JP3075784B2 - Method for producing concrete molded product by centrifugal force - Google Patents

Method for producing concrete molded product by centrifugal force

Info

Publication number
JP3075784B2
JP3075784B2 JP21161991A JP21161991A JP3075784B2 JP 3075784 B2 JP3075784 B2 JP 3075784B2 JP 21161991 A JP21161991 A JP 21161991A JP 21161991 A JP21161991 A JP 21161991A JP 3075784 B2 JP3075784 B2 JP 3075784B2
Authority
JP
Japan
Prior art keywords
concrete
centrifugal force
waste sand
weight
glass waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21161991A
Other languages
Japanese (ja)
Other versions
JPH0531710A (en
Inventor
良雄 河津
敏明 宮本
一郎 水野
寿郎 稗田
司 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP21161991A priority Critical patent/JP3075784B2/en
Publication of JPH0531710A publication Critical patent/JPH0531710A/en
Application granted granted Critical
Publication of JP3075784B2 publication Critical patent/JP3075784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ガラス製造工程中の研
磨により発生するガラス廃砂材を利用して、コンクリー
トパイル等の遠心力によるコンクリート成形品を製造す
る方法に関するものである。 【0002】 【従来の技術及び発明が解決しようとする課題】コンク
リートパイルやヒューム管等の製造においては、遠心力
締固めによる成形が行なわれているが、コンクリートの
強度発現の手段として、従来、高純度シリカ粉末(SiO2
95重量%以上)を混入している。 【0003】上記のシリカ粉末の混入量は、一般に、セ
メントに対し15〜35重量%と多く、しかも高純度のもの
が必要とされ、高価であるため、それがコンクリート製
品のコスト高の原因となっていた。 【0004】また、高強度のコンクリート製品を製造す
るには、一般に、遠心力による締固め成形を行なうよう
にしているが、その際には、コンクリートに含まれてい
る水と、比較的比重の小さいセメントペーストや微粒分
等からなる、通常ノロと呼ばれる廃液が生ずる。このノ
ロの廃液処理には多額の処理費用を要するので、その発
生を抑制あるいは低下させることに苦慮している。その
対策として、従来、無機質超微粉末等を混入することが
行なわれている(例えば特公昭64−7024号公報、特開昭
61−122147号公報参照)。しかしながら、その混入物は
高価なうえ、遠心力によって締固め成形するときの高速
回転の際に、コンクリート材料の分離によって成形体の
コンクリート強度が低下するとともに、成形体の仕上り
がよくない等の欠点を有している。 【0005】ところで、ガラスの製造にあたっては、ガ
ラスの研磨工程において、SiOを多量に含んだ超微
粉ガラス(1〜30wt%)と微粉珪砂の混合物である
研磨微粉体が排出されるが、この研磨微粉体は、一般に
硅酸質混合材あるいはガラス廃砂材と称されており
均粒径10mm、ブレーン値8500cm/gの物質
である。このガラス廃砂材は、従来、殆ど利用されるこ
となく、単に空地等に含水率約30%の泥状で投棄され
ている等、その取扱いに苦慮している物で、有効な利用
が望まれていた。 【0006】上記ガラス廃砂材は、SiO2を多量に含んで
いることから、各種のコンクリート製品や生コンクリー
トの混和材や増量材、流動化材としての利用が考えられ
るものの、投棄されたガラス廃砂材は、少し時がたつ
と、粘土状の団塊状態となるため、乾燥粉体化するには
莫大な費用を要し、また、これをスラリー化した場合
は、流動が止るとその表面部が急速に硬化する性質とな
るため、取扱いが極めて面倒である等の難点が多く、し
たがって、コンクリートの混和材としての利用は無理で
あるとされ、なかなか実用化されるまでには至っていな
かった。 【0007】本発明は、上記従来の事情にかんがみ提案
されたもので、従来産業廃棄物として投棄されていたガ
ラス廃砂材を、従来のシリカ粉末に代えてコンクリート
の混和材として有効に利用し、高強度のコンクリート製
品を経済的に製造できるようにするとともに、遠心力成
形に際してのノロの発生が殆どなく、製品の仕上りも良
好となる、遠心力によるコンクリート成形品の新規な製
造方法を提供しようとするものである。 【0008】 【課題を解決するための手段】本発明者は、上記の目的
を達成するため、まず、投棄されているガラス廃砂材の
団魂を小粒化、粉末化して利用するための研究を進めた
結果、ガラス廃砂材の団塊を位置エネルギーを利用し
落下解砕した後、さらに2次破砕装置で破砕して粒径
10mm以下のものに小粒化し、コンクリートの混和材
として、取扱いが容易で経済的にも利用可能となる方法
を見出すことに成功した。かくして、さらに研究を進め
た結果、遠心力によるコンクリート成形品の製造にあた
って、コンクリートの混和材として、10mm以下に小
粒化したガラス廃砂材を有効利用し、高強度のコンクリ
ート製品を得ることができるとともに、ノロの発生を十
分抑制することのできる本発明の方法を提案できるに至
った。 【0009】すなわち、本発明の遠心力によるコンクリ
ート成形品の製造方法は、比表面積6,000〜9,0
00cm/g,SiO80重量%以上を含むガラス
廃砂材の原料団塊を、機械的に解砕して粒径10mm以
下に小粒化し、ポルトランドセメント、細骨材、粗骨材
及び水からなるコンクリート材料のセメントに対して内
割で5〜30重量%の上記小粒化したガラス廃砂材を、
あらかじめ上記粗骨材と混練した後、この混練物と、残
余のコンクリート材料と、上記のポルトランドセメント
に対して1〜2重量%の高性能減水剤とを混練し、これ
を30Gを超えない遠心力で締固め成形することを特徴
とするものである。 【0010】本発明において使用するガラス廃砂材は、
SiO2の含有量が80%以上であり、比表面積が 6,000〜
9,000cm2/g 、好ましくは 8,000〜 9,000cm2/g のもの
が必要である。このガラス廃砂材は、ガラスの研磨工程
等で発生し、例えば天日で水分約30%まで乾燥団塊化し
たものであるが、前述したように、そのままでは使用す
るのに難点が多いので、機械的に解砕して10mm以下に小
粒化し、粉末化することによって利用できることにな
る。 【0011】上記小粒化したガラス廃砂材の混入割合
は、コンクリート材料中のポルトランドセメントに対し
て内割りで5〜30重量%、好ましくは10〜20重量%とす
るのがよい。 【0012】本発明においては、上記のガラス廃砂材
を、あらかじめコンクリート材料の一部のものと混練
(プレミキシング)した後、その混練物(一次混練物)
を残余のコンクリート材料と混練(本ミキシング)する
ことが必要である。プレミキシングでは、ガラス廃砂材
の全量と、全粗骨材量の25〜75%の粗骨材と、全水量の
40〜60%の水量とを混練する。このプレミキシングによ
って、小粒化したガラス廃砂材は、粗骨材による剪断作
用により微細化されて結合力が増大されることになる。
このプレミキシングでの時間は数分間という短時間であ
る。 【0013】上記プレミキシングで混練された一次混練
物は、次の本ミキシングの工程で、残余のコンクリート
材料と混煉される。その際、上記のポルトランドセメン
に対して1〜2重量%の高性能減水剤を加えて混練す
る。高性能滅水剤の配合割合が上記より少ない場合はコ
ンクリートのスランプ値が極端に低くなり、遠心力成形
を行なうことが困難となる。一方、高性能滅水剤の配合
割合が上記より多い場合は、遠心力成形時に生ずる、通
常、ノロと呼ばれる廃液が多くなる。この本ミキシング
は、従来のコンクリートのミキシングと同様に数分間行
なわれる。 【0014】遠心力成形は常法により行なえばよい。通
常、本ミキシングにより混練されたコンクリートを型枠
に注入し、型枠を回転させ遠心力により締固めして成形
体が得られる。その後に常圧蒸気養生を行い、必要に応
じて更に高温高圧蒸気養生を行う。遠心力成形において
は、一般的に、初速を約3G、中速を約15Gで行なっ
て高速に移行するが、各速度とも数分以内の短時間行な
われる。特に、高速時では30Gを超えない状態、好ま
しくは25〜30Gの範囲に抑えて行なうことが必要で
ある。30G以上の高速になると、排出するノロの量が
急激に増加し、また、製品の仕上りが悪くなるとともに
製品の強度も低下する。遠心力成形後の成形体は、その
後養生に移されるが、必要に応じて常圧蒸気養生し、あ
るいは高温高圧蒸気養生をする。 【0015】 【実施例】以下、本発明方法の一実施例を説明する。 【0016】(1)使用材料は次のとおりである。 ○セメント:普通ポルトランドセメント(小野田セメント株式会社製) ○細骨材:砂(比重2.62) ○粗骨材:砂利(比重2.67・最大寸法20mm) ○高性能減水剤:マイティ150(花王株式会社製) ○ガラス廃砂剤:比表面積8540cm/g、比重2.59 (セントラル硝子株式会社) 上記ガラス廃砂材の主な成分はSiO・87.3%
Al・1.9%、Fe・2.8%、CaO
・2.8%、MgO・0.4%である。 【0017】(2) 上記の材料を使用し、ガラス廃砂材を
用いいた本発明方法によるコンクリートと、ガラス廃砂
材を用いない従来法によるコンクリート(比較例)との
比較試験を行なった。本発明の実施例と比較例のものと
のコンクリート配合は表1のとおりである。 【0018】 【表1】 【0019】(3)供試体のコンクリート煉成 実施例1 表1の配合において、ガラス廃砂材の全量45kgを使
用し、これを粗骨材572kgと水70kg1分間プ
レミキシングし、この一次混練物を残余の配合材と 混
合して、1分間本ミキシングした。 実施例2 表1の配合において、ガラス廃砂材の全量68kgを使
用し、これを粗骨材561kgと水75kg1分間プ
レミキシングし、この一次混練物を残余の配合材と混合
して、1分間本ミキシングした。 実施例3 表1の配合において、ガラス廃砂材の全量90kgを使
用し、これを粗骨材554kgと水78kg1分間プ
レミキシングし、この一次混練物を残余の配合材と混合
して、1分間本ミキシングした。 比較例 従来法により、表1の配合材料の全量を使用して本ミキ
シングした。 【0020】(4) 遠心力成形 各実施例及び比較例とも、上記練成のコンクリートを、
遠心力供試体用の型枠(外径20cm×長さ30cm)内に投入
し、表2に示す条件で遠心力による締固め成形を行なっ
た。 【0021】 【表2】【0022】(5)試験結果 上記各実施例及び比較例とも遠心力成形後、常圧蒸気養
生と、常圧蒸気養生後高温高圧蒸気養生との2種の養生
を施して製品とし、圧縮強度試験を行なった。その試験
結果は表3に示すとおりである。 【0023】 【表3】【0024】※1:常圧蒸気養生後の強度。 ※2:常圧蒸気養生後に高温高圧蒸気養生をした強度。 ×:コンクリート層、モルタル層、ペースト層と分離が
明確である。 △:分離はしていないが内面が平滑でない。 □:分離はしていないが内面がやや平滑でない。 ○:分離もなく内面も平滑である。 【0025】上記試験結果によれば、本発明の実施例2
−1,3−1,4−1,5−1に示すように、圧縮強度
はδACでは850kgf/cm以上、ことに実施例
2−1,3−1,4−1で1000kgf/cm 前後
の値を発現している。また、ノロの流出量については、
各実施例とも極端に減少し、ことに、実施例の3−1,
4−1,5−1では零となっている。特に、この中で、
実施例の2−1.3−1,4−1においては、比較例に
対し、δACでの圧縮強度及び流出ノロ量の両者で極め
て優れた成果が得られた。 【0026】 【発明の効果】以上説明したように、本発明によれば、
従来、利用し難いものとして捨てられているような状況
にあったガラス廃砂材を、コストウエイトの高いセメン
トに代る混和材として安価に利用することができ、コン
クリートの材料費を低減させることができるので、経済
的効果が期待できる。 【0027】さらに、一方では、ノロの排出抑制効果、
ならびに、従来の大きい回転力Gでの締固めに対し、そ
れより小さい回転力Gでの締固めが可能となるので、成
形用遠心機の騒音、振動の低減が計られ、型枠及び遠心
機の耐久性の向上が期待できるとともに、高強度のコン
クリート製品が得られ、基礎杭やヒューム管等、高強度
を要求されるコンクリート製品に広く適用して優れた効
果を奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a concrete molded product such as a concrete pile by centrifugal force using a glass waste sand material generated by polishing in a glass manufacturing process. It relates to a manufacturing method. 2. Description of the Related Art In the production of concrete piles, fume tubes, and the like, molding by centrifugal compaction is performed. High purity silica powder (SiO 2
95% by weight or more). [0003] The amount of the above silica powder to be mixed is generally as high as 15 to 35% by weight of cement, and high purity is required and expensive, which is a cause of high cost of concrete products. Had become. In order to produce a high-strength concrete product, compaction by centrifugal force is generally performed. At this time, water contained in the concrete and relatively specific gravity are used. A waste liquid, usually called slag, consisting of small cement paste and fine particles is generated. Since the waste liquid treatment of the slag requires a large amount of treatment cost, it is difficult to suppress or reduce the generation thereof. As a countermeasure, it has heretofore been known to mix an inorganic fine powder or the like (for example, Japanese Patent Publication No. 64-7024,
No. 61-122147). However, the contaminants are expensive, and during high-speed rotation during compaction molding by centrifugal force, the concrete strength of the compact decreases due to separation of the concrete material, and the finished product is not good. have. By the way, in the production of glass, in the polishing step of the glass, fine polishing powder, which is a mixture of ultrafine glass (1 to 30 wt%) containing a large amount of SiO 2 and fine silica sand, is discharged. abrasive fine powder, generally referred to as a silicate substance mixed material or glass waste sand material, average particle size 1 0 m m, the Blaine value 8500cm 2 / g substance
It is. Conventionally, this glass waste sand material has been hardly used, but is simply discarded in an open space or the like in a mud state having a water content of about 30%. Was rare. Since the above-mentioned glass waste sand material contains a large amount of SiO 2 , it can be used as an admixture, an extender, or a fluidizer for various concrete products and ready-mixed concrete, but is discarded. Waste sand material becomes a clay-like nodule after a short time, so it takes enormous cost to dry and powder it. Because the part hardens rapidly, there are many difficulties such as extremely troublesome handling.Therefore, it is considered impossible to use concrete as an admixture, and it has not yet come to practical use. Was. The present invention has been proposed in view of the above-mentioned conventional circumstances, and effectively utilizes glass waste sand, which has been conventionally dumped as industrial waste, as an admixture for concrete instead of conventional silica powder. To provide a new method of manufacturing concrete molded products by centrifugal force, which enables economical production of high-strength concrete products, hardly generates slag during centrifugal force forming, and improves the product finish. What you want to do. Means for Solving the Problems In order to achieve the above object, the present inventor first studied on the use of abandoned glass waste sand materials in the form of small and powder particles. a result of our, the baby-boom glass waste sand material, after falling disintegrated by utilizing the potential energy, and pelletized to those having a particle diameter of 10mm or less and further crushed by the secondary crushing device, as admixtures of concrete, We have found a way to make it easy and economical to use. Thus, as a result of further research, it is possible to obtain a high-strength concrete product by effectively using a glass waste sand material reduced to 10 mm or less as a concrete admixture in the production of a concrete molded product by centrifugal force. At the same time, it has been possible to propose a method of the present invention that can sufficiently suppress the generation of slag. That is, the method for producing a concrete molded product by centrifugal force according to the present invention uses a specific surface area of 6,000 to 9.0.
A raw material nodule of glass waste sand containing 00 cm 2 / g, 80% by weight or more of SiO 2 is mechanically crushed and reduced to a particle size of 10 mm or less, and is made from Portland cement, fine aggregate, coarse aggregate and water. 5-30% by weight of the above-mentioned small-sized glass waste sand with respect to the cement of the concrete material
After previously kneading with the coarse aggregate, the kneaded material, the remaining concrete material, and 1-2% by weight of the high-performance water reducing agent with respect to the Portland cement are kneaded, and the mixture is mixed with 30G. And compaction with centrifugal force not exceeding. The glass waste sand used in the present invention is:
And the content of SiO 2 is 80% or more, the specific surface area is 6,000
It is required to have a particle size of 9,000 cm 2 / g, preferably 8,000 to 9,000 cm 2 / g. This glass waste sand material is generated in the glass polishing process and the like, and is dried and agglomerated to, for example, about 30% moisture in the sun. However, as described above, there are many difficulties in using it as it is, It can be used by mechanically pulverizing it into particles smaller than 10 mm and pulverizing it. The mixing ratio of the above-mentioned small glass waste sand material is 5 to 30% by weight, preferably 10 to 20% by weight, based on the Portland cement in the concrete material. In the present invention, the above-mentioned glass waste sand material is kneaded (premixed) with a part of concrete material in advance, and then the kneaded material (primary kneaded material).
Must be kneaded with the remaining concrete material (mixing). In premixing, the total amount of glass waste sand, 25-75% of the total coarse aggregate, and the total water
Knead with 40-60% water volume. By this pre-mixing, the glass waste sand material which has been reduced in size is refined by the shearing action of the coarse aggregate to increase the bonding force.
The time for this premixing is as short as several minutes. The primary kneaded material kneaded by the premixing is kneaded with the remaining concrete material in the next main mixing step. At that time, the above Portland cement
Adding 1-2% by weight of superplasticizer with respect to preparative kneading. If the mixing ratio of the high-performance water killer is less than the above, the slump value of the concrete becomes extremely low, and it becomes difficult to perform centrifugal force forming. On the other hand, when the mixing ratio of the high-performance water killer is higher than the above, the amount of waste liquid usually generated during centrifugal force molding, which is referred to as slag, increases. This main mixing is performed for several minutes as in the case of the conventional concrete mixing. The centrifugal force forming may be performed by a conventional method. Normally, concrete mixed by this mixing is poured into a mold, and the mold is rotated and compacted by centrifugal force to form
The body is obtained. After that, normal pressure steam curing is performed, and
Then, high-temperature and high-pressure steam curing is further performed. In the centrifugal force forming, generally, the initial speed is about 3 G and the medium speed is about 15 G to shift to high speed, but each speed is performed for a short time within several minutes. In particular, at a high speed, it is necessary to perform the operation in a state not exceeding 30 G, preferably in a range of 25 to 30 G. When the speed is increased to 30 G or more, the amount of slag to be discharged rapidly increases, and the finished product is deteriorated and the strength of the product is reduced. The molded body after the centrifugal force molding is then transferred to curing, where necessary, normal pressure steam curing or high temperature and high pressure steam curing. An embodiment of the method of the present invention will be described below. (1) Materials used are as follows. ○ Cement: ordinary Portland cement (manufactured by Onoda Cement Co., Ltd.) ○ Fine aggregate: sand (specific gravity 2.62) ○ Coarse aggregate: gravel (specific gravity 2.67, maximum dimension 20 mm) ○ High performance water reducing agent: Mighty 150 ( ○ Glass waste sand agent: specific surface area 8540 cm 2 / g, specific gravity 2.59 ( manufactured by Central Glass Co., Ltd. ) The main component of the above glass waste sand material is SiO 2 / 87.3%
Al 2 O 3 · 1.9%, Fe 2 O 3 · 2.8%, CaO
-2.8%, MgO-0.4%. (2) Using the above-mentioned materials, a comparative test was conducted between a concrete according to the present invention using glass waste sand and a concrete according to a conventional method not using glass waste sand (comparative example). Table 1 shows the concrete composition of the concrete of the example of the present invention and that of the comparative example. [Table 1] (3) Concrete Briquetting of Test Specimen Example 1 In the composition shown in Table 1, a total amount of 45 kg of glass waste sand was used, and this was premixed with 572 kg of coarse aggregate and 70 kg of water for 1 minute, and the primary mix was obtained. The kneaded material was mixed with the remaining compounding materials, and mixed for 1 minute. Example 2 In the composition of Table 1, a total amount of 68 kg of glass waste sand was used, and this was premixed with 561 kg of coarse aggregate and 75 kg of water for 1 minute, and this primary kneaded material was mixed with the remaining compounded material, This mixing was performed for one minute. Example 3 In the composition of Table 1, a total amount of 90 kg of glass waste sand material was used, and this was premixed with 554 kg of coarse aggregate and 78 kg of water for 1 minute, and the primary kneaded material was mixed with the remaining compounding material. This mixing was performed for one minute. Comparative Example This mixing was carried out by the conventional method using all the amounts of the ingredients shown in Table 1. (4) Centrifugal force molding In each of the examples and comparative examples,
The sample was placed in a mold for centrifugal force test specimen (outer diameter 20 cm × length 30 cm) and compacted by centrifugal force under the conditions shown in Table 2. [Table 2] (5) Test Results In each of the above Examples and Comparative Examples, after centrifugal molding, two types of curing were performed: normal-pressure steam curing, and normal-pressure steam curing followed by high-temperature and high-pressure steam curing to obtain products. The test was performed. The test results are as shown in Table 3. [Table 3] * 1: Strength after normal pressure steam curing. * 2: The strength of high-temperature and high-pressure steam curing after normal-pressure steam curing. ×: Separation from concrete layer, mortar layer, paste layer is clear. Δ: Not separated but the inner surface is not smooth. □: Not separated, but the inner surface is not a little smooth. :: There is no separation and the inner surface is smooth. According to the above test results, Example 2 of the present invention
As shown in -1,3-1,4-1,5-1, the compressive strength is 850 kgf / cm 2 or more in δAC, and in particular, 1000 kgf / cm 2 in Examples 2-1, 3-1 and 4-1. The values before and after are expressed. Also, regarding the outflow of noro,
In each embodiment, the number was extremely reduced.
It is zero in 4-1 and 5-1. In particular,
In Examples 2-1.3-1 and 4-1, extremely excellent results were obtained with respect to both the compressive strength at δAC and the amount of runoff as compared with the comparative example. As described above, according to the present invention,
To reduce the cost of concrete materials by using glass waste sand materials, which had been discarded as difficult to use in the past, as an admixture instead of high cost-weight cement. Can be expected to have an economic effect. Further, on the other hand, the effect of suppressing the emission of slag is
In addition, since compaction with a smaller rotational force G can be performed compared to compaction with a conventional large rotational force G, noise and vibration of a molding centrifuge can be reduced, and a mold and a centrifuge can be formed. It can be expected to improve the durability of concrete and high strength concrete products can be obtained. It is widely applied to concrete products requiring high strength, such as foundation piles and fume pipes, and has excellent effects.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稗田 寿郎 三重県四日市市東阿倉川363−3 (72)発明者 板谷 司 三重県松坂市光町12−15 (56)参考文献 特開 昭62−7654(JP,A) 特開 平4−198054(JP,A) 特開 平4−122605(JP,A) 特開 平5−31709(JP,A) (58)調査した分野(Int.Cl.7,DB名) B28B 1/20 C04B 18/16 C04B 18:16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshiro Hieda 363-3 Higashi Akuragawa, Yokkaichi City, Mie Prefecture (72) Inventor Tsukasa Itaya 12-15, Mitsumachi, Matsuzaka City, Mie Prefecture (56) References JP-A-62-27654 JP, A) JP-A-4-198054 (JP, A) JP-A-4-122605 (JP, A) JP-A-5-31709 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) B28B 1/20 C04B 18/16 C04B 18:16

Claims (1)

(57)【特許請求の範囲】 比表面積 6,000〜 9,000cm2/g,SiO280重量%以上を含む
ガラス廃砂材の原料団塊を、機械的に解砕して粒径10mm
以下に小粒化し、ポルトランドセメント、細骨材、粗骨
材及び水からなるコンクリート材料のセメントに対して
内割で5〜30重量%の上記小粒化したガラス廃砂材を、
あらかじめ上記粗骨材と混練した後、この混練物と、残
余のコンクリート材料と、上記混練物に対して1〜2重
量%の高性能減水剤とを混練し、これを30Gを超えない
遠心力で締固め成形することを特徴とする、遠心力によ
るコンクリート成形品の製造方法。
(57) [Claims] A raw material nodule of glass waste sand containing a specific surface area of 6,000 to 9,000 cm 2 / g and a SiO 2 content of 80% by weight or more is mechanically crushed to a particle size of 10 mm.
In the following, 5-30% by weight of the above-mentioned small glass waste sand material is divided into 5 parts by weight based on the cement of the concrete material consisting of Portland cement, fine aggregate, coarse aggregate and water.
After previously kneading with the coarse aggregate, the kneaded material, the remaining concrete material, and 1-2% by weight of the high-performance water reducing agent based on the kneaded material are kneaded, and the centrifugal force not exceeding 30 G is applied. A method for producing a concrete molded product by centrifugal force, comprising compacting and molding.
JP21161991A 1991-07-29 1991-07-29 Method for producing concrete molded product by centrifugal force Expired - Fee Related JP3075784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21161991A JP3075784B2 (en) 1991-07-29 1991-07-29 Method for producing concrete molded product by centrifugal force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21161991A JP3075784B2 (en) 1991-07-29 1991-07-29 Method for producing concrete molded product by centrifugal force

Publications (2)

Publication Number Publication Date
JPH0531710A JPH0531710A (en) 1993-02-09
JP3075784B2 true JP3075784B2 (en) 2000-08-14

Family

ID=16608766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21161991A Expired - Fee Related JP3075784B2 (en) 1991-07-29 1991-07-29 Method for producing concrete molded product by centrifugal force

Country Status (1)

Country Link
JP (1) JP3075784B2 (en)

Also Published As

Publication number Publication date
JPH0531710A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
EP0696262B1 (en) Method for producing cement
JP3218548B2 (en) Method for producing concrete molded product by centrifugal force
JP3075783B2 (en) Method for producing concrete molded product by centrifugal force
JPH0231026B2 (en)
JP3075784B2 (en) Method for producing concrete molded product by centrifugal force
JPS627654A (en) Manufacture of centrifugally formed concrete product
JP2844211B2 (en) Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound
JP3290171B2 (en) Manufacturing method of porous concrete
JP2001240455A (en) Cured concrete material
JP2001019529A (en) Cement hardened product
JPH05238787A (en) High-strength cement composition
JP3161575B2 (en) Cement composition for autoclave curing
JP3103195B2 (en) Concrete composition
JP3082861B2 (en) Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete
JP3085780B2 (en) Centrifugal molding cement
JP4039709B2 (en) Centrifugal force molded body and manufacturing method thereof
JP3146325B2 (en) Lightweight ultra high strength concrete
JP3358715B2 (en) Cement-based composition
JP3091106B2 (en) Cement for steam curing products
JPS635243B2 (en)
JPH0328151A (en) Cement composition and mortar or concrete produced by using the same
JP2024012841A (en) Method for producing hydrated solidified body
JPH06114824A (en) Preparation of super-high-strength concrete and superfine powder mixture
JP2930707B2 (en) Centrifugal concrete cement
JP3537179B2 (en) Slag reduction material, centrifugal force molded article using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees