially, an automatic power switch 3 is connected via a temperature sensor 7 connected to the snow melting heat radiating pipe 6 for sensing the temperature of the medium and a signal cable 8 thereof. The circulation pump automatically stops when the temperature rises above the set temperature for stopping the operation of the liquid medium in the snowmelt heat radiation pipe. The microwave 10 emitted from the magnetron 9 installed above the hot water tank 5 directly irradiates the high-viscosity circulating medium liquid 11 in the hot water tank 5 to warm it. The temperature of the highly viscous circulating medium liquid 11 is measured by a temperature sensor 12 and displayed on a temperature display plate 14 via a temperature signal cable 13. The temperature sensor 12 determines the temperature of the medium liquid 11 in the hot water tank 5, and automatically controls the temperature of the magnetron 9 installed in the hot water tank 5 through the temperature sensor signal cable 15. The switch 16 turns ON and OFF. The medium liquid 11 enters the circulation pump (gear pump, piston pump) 4 through the suction pipe 17 of the circulation pump provided in the hot water tank 5, and the medium liquid 11 forcedly fed from the circulation pump 4 passes through the feed pipe 18. It flows to the snowmelt radiating pipe 6 laid under the ground. A heat insulating plate 19 for laying is laid on the lower surface of the heat radiating pipe 6 so that heat is not dissipated into the ground, and the radiated heat 20 from the heat radiating pipe 6 is radiated only to the upper ground surface to melt snow on the ground. It is effective for scum. The flow rate of the high-viscosity medium is adjusted by the flow control valve 21. The medium liquid 11 passes through the return pipe 22 from the heat radiating pipe 6, returns to the hot water tank 5 again, receives microwave irradiation, and is forcibly circulated again.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は媒体液となる液体にマイクロ波を照射した実
験結果の図である
FIG. 1 is a diagram of an experimental result obtained by irradiating a liquid serving as a medium liquid with microwaves.

【図2】は各媒体液の冷却温度を示した図であるFIG. 2 is a diagram showing a cooling temperature of each medium liquid.

【図3】は本発明の実施例の使用状態を示す図FIG. 3 is a diagram showing a use state of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1)降雪センサー (2)信号ケーブル (3)電源スイッチ (4)循環ポンプ(ギヤーポンプ、ピストンポンプ) (5)温水槽 (6)融電放熱管 (7)温度センサー (8)信号ケーブル (9)マグネトロン (10)マイクロ波 (11)高粘性循環媒体液 (12)温度センサー (13)温度信号ケーブル (14)温度表示板 (15)温度センサー信号ケーブル (16)温度制御自動スイッチ (17)吸い込み管 (18)送り管 (19)敷設用断熱板 (20)発散熱 (21)流量調整弁 (22)戻り管 (1) Snowfall sensor (2) Signal cable (3) Power switch (4) Circulation pump (gear pump, piston pump) (5) Hot water tank (6) Melting heat radiation pipe (7) Temperature sensor (8) Signal cable (9) ) Magnetron (10) Microwave (11) High viscosity circulating medium liquid (12) Temperature sensor (13) Temperature signal cable (14) Temperature display board (15) Temperature sensor signal cable (16) Temperature control automatic switch (17) Suction Pipe (18) Feed pipe (19) Heat insulation board for laying (20) Heat dissipation (21) Flow control valve (22) Return pipe

Claims (1)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 本考案に使用する融雪用循環媒体液は外
観が半透明液体で、耐熱性は約200度のアニオン系エ
マルジョン型高分子ポリマーを主成分としたアクリルア
ミド/アクリル酸ポリマーを水と混合し、高粘性コロイ
ド状となした媒体液に不凍液を混合し、該媒体液を循環
させる為の配管の途中に該高粘性循環媒体液が一時的に
溜まる温水槽と、その温水槽の上部にマイクロ波発生装
置を取り付けてマイクロ波発生装置の起動及び停止の自
動制御する温度感知スイッチを設け、温水槽中の該循環
媒体液の温度を感知する温度センサーとその信号ケーブ
ルを介して温度感知スイッチを作動させ、温水槽に溜ま
る該循環媒体液に直接マイクロ波発生装置から発生する
マイクロ波を照射し、急速に高温の該循環媒体液に加熱
させ、高温となった高粘性該媒体液の循環はピストンポ
ンプ又はギヤーポンプの吸い込み管を温水槽に配管接続
し、降雪センサー及び融雪放熱管内に設置した媒体液温
度センサー等の信号ケーブルを介して該循環ポンプの起
動と停止を自動的に運転させ、高粘性循環媒体液を強制
的に圧送循環するように構成したことを特徴とするマイ
クロ波加熱高粘性循環熱媒体液による融雪装置である。
1. The circulating medium liquid for snow melting used in the present invention is a translucent liquid having an external appearance and a heat resistance of about 200 ° C. with an acrylamide / acrylic acid polymer mainly composed of an anionic emulsion type polymer and water. A hot water tank in which the high-viscosity circulating medium liquid temporarily accumulates in the middle of a pipe for circulating the medium liquid by mixing the antifreeze with the medium liquid that has been mixed into a high-viscosity colloidal form, and an upper part of the hot water tank A temperature sensor for automatically controlling the start and stop of the microwave generator by attaching a microwave generator to the microwave generator, and a temperature sensor for sensing the temperature of the circulating medium liquid in the hot water tank and a temperature sensor via its signal cable. Activate the switch to directly irradiate the circulating medium liquid stored in the hot water tank with microwaves generated from a microwave generator, and rapidly heat the circulating medium liquid at a high temperature to reach a high temperature. To circulate the high viscosity medium fluid, connect the suction pipe of the piston pump or gear pump to the hot water tank, and start and stop the circulation pump via signal cables such as a snowfall sensor and a medium fluid temperature sensor installed in the snow melting heat radiation pipe. Is automatically operated to forcibly circulate the high-viscosity circulating medium liquid under pressure.
JP2000007695U 2000-09-21 2000-09-21 Microwave snow melting equipment Expired - Fee Related JP3076493U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007695U JP3076493U (en) 2000-09-21 2000-09-21 Microwave snow melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007695U JP3076493U (en) 2000-09-21 2000-09-21 Microwave snow melting equipment

Publications (1)

Publication Number Publication Date
JP3076493U true JP3076493U (en) 2001-04-06

Family

ID=43209552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007695U Expired - Fee Related JP3076493U (en) 2000-09-21 2000-09-21 Microwave snow melting equipment

Country Status (1)

Country Link
JP (1) JP3076493U (en)

Similar Documents

Publication Publication Date Title
CN205907587U (en) Pontic heat preservation device
JP3076493U (en) Microwave snow melting equipment
JPH07190503A (en) Method and apparatus for collecting terrestrial heat
JP6443783B2 (en) Heat exchange device control method, heat exchange device, and water-cooled heat pump air conditioner
KR100991075B1 (en) Temperature control apparatus of road surface using convection of heat transfer medium in dual pipe by subterranean heat
JP2006225954A (en) Snow-melting passage and fluid heating method
JP2689400B2 (en) Solar heat storage type road surface snow melting device
JP2001107307A (en) Snow melting antifreezer
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
JPH061606Y2 (en) Underground heat exchanger
JP7161189B2 (en) Water storage facility
JP2003302122A (en) Geothermal unit
JP6560706B2 (en) Snow extinguishing equipment and snow extinguishing method
JPH01247601A (en) Water unsprinkling type snow melting method utilizing geothermal effect in the depth of ground
JP2000144619A (en) Microwave snow melting apparatus
JPH07119442B2 (en) Taiyo heat storage type road surface snow melting device
JPH02269206A (en) Unsprinkled snow melting method by underground boiler heating
JP2893789B2 (en) Snow melting equipment
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
CN210718213U (en) Low-temperature heat pump unit for ground snow melting
CN220166586U (en) Snow melting device utilizing heat pipe
JPH03228901A (en) Unsprayed snow-thawing method by heating of exhaust heat recovery underground boiler
JPH07269960A (en) Circulation type geothermal heat utilizing apparatus
JP2973276B2 (en) Snow melting equipment
JPH05272105A (en) Road snow melting device provided with solar device on slope face

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees