JP3075979B2 - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP3075979B2 JP3075979B2 JP08063825A JP6382596A JP3075979B2 JP 3075979 B2 JP3075979 B2 JP 3075979B2 JP 08063825 A JP08063825 A JP 08063825A JP 6382596 A JP6382596 A JP 6382596A JP 3075979 B2 JP3075979 B2 JP 3075979B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- outdoor unit
- power operation
- valve
- indoor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、1台の室外機に複
数の室内機が接続されたマルチシステム型の空気調和機
に係り、特に、室外機から室内機への冷媒に分流制御技
術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-system air conditioner in which a plurality of indoor units are connected to one outdoor unit, and more particularly to a technique for controlling the flow of refrigerant from an outdoor unit to an indoor unit. .
【0002】[0002]
【従来の技術】一般に、1台の室外機に対して複数台の
室内機を接続してなるマルチシステム型の空気調和機が
知られている。この種の空気調和機において、室外機に
は複数の冷媒配管(液管およびガス管)接続用の複数
(例えば、液管4個、ガス管4個)の接続口(ジョイン
ト)が設けられており、これらの各配管接続口に一対一
で室内機が接続されいる。2. Description of the Related Art In general, a multi-system type air conditioner in which a plurality of indoor units are connected to one outdoor unit is known. In this type of air conditioner, the outdoor unit is provided with a plurality of (for example, four liquid pipes and four gas pipes) connection ports (joints) for connecting a plurality of refrigerant pipes (liquid pipes and gas pipes). The indoor units are connected one-to-one to these pipe connection ports.
【0003】このようなマルチシステム型の空気調和機
では、各室内機側からの要求に応じて冷媒を分配するた
めに、室外機の配管接続口に設けられた分流制御用の電
動膨張弁(分流弁)の開度調節が行われる。各電動膨張
弁の弁開度の制御は、各室内機の熱交換器に取り付けら
れた熱交換器温度センサの検出温度に追従して室外機内
のマイクロコンピュータの制御下で実行される。In such a multi-system type air conditioner, in order to distribute the refrigerant in accordance with a request from each indoor unit, an electric expansion valve for diverting control provided at a pipe connection port of the outdoor unit (see FIG. 1). The degree of opening of the flow dividing valve is adjusted. The control of the valve opening of each electric expansion valve is executed under the control of the microcomputer in the outdoor unit, following the temperature detected by the heat exchanger temperature sensor attached to the heat exchanger of each indoor unit.
【0004】一方、空気調和機には、起動時の立ち上が
りをよくして短時間で目的の温度に調整するために、室
外機の能力を通常の値よりも大きくする、いわゆる「ハ
イパワー運転」の運転モードが備えられている。このハ
イパワー運転は、コンプレッサの運転周波数を通常運転
時の最大周波数に切り替えて、室外機からの冷媒の循環
量を増加させることにより、運転能力能力を上げる運転
モードである。ハイパワー運転は、各室内機側に接続さ
れたリモコン等のスイッチにより個別に要求される。On the other hand, the air conditioner has a so-called "high power operation" in which the capacity of the outdoor unit is made larger than a normal value in order to improve the start-up at the time of startup and to adjust the target temperature in a short time. Operation mode is provided. The high-power operation is an operation mode in which the operation capacity is increased by switching the operation frequency of the compressor to the maximum frequency during normal operation and increasing the amount of refrigerant circulating from the outdoor unit. High power operation is individually requested by a switch such as a remote controller connected to each indoor unit.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記従
来の空気調和機においては、各部の温度変化が生じるま
で弁解度が変更されないため、動作上の反応が遅くなる
問題がある。また、複数台の室内機のうち、いずれかが
ハイパワー運転を行おうとした場合、ハイパワー運転を
要求しない他の室内機の空調能力までも連動して大きく
なってしまい、能力が分散してしまう問題がある。さら
に、すでに最大周波数にて運転している場合、ハイパワ
ー運転に設定しても能力的に変化がなく、能力の不足が
生じて実質的にハイパワー運転が不可能になる場合があ
る。However, in the above-mentioned conventional air conditioner, the valve response is not changed until the temperature of each part changes, so that there is a problem that the operation response is slow. Also, if any of the plurality of indoor units attempts to perform high-power operation, the air-conditioning capacity of other indoor units that do not require high-power operation also increases, and the capacity is dispersed. There is a problem. Further, when the operation is already performed at the maximum frequency, there is no change in the performance even if the high-power operation is set, and there is a case where the performance is insufficient and the high-power operation becomes substantially impossible.
【0006】本発明の目的は、室内機の要求に迅速に応
答してハイパワー運転を開始し、他の室内機の能力を極
力低下させることなく運転が可能な空気調和機を提供す
ることにある。An object of the present invention is to provide an air conditioner that can start high-power operation promptly in response to a request from an indoor unit and operate without reducing the performance of other indoor units as much as possible. is there.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の発明は、室外機と、この室外機に
設けられた複数の冷媒配管接続口のそれぞれに開度調節
可能な分流弁を介して接続された複数の室内機とを有
し、運転能力を強制的に最大能力側へ高めるハイパワー
運転可能な空気調和機において、前記室外機には接続さ
れた室内機からの要求に基づいてそれぞれの分流弁の開
度を自動制御する分流弁の開度調節機構を有し、前記い
ずれかの室内機から送信されたハイパワー運転要求信号
を受信したとき、当該ハイパワー運転要求信号を発した
室内機の対応する分流弁の開度を前記開度調節機構での
弁開度よりも所定開度だけ大きくし、他の室内機に該当
する分流弁の開度を所定開度だけ小さくする制御手段を
備えて構成される。According to a first aspect of the present invention, an outdoor unit and a plurality of refrigerant pipe connection ports provided in the outdoor unit can be adjusted in opening degree. A plurality of indoor units connected via a diverting valve, and a high-power operable air conditioner that forcibly increases the operation capacity to the maximum capacity side, wherein the outdoor unit is connected to the outdoor unit. Having an opening adjustment mechanism of the shunt valve that automatically controls the opening of each shunt valve based on the request, and when receiving a high-power operation request signal transmitted from any of the indoor units, The opening of the corresponding shunt valve of the indoor unit that has issued the operation request signal is increased by a predetermined opening from the valve opening of the opening adjustment mechanism, and the opening of the shunt valve corresponding to another indoor unit is set to a predetermined value. The control device is provided with control means for reducing the opening degree.
【0008】この請求項1に記載の発明によれば、制御
手段はハイパワー運転要求信号を受信すると、該当する
室内機に対応する分流弁の開度を所定開度分大きく開
き、他の室内機に対応する分流弁の開度を絞る。このよ
うな分流弁の開度調節を行うことによって、室内機から
のハイパワー運転要求に対する反応を高速化することが
でき、また、ハイパワー運転の要求を出した室内機に集
中して冷媒を供給するため、他の室内機の能力をあまり
変化させることなくハイパワー運転が可能となる。According to the first aspect of the present invention, when the control means receives the high power operation request signal, the control unit widens the opening of the flow dividing valve corresponding to the corresponding indoor unit by a predetermined opening, and opens the other indoor unit. The diverting valve opening corresponding to the machine. By performing such opening adjustment of the flow dividing valve, it is possible to speed up the response to the high power operation request from the indoor unit, and to concentrate the refrigerant on the indoor unit that has issued the high power operation request. As a result, high-power operation can be performed without significantly changing the performance of other indoor units.
【0009】請求項2に記載の発明は、室外機と、この
室外機に設けられた複数の冷媒配管接続口のそれぞれに
開度調節可能な分流弁を介して接続された複数の室内機
とを有し、運転能力を強制的に最大能力側へ高めるハイ
パワー運転可能な空気調和機において、前記室外機には
接続された室内機からの要求に基づいてそれぞれの分流
弁の開度を自動制御する分流弁の開度調節機構を有し、
前記いずれかの室内機から送信されたハイパワー運転要
求信号を受信したとき、前記室外機に内蔵されるコンプ
レッサの運転周波数を通常運転時の最大運転周波数より
もさらに所定周波数分(例えば、1割〜5割程度)だけ
高くし、当該ハイパワー運転要求信号を発した室内機の
対応する分流弁の開度を前記開度調節機構での弁開度よ
りも所定開度だけ大きくし、他の室内機に該当する分流
弁の開度を所定開度だけ小さくする制御手段を備えて構
成される。According to a second aspect of the present invention, there is provided an outdoor unit, and a plurality of indoor units connected to a plurality of refrigerant pipe connection ports provided in the outdoor unit via split flow valves whose opening degree can be adjusted. In the air conditioner capable of high-power operation for forcibly increasing the operation capacity to the maximum capacity side, the outdoor unit automatically adjusts the degree of opening of each flow dividing valve based on a request from an indoor unit connected to the outdoor unit. It has an opening adjustment mechanism of the shunt valve to control,
When the high power operation request signal transmitted from any of the indoor units is received, the operation frequency of the compressor built in the outdoor unit is further increased by a predetermined frequency (for example, 10%) from the maximum operation frequency during normal operation. 550%), the opening of the corresponding shunt valve of the indoor unit that has issued the high-power operation request signal is made larger by a predetermined opening than the opening of the opening adjustment mechanism, and the other Control means is provided for reducing the opening of the flow dividing valve corresponding to the indoor unit by a predetermined opening.
【0010】この請求項2に記載の発明によれば、制御
手段はハイパワー運転要求信号を受信すると、コンプレ
ッサの運転周波数を通常運転時の最大運転周波数よりも
さらに所定周波数分だけ高くして室外機自体の能力を高
め、該当する室内機に対応する分流弁の開度を所定開度
分大きく開き、他の室内機に対応する分流弁の開度を絞
る。このような分流弁の開度調節を行うことによって、
室内機からのハイパワー運転要求に対する反応を高速化
することができ、室外機のもつ能力を最大限に引き出す
ことができ、それと同時にハイパワー運転を要求しない
他の室内機の能力をそれまでの運転状態のままで維持す
ることができる。According to the second aspect of the present invention, when the control means receives the high-power operation request signal, the control unit increases the operating frequency of the compressor by a predetermined frequency further than the maximum operating frequency in the normal operation, and controls the outdoor unit. The capacity of the unit itself is increased, the opening of the shunt valve corresponding to the relevant indoor unit is widened by a predetermined opening, and the opening of the shunt valve corresponding to another indoor unit is reduced. By performing such opening adjustment of the flow dividing valve,
It is possible to speed up the response to the high power operation request from the indoor unit, to maximize the capacity of the outdoor unit, and at the same time, to reduce the capacity of other indoor units that do not require high power operation It can be maintained in the operating state.
【0011】[0011]
【発明の実施の形態】次に、本発明の好適な実施の形態
を図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings.
【0012】(I) 空気調和機の構成 図1に、本発明が適用される空気調和機の実施の形態を
示す。(I) Configuration of Air Conditioner FIG. 1 shows an embodiment of an air conditioner to which the present invention is applied.
【0013】室外機100には、接続配管(液管)28
a〜28cおよび接続配管(ガス管)29a〜29cを
介して室内機群101が接続されている。この空気調和
機は冷房および暖房運転が可能であり、図1において、
冷房時の冷媒の流れを実線で示し、暖房時の冷媒の流れ
を破線で示す。The outdoor unit 100 has a connection pipe (liquid pipe) 28.
The indoor unit group 101 is connected via a to c and connection pipes (gas pipes) 29a to 29c. This air conditioner can perform cooling and heating operations, and in FIG.
The flow of the refrigerant during cooling is indicated by a solid line, and the flow of the refrigerant during heating is indicated by a broken line.
【0014】冷房時において、冷媒は、コンプレッサ
3、マフラ4、四方弁5、室外熱交換器6、モジュレー
タ7、モジュレータ8、ストレーナ9、主冷凍回路の冷
媒制御用電動膨張弁10を出た後、三つの回路に分流さ
れる。各分流回路のそれぞれには、冷媒制御用電動膨張
弁11a〜11cが設けられ、冷媒はストレーナ12a
〜12c、液管側接続口23a〜23c、接続配管28
a〜28cを介して室内熱交換器2a〜2cに送られ
る。室内熱交換器2a〜2cを出た冷媒は、接続配管2
9a〜29cを介してガス管側接続口27a〜27cに
戻り、マフラ13、四方弁5、アキュームレータ14、
15を経てコンプレッサ3に戻る。During cooling, the refrigerant flows out of the compressor 3, the muffler 4, the four-way valve 5, the outdoor heat exchanger 6, the modulator 7, the modulator 8, the strainer 9, and the electric expansion valve 10 for controlling the refrigerant of the main refrigeration circuit. Shunted into three circuits. Each of the branch circuits is provided with a refrigerant control electric expansion valve 11a to 11c, and the refrigerant is supplied to a strainer 12a.
To 12c, liquid pipe side connection ports 23a to 23c, connection pipe 28
a to 28c, and sent to the indoor heat exchangers 2a to 2c. The refrigerant flowing out of the indoor heat exchangers 2a to 2c is connected to the connection pipe 2
Returning to the gas pipe side connection ports 27a to 27c via 9a to 29c, the muffler 13, the four-way valve 5, the accumulator 14,
The flow returns to the compressor 3 via 15.
【0015】一方、暖房時において、冷媒は上述の冷房
時と逆の経路で循環するので、破線で矢印を示し、その
詳細は省略する。なお、16は除霜用の電磁開閉弁で、
室外熱交換器6に着霜が始まった際または着霜しそうな
際に、コンプレッサ3から吐出された暖気ガス冷媒の一
部を室外熱交換器6に与え、除霜または着霜の防止を行
うためのものである。On the other hand, during the heating, the refrigerant circulates in a path reverse to that of the above-described cooling, so that the arrows are indicated by broken lines and the details are omitted. In addition, 16 is an electromagnetic on-off valve for defrost,
When frost has started or is likely to form frost on the outdoor heat exchanger 6, a portion of the warm-air gas refrigerant discharged from the compressor 3 is provided to the outdoor heat exchanger 6 to prevent defrosting or frost formation. It is for.
【0016】液管28a〜28c側の分流回路のそれぞ
れには、分流液管温度センサ18a〜18cが取り付け
られている。同様に、ガス管側の分流回路のそれぞれに
は、分流ガス管温度センサ19a〜19cが取り付けら
れている。コンプレッサ3の吐出側にはコンプレッサ吐
出温度センサ20が取り付けられている。さらに、室外
熱交換器6には室外熱交換器温度センサ21が設けら
れ、また室外熱交換器6の風上側に外気温度センサ22
が取り付けられている。Dividing liquid pipe temperature sensors 18a to 18c are attached to the respective dividing circuits on the liquid pipes 28a to 28c side. Similarly, each of the gas pipe side branch circuits is provided with a branch gas pipe temperature sensor 19a to 19c. A compressor discharge temperature sensor 20 is mounted on the discharge side of the compressor 3. Further, the outdoor heat exchanger 6 is provided with an outdoor heat exchanger temperature sensor 21, and an outdoor air temperature sensor 22 is provided on the windward side of the outdoor heat exchanger 6.
Is attached.
【0017】室外機100はマイクロコンピュータ17
を内蔵しており、このマイクロコンピュータ17は上記
各温度センサ18a〜18c、19a〜19c、20、
21、および22からの温度検出信号を受け、予め格納
された制御プログラムに従って室外機100の制御を行
う。この室外機側マイクロコンピュータ17と後述の各
室内機マイクロコンピュータ27a〜27eとは通信線
(図示せず)により結ばれ、温度データ、コンプレッサ
周波数データ等の通信を行っている。The outdoor unit 100 is a microcomputer 17
The microcomputer 17 includes the above-mentioned temperature sensors 18a to 18c, 19a to 19c, 20,
Upon receiving the temperature detection signals from 21 and 22, the outdoor unit 100 is controlled according to a control program stored in advance. The outdoor unit microcomputer 17 and each of the indoor unit microcomputers 27a to 27e to be described later are connected by a communication line (not shown) to communicate temperature data, compressor frequency data, and the like.
【0018】また、マイクロコンピュータ17は、コン
プレッサ吐出温度センサ20、分流液管温度センサ18
a〜18c及び分流ガス管温度センサ19a〜19cか
らの温度検出信号に基づいて冷媒制御用電動膨張弁11
a〜11cの弁開度の演算を行う。The microcomputer 17 includes a compressor discharge temperature sensor 20 and a diversion liquid pipe temperature sensor 18.
a to 18c and a refrigerant control electric expansion valve 11 based on temperature detection signals from the branch gas pipe temperature sensors 19a to 19c.
Calculation of the valve opening degree of a to 11c is performed.
【0019】冷媒制御用電動膨張弁11a〜11cは、
付属するステッピングモータにより弁開度が調整される
構造になっており、マイクロコンピュータ17による演
算結果から、マイクロコンピュータ17が各冷媒制御用
電動膨張弁11a〜11cのステップモータにパルス信
号を出力することで、主回路及び分流回路の冷媒流量の
制御が行われる。これらの冷媒制御用電動膨張弁11a
〜11cは、例えば511ステップで全開まで動作し、
マイクロコンピュータ17からは正転用のパルスまたは
逆転用のパルスを出力することによって1ステップ単位
の分解能で弁開度制御が行われる。The refrigerant control electric expansion valves 11a to 11c are:
The valve opening is adjusted by an attached stepping motor. The microcomputer 17 outputs a pulse signal to the step motor of each of the refrigerant control electric expansion valves 11a to 11c based on the calculation result by the microcomputer 17. Thus, the flow rate of the refrigerant in the main circuit and the flow dividing circuit is controlled. These refrigerant control electric expansion valves 11a
To 11c operate up to full open in, for example, 511 steps,
By outputting a pulse for normal rotation or a pulse for reverse rotation from the microcomputer 17, the valve opening control is performed with a resolution of one step unit.
【0020】室内機群101は、この実施の形態では、
3台の室内機で構成され、各室内機のそれぞれは室内熱
交換器2a〜2cを有している。なお、図示してない
が、送風ファンを有しており、室内機自体の基本的構造
は一般的なものであってよい。In this embodiment, the indoor unit group 101 includes:
Each of the indoor units has indoor heat exchangers 2a to 2c. Although not shown, the air conditioner has a blower fan, and the basic structure of the indoor unit itself may be a general structure.
【0021】各室内熱交換器2a〜2cには、熱交換器
温度センサ24a〜24eおよびその空気吸込口に室内
吸込空気温度センサ25a〜25eが取り付けられてい
る。The indoor heat exchangers 2a to 2c are provided with heat exchanger temperature sensors 24a to 24e and indoor suction air temperature sensors 25a to 25e at their air inlets.
【0022】各室内機にはマイクロコンピュータ26a
〜26cが内蔵されており、各マイクロコンピュータ2
6a〜26cは熱交換器温度センサ24a〜24eおよ
び室内吸込空気温度センサ25a〜25eからの温度検
出信号に基づいて送風量等の演算および制御を実行し、
また、図示しない通信回線を介して室外機側マイクロコ
ンピュータ17との間で必要なデータの交信を行う。Each indoor unit has a microcomputer 26a.
To 26c are built in each microcomputer 2
6a to 26c execute calculation and control of an air blowing amount and the like based on temperature detection signals from the heat exchanger temperature sensors 24a to 24e and the indoor suction air temperature sensors 25a to 25e,
Also, necessary data is exchanged with the outdoor unit-side microcomputer 17 via a communication line (not shown).
【0023】(II)ハイパワー運転時の分流制御 以上の空気調和機は、ハイパワー運転可能に構成されて
おり、このハイパワー運転時における分流弁の開度制御
は、マイクロコンピュータ17内のROMに予め格納さ
れた分流制御プログラムおよびEEPROMに格納され
たデータに従って実行される。(II) Split control during high power operation The air conditioner described above is configured to be capable of high power operation. The opening control of the split valve during the high power operation is performed by a ROM in the microcomputer 17. The program is executed in accordance with a shunt control program stored in advance and data stored in the EEPROM.
【0024】図2に、本発明に係る分流制御プログラム
のアルゴリズムを示す。以下、ステップ順に説明する。FIG. 2 shows an algorithm of the flow control program according to the present invention. Hereinafter, description will be made in the order of steps.
【0025】まず、各室内機に接続されたリモコン(図
示せず)からハイパワー運転の命令入力を行うことによ
り、室内機のマイクロコンピュータ26a〜256cか
ら室外機100のマイクロコンピュータ17にハイパワ
ー運転要求信号が送られる。First, by inputting a high power operation command from a remote controller (not shown) connected to each indoor unit, the microcomputers 26a to 256c of the indoor units cause the microcomputer 17 of the outdoor unit 100 to perform high power operation. A request signal is sent.
【0026】次に、ハイパワー運転要求信号を受信する
と(ステップS1)、この制御プログラムが起動し、ス
テップS2以降の機能を実行する。Next, when a high-power operation request signal is received (step S1), this control program is started, and the functions after step S2 are executed.
【0027】ステップS2において、マイクロコンピュ
ータ17は、受信したハイパワー運転要求信号に基づい
て、電動膨張弁9の弁開度を初期制御モード(空気調和
機の運転開始時の制御モード)に設定し、通常運転時の
開度よりも大きくする。次いで、ハイパワー運転要求信
号を発信した室外機に対応する分流回路の電動膨張弁
(例えば、11a)の弁開度を例えば450ステップ相
当の開度に設定して開き、他の室内機の分流回路の電動
膨張弁(例えば、11b、11c)の弁開度を300ス
テップ相当の開度に設定して絞る。さらにコンプレッサ
3の運転周波数を通常運転時の最大周波数よりもさらに
高い周波数に設定する。このコンプレッサ3の運転周波
数の上昇程度は、室外機の能力(すなわち、コンプレッ
サ3の能力)に応じた係数αで定められ、この係数αの
例を図3に示す。以上のステップS2の設定が終了する
と、処理はステップS3に進む。In step S2, the microcomputer 17 sets the valve opening of the electric expansion valve 9 to an initial control mode (control mode at the start of operation of the air conditioner) based on the received high power operation request signal. , Larger than the opening during normal operation. Next, the valve opening of the electric expansion valve (for example, 11a) of the flow dividing circuit corresponding to the outdoor unit that has transmitted the high power operation request signal is set to, for example, an opening corresponding to 450 steps, and is opened. The valve openings of the electric expansion valves (for example, 11b and 11c) of the circuit are set to an opening equivalent to 300 steps and are throttled. Further, the operating frequency of the compressor 3 is set to a frequency higher than the maximum frequency during normal operation. The degree of increase in the operating frequency of the compressor 3 is determined by a coefficient α corresponding to the capacity of the outdoor unit (that is, the capacity of the compressor 3), and an example of the coefficient α is shown in FIG. When the setting in step S2 is completed, the process proceeds to step S3.
【0028】ステップS3はタイマであり、上記ステッ
プS2の初期制御モードの設定時間(例えば、360
秒)を規制する。従って、ステップS2の初期制御モー
ドは上記設定時間だけ実行され、設定時間のカウントア
ップ時点(YES)で、処理はステップS4に移り、各
分流回路の電動膨張弁11a〜11cは通常運転時の分
流制御下の弁開度に戻される。Step S3 is a timer which sets the initial control mode of step S2 (for example, 360
S) to regulate. Therefore, the initial control mode of step S2 is executed only for the above set time, and when the set time is counted up (YES), the processing shifts to step S4, and the electric expansion valves 11a to 11c of the respective shunt circuits perform the shunt during normal operation. It is returned to the controlled valve opening.
【0029】次に、ステップS5においてハイパワー運
転の終了信号の有無を確認する。ハイパワー運転の終了
信号は、ハイパワー運転自体がもともと過負荷運転であ
ることから発せられる信号であり、暖房運転時にあって
は、室内機の熱交換器温度またはハイパワー運転許容時
間が所定の値に達した場合に出力され、冷房運転時にあ
っては凍結防止制御のための室内機の熱交換器温度また
はハイパワー運転許容時間が所定の値に達した場合に出
力される。Next, in step S5, it is confirmed whether or not there is a high power operation end signal. The high-power operation end signal is a signal that is issued because the high-power operation itself is an overload operation, and during the heating operation, the heat exchanger temperature of the indoor unit or the high-power operation allowable time is a predetermined time. This signal is output when the temperature has reached the predetermined value, and is output when the heat exchanger temperature of the indoor unit or the high-power operation allowable time for the anti-freezing control has reached a predetermined value during the cooling operation.
【0030】ハイパワー運転が終了すると(ステップS
5、YES)、処理はステップS6に進む。ステップS
6では、ステップS2において高く設定したてコンプレ
ッサ3の最大運転周波数を通常制御(各室内機からの要
求に対応する制御)での周波数に戻す。When the high power operation is completed (step S
5, YES), and the process proceeds to step S6. Step S
In step S6, the maximum operating frequency of the compressor 3 which has been set high in step S2 is returned to the frequency in the normal control (control corresponding to a request from each indoor unit).
【0031】[0031]
【発明の効果】以上の通り、請求項1に記載の発明によ
れば、ハイパワー運転要求信号を受信すると、該当する
室内機に対応する分流弁の開度を所定開度分大きく開
き、他の室内機に対応する分流弁の開度を絞るように分
流弁の開度調節を行うので、室内機からのハイパワー運
転要求に対する反応を高速化することができ、また、ハ
イパワー運転の要求を出した室内機に集中して冷媒を供
給するため、他の室内機の能力をあまり変化させること
なくハイパワー運転が可能となる。As described above, according to the first aspect of the present invention, when the high power operation request signal is received, the opening of the flow dividing valve corresponding to the corresponding indoor unit is greatly opened by a predetermined opening. The opening of the shunt valve is adjusted so as to reduce the opening of the shunt valve corresponding to the indoor unit, so that the response to the high power operation request from the indoor unit can be sped up, and the demand for the high power operation can be increased. Since the refrigerant is supplied intensively to the indoor unit that has issued the air conditioner, high-power operation can be performed without significantly changing the performance of the other indoor units.
【0032】請求項2に記載の発明によれば、ハイパワ
ー運転要求信号を受信すると、コンプレッサの運転周波
数を通常運転時の最大運転周波数よりもさらに所定周波
数分だけ高くして室外機自体の能力を高め、該当する室
内機に対応する分流弁の開度を所定開度分大きく開き、
他の室内機に対応する分流弁の開度を絞るように分流弁
の開度調節を行うので、室内機からのハイパワー運転要
求に対する反応を高速化することができ、室外機のもつ
能力を最大限に引き出すことができ、それと同時にハイ
パワー運転を要求しない他の室内機の能力をそれまでの
運転状態のままで維持することができる。According to the second aspect of the present invention, when the high power operation request signal is received, the operation frequency of the compressor is increased by a predetermined frequency further than the maximum operation frequency in the normal operation, and the performance of the outdoor unit itself is increased. , The opening of the flow dividing valve corresponding to the corresponding indoor unit is greatly opened by a predetermined opening,
Since the opening of the shunt valve is adjusted to reduce the opening of the shunt valve corresponding to other indoor units, the response to the high power operation request from the indoor unit can be accelerated, and the capacity of the outdoor unit can be improved. It is possible to extract the maximum power, and at the same time, to maintain the performance of the other indoor units that do not require the high-power operation in the same operation state as before.
【図1】本発明に係る空気調和機の冷媒回路の回路図で
ある。FIG. 1 is a circuit diagram of a refrigerant circuit of an air conditioner according to the present invention.
【図2】本発明に係る空気調和機の分流制御アルゴリズ
ムを示すフローチャートである。FIG. 2 is a flowchart illustrating a flow control algorithm of the air conditioner according to the present invention.
【図3】コンプレッサの能力係数の説明図である。FIG. 3 is an explanatory diagram of a capacity coefficient of a compressor.
100 室外機、 101 室内機群 2a〜2c 室内機熱交換器 3 コンプレッサ 4 マフラ 5 四方弁 6 室外熱交換器 7 モジュレータ 8 ストレーナ 9 主冷凍回路の冷媒制御用電動膨張弁 10 ストレーナ 11a〜11c 分流回路の冷媒制御用電動膨張弁 12a〜12c 分流回路のストレーナ 13 マフラ 14 アキュームレータ 15 アキュームレータ 17 マイクロコンピュータ 18a〜18c 分流液管温度センサ 19a〜19c 分流ガス管温度センサ 20 コンプレッサ吐出温度センサ 21 室外熱交換器温度センサ 22 外気温度センサ 23a〜23c 液管側接続口 24a〜24c 熱交換器温度センサ 25a〜25e 室内吸込空気温度センサ 26a〜26e 室内機マイクロコンピュータ 27a〜27c ガス管側接続口 28a〜28c 接続配管 29a〜29c 接続配管 REFERENCE SIGNS LIST 100 outdoor unit, 101 indoor unit group 2 a to 2 c indoor unit heat exchanger 3 compressor 4 muffler 5 four-way valve 6 outdoor heat exchanger 7 modulator 8 strainer 9 electric expansion valve for refrigerant control of main refrigeration circuit 10 strainer 11 a to 11 c branch circuit Electric expansion valve for refrigerant control 12a to 12c Strainer of shunt circuit 13 Muffler 14 Accumulator 15 Accumulator 17 Microcomputer 18a to 18c Separating liquid pipe temperature sensor 19a to 19c Separating gas pipe temperature sensor 20 Compressor discharge temperature sensor 21 Outdoor heat exchanger temperature Sensor 22 Outside air temperature sensor 23a to 23c Liquid pipe side connection port 24a to 24c Heat exchanger temperature sensor 25a to 25e Indoor suction air temperature sensor 26a to 26e Indoor unit microcomputer 27a to 27c Gas pipe side connection port 28a 28c connecting pipe 29a~29c connecting pipe
フロントページの続き (72)発明者 青石 浩一 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平7−180924(JP,A) 特開 昭64−70660(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F25B 13/00 104 Continuation of front page (72) Inventor Koichi Aoishi 2-5-1-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-7-180924 (JP, A) JP-A 64-64 70660 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 11/02 102 F25B 13/00 104
Claims (2)
の冷媒配管接続口のそれぞれに開度調節可能な分流弁を
介して接続された複数の室内機とを有し、運転能力を強
制的に最大能力側へ高めるハイパワー運転可能な空気調
和機において、 前記室外機には接続された室内機から
の要求に基づいてそれぞれの分流弁の開度を自動制御す
る分流弁の開度調節機構を有し、 前記いずれかの室内機から送信されたハイパワー運転要
求信号を受信したとき、当該ハイパワー運転要求信号を
発した室内機の対応する分流弁の開度を前記開度調節機
構での弁開度よりも所定開度だけ大きくし、他の室内機
に該当する分流弁の開度を所定開度だけ小さくする制御
手段を備えたことを特徴とする空気調和機。An outdoor unit, and a plurality of indoor units connected to a plurality of refrigerant pipe connection ports provided in the outdoor unit via a flow dividing valve whose opening degree can be adjusted, and have an operating capacity. In an air conditioner capable of high-power operation that forcibly increases to the maximum capacity side, the outdoor unit automatically controls the opening of each flow dividing valve based on a request from an indoor unit connected to the outdoor unit. Having an adjusting mechanism, when receiving a high-power operation request signal transmitted from any of the indoor units, adjusts an opening of a corresponding shunt valve of the indoor unit that has issued the high-power operation request signal by the opening adjustment. An air conditioner comprising control means for increasing the opening degree of a shunt valve corresponding to another indoor unit by a predetermined opening degree by increasing the opening degree of the valve by a predetermined opening degree.
の冷媒配管接続口のそれぞれに開度調節可能な分流弁を
介して接続された複数の室内機とを有し、運転能力を強
制的に最大能力側へ高めるハイパワー運転可能な空気調
和機において、 前記室外機には接続された室内機から
の要求に基づいてそれぞれの分流弁の開度を自動制御す
る分流弁の開度調節機構を有し、 前記いずれかの室内機から送信されたハイパワー運転要
求信号を受信したとき、 前記室外機に内蔵されるコンプレッサの運転周波数を通
常運転時の最大運転周波数よりもさらに所定周波数分だ
け高くし、当該ハイパワー運転要求信号を発した室内機
の対応する分流弁の開度を通常運転時の弁開度よりも所
定開度だけ大きくし、他の室内機に該当する分流弁の開
度を所定開度だけ小さくする制御手段を備えたことを特
徴とする空気調和機。2. An outdoor unit comprising: an outdoor unit; and a plurality of indoor units connected to each of a plurality of refrigerant pipe connection ports provided in the outdoor unit via a flow dividing valve whose opening is adjustable. In an air conditioner capable of high-power operation that forcibly increases to the maximum capacity side, the outdoor unit automatically controls the opening of each flow dividing valve based on a request from an indoor unit connected to the outdoor unit. Having an adjustment mechanism, when receiving a high-power operation request signal transmitted from any of the indoor units, the operation frequency of the compressor incorporated in the outdoor unit is further predetermined frequency than the maximum operation frequency during normal operation And the opening of the corresponding shunt valve of the indoor unit that has issued the high power operation request signal is increased by a predetermined opening from the valve opening during normal operation, and the shunt valve corresponding to another indoor unit Only the specified opening An air conditioner comprising control means for reducing the size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08063825A JP3075979B2 (en) | 1996-02-26 | 1996-02-26 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08063825A JP3075979B2 (en) | 1996-02-26 | 1996-02-26 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09236303A JPH09236303A (en) | 1997-09-09 |
JP3075979B2 true JP3075979B2 (en) | 2000-08-14 |
Family
ID=13240537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08063825A Expired - Fee Related JP3075979B2 (en) | 1996-02-26 | 1996-02-26 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3075979B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890502B (en) | 2011-10-24 | 2017-03-01 | 三菱电机株式会社 | Heat pump, control device, method for regulating temperature and program |
-
1996
- 1996-02-26 JP JP08063825A patent/JP3075979B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09236303A (en) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0788910B1 (en) | Air conditioner for vehicle, improved for frost deposition | |
US5186016A (en) | Defrosting control method and apparatus for air conditioner | |
JP2723953B2 (en) | Air conditioner | |
WO2020161805A1 (en) | Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner | |
KR20060030761A (en) | Multi type air conditioning system and thereof method | |
JP2993180B2 (en) | Air conditioner | |
JP3856529B2 (en) | Air conditioner | |
KR20040067980A (en) | Air conditioning apparatus and control method thereof | |
CN114026373B (en) | Refrigeration circuit device | |
JP3075979B2 (en) | Air conditioner | |
JP3223918B2 (en) | Multi-room air conditioning system | |
JP3458293B2 (en) | Operation control device for multi-room air conditioner | |
JP3334184B2 (en) | Multi-room air conditioner | |
JP3356485B2 (en) | Multi-room air conditioner | |
JP3380384B2 (en) | Control device for air conditioner | |
JP3075978B2 (en) | Air conditioner operation control method | |
JP2960237B2 (en) | Air conditioner | |
JPH1183128A (en) | Highly efficient multiple air conditioning system | |
JP2863240B2 (en) | Control device for air conditioner | |
JPH09210492A (en) | Electric expansion valve control device for multi-room type air conditioner | |
JP2002081714A (en) | Air conditioner | |
JP6906088B1 (en) | Air conditioner and management device | |
JPH11241850A (en) | Air conditioning system | |
JP2001208441A (en) | Air conditioning apparatus | |
JP3195991B2 (en) | Multi-room air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080609 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |