JP2844211B2 - Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound - Google Patents
Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compoundInfo
- Publication number
- JP2844211B2 JP2844211B2 JP1103090A JP10309089A JP2844211B2 JP 2844211 B2 JP2844211 B2 JP 2844211B2 JP 1103090 A JP1103090 A JP 1103090A JP 10309089 A JP10309089 A JP 10309089A JP 2844211 B2 JP2844211 B2 JP 2844211B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- ultra
- ratio
- strength
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 この発明は、PCパイル、PCポール、PC桁等のプレキャ
ストコンクリート製品における超高強度コンクリート硬
化体及びそのコンクリート配合物の混練方法に関するも
のである。Description: FIELD OF THE INVENTION The present invention relates to a method for kneading an ultra-high-strength concrete hardened product in a precast concrete product such as a PC pile, a PC pole, a PC girder and a concrete compound thereof. .
「従来の技術、発明が解決せんとする問題点」 従来、高強度コンクリートとして高価な高強度セメン
トや特殊な骨材などを用いて圧縮強度が800Kg/cm2〜100
0Kg/cm2程度のものが種々開発されているが、最近では1
000Kg/cm2を超える超高強度コンクリートの実用化に関
する要望が高まりつつある。"Conventional technology and problems to be solved by the invention" Conventionally, high-strength concrete using expensive high-strength cement or special aggregate has a compressive strength of 800 kg / cm 2 -100
Various types of about 0 kg / cm 2 have been developed, but recently
There is an increasing demand for practical use of ultra-high-strength concrete exceeding 000 kg / cm 2 .
そのため近年、産業副産物としてシリカヒュームと高
性能減水剤を組合せることにより、実験的に1000Kg/cm2
を超える超高強度コンクリートが得られることも一部報
告されているが、実用可能な段階には至っていないのが
現状である。Therefore, in recent years, by combining silica fume and a high performance water reducing agent as industrial by-products, 1000 kg / cm 2
Although it has been reported that an ultra-high-strength concrete exceeding 100% can be obtained, it is not yet at a practically usable stage.
「問題点を解決するための手段」 この発明は前記従来の課題を解決するために種々研究
実験を重ねた結果、経済性や作業性等の面から実用的
で、しかも超高強度を得るためのコンクリートは必ずし
もその配合の多いさなどで一義的に決るものではなく、
普通ポルトランドセメント、高純度シリカヒューム、高
性能減水剤、細骨材、水などを所定配合割合で、所定の
混練方法をもって混練することにより、超緻密、高粘性
でありながら取扱い易く、しかも1200Kg/cm2超える超高
強度コンクリートが経済的に得られることを見出し、本
発明を完成するに至ったものである。"Means for solving the problem" As a result of repeated research and experiments in order to solve the above-mentioned conventional problems, the present invention is practical in terms of economy and workability, and furthermore, to obtain ultra-high strength. Concrete is not always uniquely determined by the large amount of its composition,
By kneading ordinary Portland cement, high-purity silica fume, high-performance water reducing agent, fine aggregate, water, etc. at a predetermined mixing ratio with a predetermined kneading method, it is super-dense, high-viscosity, easy to handle, and 1200 kg / The present inventors have found that ultra-high-strength concrete exceeding cm 2 can be economically obtained, and have completed the present invention.
即ち、第一発明は、普通ポルトランドセメント400〜6
00Kg/m3に、高純度シリカヒュームを15〜50%(セメン
ト外割)、高性能減水剤を2〜8%(セメント比)、細
骨材を30〜55%を配合し、セメント・水比2.2〜6.0とし
て混練した配合物により成形した後、オートクレーブ養
生することにより、上記特徴を有する超高強度コンクリ
ート硬化体を確実に得られるようにしたものである。That is, the first invention is usually Portland cement 400-6
To 00Kg / m 3, 15~50% of high-purity silica fume (cement outside split), 2% to 8% high performance water reducing agent (cement ratio), blended with 30 to 55 percent fine aggregate, cement, water After molding with a compound kneaded at a ratio of 2.2 to 6.0, the mixture is subjected to autoclave curing so as to reliably obtain an ultra-high-strength concrete cured product having the above characteristics.
また、第二の発明は、普通ポルトランドセメント400
〜600Kg/m3に、高純度シリカヒュームを15〜50%(セメ
ント外割)、細骨材(30〜55%)及び粗骨材を配合して
一次水を加えて混練した後、高性能減水剤を2〜8(セ
メント比)を配合して二次水を加えてセメント・水比2.
2〜6.0として混練することにより、上記特徴を有する超
高強度コンクリートを確実に得られるようにしたコンク
リート配合物の混練方法である。In addition, the second invention is an ordinary Portland cement 400
The ~600Kg / m 3, 15~50% of high-purity silica fume (cement outside split) were kneaded by adding fine aggregate (30-55%) and coarse aggregate primary water blended, high performance The water-reducing agent is mixed with 2 to 8 (cement ratio) and the secondary water is added to make the cement / water ratio 2.
This is a method of kneading a concrete compound by kneading a mixture of 2 to 6.0 so as to reliably obtain an ultra-high-strength concrete having the above characteristics.
この発明の高純度シリカヒュームは、SiO2が90%以
上、望ましくは94%以上のシリカヒュームを用いる。High-purity silica fume of the present invention, SiO 2 is 90% or more, preferably using silica fume of 94% or more.
また、細骨材及び粗骨材は一般に入手できる普通の骨
材を用いることができる。As the fine aggregate and the coarse aggregate, commonly available ordinary aggregates can be used.
「実施例」 以下この発明を具体的な実施例(実験例)に基づいて
さらに詳細に説明するが、この発明はこの実施例に限定
するものではない。"Examples" Hereinafter, the present invention will be described in more detail based on specific examples (experimental examples), but the present invention is not limited to these examples.
実験I この実験では表1に掲げる要因と水準に基づいて二元
配置法により、シリカヒュームの混入率と単位セメント
量に対するコンクリートの圧縮強度との関係を調べた。
実験において、シリカヒュームSFはSiO2濃度が94%の粉
体、セメントCは普通ポルトランドセメントを用い、水
セメント比・結合材水比は表2により行った。Experiment I In this experiment, the relationship between the mixing ratio of silica fume and the compressive strength of concrete with respect to the unit cement amount was examined by a two-way arrangement method based on the factors and levels listed in Table 1.
In the experiment, silica fume SF was a powder having a SiO 2 concentration of 94%, cement C was ordinary Portland cement, and the water cement ratio and the binder water ratio were as shown in Table 2.
また、上記以外の実験Iの共通条件として、表3に示
す通り行った。 In addition, as common conditions of Experiment I other than the above, the experiment was performed as shown in Table 3.
ここで、Gは粗骨材、Sは細骨材、Wは水、ADは高性能
減水剤(商標名マイティ150)である。 Here, G is coarse aggregate, S is fine aggregate, W is water, and AD is a high-performance water reducing agent (trade name: Mighty 150).
オートクレーブ養生保持時間とは、10気圧(常圧)で
180℃に達した状態で保持した蒸気養生時間を意味し、
また配合材料の混練方法は表4に示すA法、即ちセメン
トC、シリカヒュームCF、細骨材S及び粗骨材Gを配合
して一次水Wを加えて1分間混練した後、高性能減水剤
ADと二次水Wを加えて3分間混練する方法を用いた。Autoclave curing holding time is 10 atmospheres (normal pressure)
Means the steam curing time held at a temperature of 180 ° C,
The kneading method of the compounding materials is the method A shown in Table 4, that is, the cement C, the silica fume CF, the fine aggregate S and the coarse aggregate G are mixed, the primary water W is added, and the mixture is kneaded for 1 minute. Agent
A method of adding AD and secondary water W and kneading for 3 minutes was used.
そして、上記のように混練したコンクリートを用い
て、それぞれコンクリート硬化体としての二種の円柱状
及び円筒状供試体P1,P2をシリカヒュームの混入率と単
位セメント量を変えながら各3本ずつ製作して、それぞ
れの圧縮強度を調べた。 Then, using the concrete kneaded as described above, two types of cylindrical and cylindrical specimens P 1 and P 2 each as a concrete hardened body were changed to three pieces each while changing the mixing ratio of silica fume and the unit cement amount. Each was manufactured and the compressive strength of each was examined.
円柱供試体P1は振動締固め成形により直径10cm、高さ
20cmの円柱状に形成し、円筒状供試体P2は高速回転によ
る遠心力成形(35G)により外径20cm、高さ30cmの円筒
状に形成した。Cylindrical specimen P 1 is 10cm diameter by vibration compaction molding, the height
Formed in 20cm cylindrical, cylindrical specimens P 2 is formed by centrifugal force forming by high-speed rotation (35G) outside diameter 20cm, the height 30cm cylindrical.
実験Iの結果(推定値)を第1図及び第2図に示す。 The results (estimated values) of the experiment I are shown in FIG. 1 and FIG.
この結果から、シリカヒュームの混入率が10%を超え
ると、急激に圧縮強度が増大しておよそ15%以上となる
と圧縮強度1000Kg/cm2以上の超高強度が得られることが
分る。From these results, it can be seen that when the mixing ratio of silica fume exceeds 10%, the compressive strength rapidly increases, and when it becomes about 15% or more, an ultra-high strength of 1000 kg / cm 2 or more can be obtained.
また、単位セメント量がおよそ400Kg/cm3を超えると
圧縮強度1000Kg/cm2以上の超高強度が得られることが分
る。Also, it can be seen that when the unit cement amount exceeds about 400 kg / cm 3 , an ultra-high strength with a compressive strength of 1000 kg / cm 2 or more can be obtained.
円柱供試体P1と円筒状供試体P2とを比較すると、前者
の方が後者よりも圧縮強度が総体的にアップしている傾
向が見られるが、これは後者では高速回転の遠心成形時
にシリカヒュームの分離が起こり、強度アップにつなが
りにくいものと思われる。Comparing the cylindrical specimen P 1 and a cylindrical specimen P 2, but the former is a tendency that compressive strength than the latter is grossly up seen, which upon centrifugal molding of high-speed rotation in the latter It is considered that silica fume is separated and hardly leads to an increase in strength.
また、このことは、円筒状供試体P2の内面の仕上り状
態を観察した結果、シリカヒュームの混入率が高くなる
につれて悪くなることからも、シリカヒューム等の微粒
分が分離して内面に浮きでてくるものと考えられる。This also results of observation of the finished state of the inner surface of the cylindrical specimen P 2, from becoming worse as mixing rate of silica fume is higher, float on the inner surface fine components such as silica fume is separated It is thought that it comes out.
更に、円筒状供試体P2のヤング係数及び強度と歪の関
係を調べたが、圧縮強度1000Kg/cm2以上の超高強度にも
拘らず、ヤング係数において800Kg/cm2のコンクリート
と大差がなく、また強度と歪の関係(破壊試験による)
は破壊時までは直線的に延びて破壊に至ることが分り、
結局超高強度の割りには低弾性であることが分った。Furthermore, although investigate the relationship of the cylindrical specimen P 2 of Young's modulus and strength and strain, despite compression strength 1000 Kg / cm 2 or more ultra-high strength, concrete much different 800 Kg / cm 2 in Young's Modulus No, and the relationship between strength and strain (by destructive test)
Can be seen to extend linearly until destruction, leading to destruction,
It turned out to be low elasticity in spite of the ultra high strength.
実験II 実験Iにおける水準の組合せにより、圧縮強度1500Kg
/cm2以上の超高強度が得られることが分ったが、本実験
では表5に掲げる要因と水準に基づいてL16直交表(6
因子、2・4水準)により、シリカヒュームの混入率と
単位セメント量の外に、更に高性能減水剤の混入率、シ
リカヒュームの混練条件、遠心成形条件、オートクレー
ブ保持時間を変えて超高強度が得られるための要因の選
定実験を行った。Experiment II Compressive strength 1500Kg
It was found that an ultra-high strength of at least / cm 2 was obtained, but in this experiment, the L16 orthogonal table (6
Factor, 2.4 level), in addition to the silica fume mixing rate and unit cement amount, further change the mixing rate of high-performance water reducing agent, silica fume kneading conditions, centrifugal molding conditions, and autoclave holding time to achieve ultra-high strength An experiment was conducted to select the factors for obtaining the results.
この実験IIにおいて、その他の条件は表3にに示す通
り行った。In this experiment II, other conditions were performed as shown in Table 3.
混練方法としては上記A法の外、表4に示すS法、即
ちセメントC、細骨材S及び粗骨材Gを配合して一次水
Wを加えて3分間混練した後、シリカヒュームCF、高性
能減水剤AD及び二次水Wを混練したシリカヒュームスラ
リーを加えて3分間混練する方法を用い、実験条件に応
じてそれぞれ実験Iと同様の円柱供試体P1と円筒状供試
体P2を二種作成した。 As the kneading method, in addition to the above-mentioned A method, S method shown in Table 4, that is, after mixing cement C, fine aggregate S and coarse aggregate G, adding primary water W and kneading for 3 minutes, silica fume CF, A method of adding a silica fume slurry kneaded with the high-performance water reducing agent AD and the secondary water W and kneading for 3 minutes was used. According to the experimental conditions, the same cylindrical specimen P 1 and cylindrical specimen P 2 as in Experiment I were used. Were created.
実験IIの結果(推定値)を第1図〜第7図に示す。 The results (estimated values) of Experiment II are shown in FIGS.
この結果から、シリカヒュームの混入率が30%を超え
ると、圧縮強度が徐々に減少しておよそ50%以上となる
と圧縮強度がさらに低下することが分り、実用上では30
%程度が最適であると考えられる。From this result, it can be seen that when the mixing ratio of silica fume exceeds 30%, the compressive strength gradually decreases, and when it exceeds about 50%, the compressive strength further decreases.
% Is considered optimal.
また、単位セメント量については実験Iと同様に、そ
の量の増加につれて350〜400Kg/cm3の範囲で圧縮強度が
増加することが分る。Also, as with Experiment I, it can be seen that the compressive strength increases in the range of 350 to 400 kg / cm 3 as the amount of cement increases, as in Experiment I.
高性能減水剤については、その量の増加について3〜
5%の範囲で圧縮強度が増加することが分るが、シリカ
ヒュームとの混入率等との関係においておよそ2〜8%
において高強度コンクリートが得られることがその他の
実験結果から予測できる。For high performance water reducing agents, increase the amount of
It can be seen that the compressive strength increases in the range of 5%, but it is approximately 2 to 8% in relation to the mixing ratio with silica fume.
It can be predicted from other experimental results that high-strength concrete can be obtained.
セメント水比と圧縮強度との関係は、第5〜第7図に
示すように相関関係にあり、セメント水比が高いほど
(水セメント比が低いほど)強度が高くなる傾向にある
ことが分り、またこの水準においてはAC養生時間及び遠
心回転条件はほとんど有意差は見られなかった。The relationship between the cement water ratio and the compressive strength is correlated as shown in FIGS. 5 to 7, and it can be seen that the strength tends to increase as the cement water ratio increases (as the water cement ratio decreases). At this level, there was almost no significant difference between the AC curing time and the centrifugal rotation condition.
混練方法については、シリカヒュームを粉体として使
用した方が圧縮強度が高くなることが分った。As for the kneading method, it was found that the compressive strength was higher when silica fume was used as the powder.
これは、スラリー状で使用する場合、シリカヒューム
の粒子が充分に保水して単位水量を多く必要とし、上記
セメント水比が低下するためであろうと思われる。This is presumably because when used in the form of a slurry, the silica fume particles sufficiently retain water and require a large amount of unit water, resulting in a decrease in the cement water ratio.
その他、実験を通じてシリカヒュームコンクリートは
粘性が高く、水中でも分離しない性質が分り、遠心成形
ができた場合においてはスラリーが出ないなどの特徴が
あることが分った。In addition, through experiments, it was found that silica fume concrete had a high viscosity and did not separate even in water, and that when centrifugal molding could be performed, the slurry did not come out.
実験III 本実験では表6に掲げる要因と水準とに基づいてL9直
交表(3因子、3水準)により、単位セメント量、細骨
材率(S/a%)及び混練方法を変えてさらに超高強度が
得られるための要因の選定実験を行った。Experiment III In this experiment, based on the factors and levels listed in Table 6, the unit cement amount, fine aggregate ratio (S / a%) and kneading method were further changed using the L9 orthogonal table (3 factors, 3 levels). An experiment was conducted to select factors for obtaining high strength.
上記以外の実験IIIの共通条件として、表3に示す通
り行った。Other common conditions of Experiment III were as shown in Table 3.
実験IIIの結果(推定値)を第2図及び第4図に示
す。The results (estimated values) of Experiment III are shown in FIG. 2 and FIG.
この結果から単位セメント量が500Kg/m3以上の範囲に
おいてはその増加が必ずしも圧縮強度の増大に寄与しな
いことが分った。 From this result, it was found that when the unit cement amount was in the range of 500 kg / m 3 or more, the increase did not necessarily contribute to the increase in compressive strength.
また、混練方法はB法がやや強度低下を示し、結局シ
リカヒュームをスラリーで使用する場合、S法とスラリ
ーの投入順序を変えても、同様に粒子に保水してセメン
ト水比が低下することが要因と考えられる。Also, in the kneading method, the method B shows a slight decrease in strength, and when silica fume is used in the slurry after all, even if the charging order of the slurry is changed from that in the method S, the water retention in the particles is similarly caused and the cement water ratio is reduced. Is considered to be a factor.
なお、細骨材率はこの水準においては特に有意差は見
られなかった。The fine aggregate ratio did not show any significant difference at this level.
実験V 本実験では表7に掲げる要因と水準に基づいて2元配
置法により、高性能減水剤の混入率、及びスランプ値を
変えてさらに超高強度が得られるためのその他の要因の
選定実験を行った。Experiment V In this experiment, based on the factors and levels listed in Table 7, the two-way layout method was used to select the mixing ratio of the high-performance water-reducing agent and other factors for obtaining ultra-high strength by changing the slump value. Was done.
上記以外の実験Vの共通条件として、表8に示す通り
行った。As common conditions of Experiment V other than the above, the experiment was performed as shown in Table 8.
実験Vの結果(推定値)を第3図に示す。 FIG. 3 shows the results (estimated values) of Experiment V.
この結果から高性能減水剤については、その混入率が
3〜5%の範囲においては実験IIとほぼ同様の傾向を示
したが、シリカヒューム混入率30%の場合、添加率5%
以上においては圧縮強度がほぼ頭打ちになることが分っ
た。From these results, the high performance water reducing agent showed almost the same tendency as in Experiment II when the mixing ratio was in the range of 3 to 5%, but when the silica fume mixing ratio was 30%, the addition ratio was 5%.
In the above, it was found that the compressive strength almost reached a plateau.
また、スランプ値は、この水準においては特に有意差
は見られなかった。The slump value did not show any significant difference at this level.
実験VI 本実験では表9に掲げる要因と水準に基づいて1元配
置法により、細骨材率(S/a%)を変えてさらに超高強
度が得られるためのその他の要因の選定実験を行った。Experiment VI In this experiment, based on the factors and levels listed in Table 9, the one-way layout method was used to change the fine aggregate ratio (S / a%) and select other factors for obtaining even higher strength. went.
上記以外の実験Vの共通条件として、表10に示す通り
行った。Other common conditions of Experiment V were as shown in Table 10.
実験Vの結果、遠心力成形による円筒状供試体P2にお
いて、細骨材率が高いほど内面がきれいに仕上ることが
分ったが、圧縮強度においては第8図に示すようにほと
んど影響が見られず、円筒状供試体P2よりも振動締固め
による円柱供試体P1の方が強度のバラツキが小さいこと
が分った。 Results of experiments V, the cylindrical specimens P 2 due to centrifugal force molding has been found that finished clean inner surface higher fine aggregate ratio, see little effect as shown in FIG. 8 in compressive strength It is not, who cylindrical specimen P 1 by vibration compaction than cylindrical specimens P 2 it was found that variations in the strength is small.
「発明の効果」 以上の通りこの発明によれば、実用可能な超高強度コ
ンクリート硬化体並びにその混練方法を確実に得ること
ができる。[Effects of the Invention] As described above, according to the present invention, a practically usable ultra-high-strength concrete hardened body and a kneading method thereof can be reliably obtained.
第1図〜第8図は、この発明の実験結果を示す線図であ
る。1 to 8 are diagrams showing the experimental results of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−43726(JP,A) 特開 昭58−219013(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 28/04,22/06────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-43726 (JP, A) JP-A-58-219013 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 28 / 04,22 / 06
Claims (2)
に、高純度シリカヒュームを15〜50%(セメント外
割)、高性能減水剤を2〜8%(セメント比)、細骨材
を30〜55%を配合し、セメント・水比2.2〜6.0%として
混練した配合物により成形した後、オートクレーブ養生
して圧縮強度1200Kgf/cm2以上としてなることを特徴と
する超高強度コンクリート硬化体。[Claim 1] Normal Portland cement 400-600Kg / m 3
In addition, 15-50% of high purity silica fume (cement ratio), 2-8% of high performance water reducing agent (ratio of cement) and 30-55% of fine aggregate are mixed, and cement / water ratio of 2.2-6.0 %, Which is molded using a kneaded mixture and then cured in an autoclave to have a compressive strength of 1200 kgf / cm 2 or more.
に、高純度シリカヒュームを15〜50%(セメント外
割)、細骨材(30〜55%)及び粗骨材を配合して一次水
を加えて混練した後、高性能減水剤を2〜8%(セメン
ト比)を配合して二次水を加えてセメント・水比2.2〜
6.0%として混練することにより、圧縮強度1200Kgf/cm2
以上の超高強度コンクリート硬化体を得るようにしたこ
とを特徴とする超高強度コンクリート配合物の混練方法2. An ordinary Portland cement of 400 to 600 kg / m 3.
Then, high-purity silica fume is mixed with 15-50% (cement ratio), fine aggregate (30-55%) and coarse aggregate, and the primary water is added and kneaded. 8% (cement ratio) and secondary water is added to make cement / water ratio 2.2 ~
By kneading as 6.0%, the compressive strength is 1200 kgf / cm 2
A method of kneading an ultra-high-strength concrete compound, characterized in that the above-mentioned ultra-high-strength concrete hardened body is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103090A JP2844211B2 (en) | 1989-04-21 | 1989-04-21 | Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103090A JP2844211B2 (en) | 1989-04-21 | 1989-04-21 | Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02283650A JPH02283650A (en) | 1990-11-21 |
JP2844211B2 true JP2844211B2 (en) | 1999-01-06 |
Family
ID=14344940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1103090A Expired - Lifetime JP2844211B2 (en) | 1989-04-21 | 1989-04-21 | Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2844211B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1283189B1 (en) * | 1996-03-05 | 1998-04-16 | Italcementi Spa | METHOD FOR THE REALIZATION OF A COMPOSED BEAM AND BEAM MADE IN THIS |
JP5702199B2 (en) * | 2011-03-15 | 2015-04-15 | 鹿島建設株式会社 | Cement material |
CN102850009B (en) * | 2011-06-27 | 2014-03-12 | 唐军务 | Cement based migration type steel bar anticorrosion coating |
CN102503305B (en) * | 2011-10-27 | 2013-07-31 | 北京东方雨虹防水技术股份有限公司 | Injectable garbage covering material |
CN103833301A (en) * | 2014-03-12 | 2014-06-04 | 商丘师范学院 | Black cement mortar |
CN108275940A (en) * | 2018-01-25 | 2018-07-13 | 天津建城基业管桩有限公司 | A kind of non-evaporating foster tubular pile concrete and its application in pile pile preparation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5343726A (en) * | 1976-10-01 | 1978-04-20 | Toshio Fukuchi | Method of manufacturing ultra high strength concrete |
JPS58219013A (en) * | 1982-06-16 | 1983-12-20 | 相武生コン株式会社 | Manufacture of concrete |
-
1989
- 1989-04-21 JP JP1103090A patent/JP2844211B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02283650A (en) | 1990-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2649996C1 (en) | Fine-grained concrete mixture | |
CN112851259A (en) | Self-compacting concrete and preparation method thereof | |
EP0148935A1 (en) | Cementitious composite material | |
US4767461A (en) | Method for manufacturing concrete | |
JP2844211B2 (en) | Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound | |
JPH0569053B2 (en) | ||
JPH0680456A (en) | Fluid hydraulic composition | |
JPH07267697A (en) | Hydraulic composition | |
JP7369849B2 (en) | cement composition | |
JPH06100338A (en) | Highly fluid cement | |
KR100441640B1 (en) | Admixture of Powder for Concrete by used Industrial byproduct | |
JP2618366B2 (en) | Method for producing hydraulically cured product | |
JP2001031457A (en) | High strength concrete | |
JP3338843B2 (en) | Cement admixture and cement composition | |
JP2004284873A (en) | Hydraulic complex material | |
KR20040084533A (en) | Cement admixture composite for high flowability concrete fabrication | |
JP3161575B2 (en) | Cement composition for autoclave curing | |
JP3103195B2 (en) | Concrete composition | |
JP3075783B2 (en) | Method for producing concrete molded product by centrifugal force | |
JP3991168B2 (en) | aggregate | |
KR20170105975A (en) | Admixture for High Strength Concrete, and Concrete Containing the Same | |
JP3107656B2 (en) | Concrete composition | |
Park et al. | Fabrication of carbon fiber reinforced cement composites | |
JPH0664951A (en) | Production of cement having low separability and production of concrete having low separability | |
JPH0154297B2 (en) |