JP3073117U - Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower - Google Patents

Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower

Info

Publication number
JP3073117U
JP3073117U JP2000002508U JP2000002508U JP3073117U JP 3073117 U JP3073117 U JP 3073117U JP 2000002508 U JP2000002508 U JP 2000002508U JP 2000002508 U JP2000002508 U JP 2000002508U JP 3073117 U JP3073117 U JP 3073117U
Authority
JP
Japan
Prior art keywords
cooling water
water tank
cooling
gas
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000002508U
Other languages
Japanese (ja)
Inventor
幸男 新井
泰郎 倉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KOKI CO., LTD.
Original Assignee
TOYO KOKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KOKI CO., LTD. filed Critical TOYO KOKI CO., LTD.
Priority to JP2000002508U priority Critical patent/JP3073117U/en
Application granted granted Critical
Publication of JP3073117U publication Critical patent/JP3073117U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 冷却水のレジオネラ属菌の繁殖抑制を行える
外、その冷却水の浄化を行うことのできる冷却塔等の冷
却水循環システムにおける冷却水のレジオネラ属菌繁殖
抑制用浄化装置を得る。 【解決手段】 冷却水槽の内外のいずれかに配設された
オゾンガス(マイナスイオン)発生装置と、オゾン発生
装置の作動によって発生したオゾンガスを冷却水槽の冷
却水中に送気管を介して入気案内する気液混合器と、冷
却水槽の外部に配置された循環ポンプと、循環ポンプの
作動により冷却水槽から吸水し、吸水した冷却水中から
微粒子を含む固形物を分離除去する固液分離装置と、固
液分離装置を経た澄水を冷却水槽に放水する循環水路
と、冷却水槽内に冷却水を放水する循環水路の開放側に
おいて二股に並列分岐し、その一方のパイプに冷却水槽
内に放水して冷却水槽内の冷却水を乱流してかき混ぜる
沈澱防止器と、その他方のパイプに気液混合器が接続さ
れてなる。
(57) [Summary] [PROBLEMS] To purify cooling water in a cooling water circulation system such as a cooling tower capable of purifying the cooling water in addition to suppressing the growth of the Legionella genus of the cooling water. Get the device. SOLUTION: An ozone gas (negative ion) generator disposed inside or outside a cooling water tank and an ozone gas generated by the operation of the ozone generator are introduced into the cooling water of the cooling water tank through an air supply pipe. A gas-liquid mixer, a circulation pump disposed outside the cooling water tank, a solid-liquid separation device that absorbs water from the cooling water tank by operating the circulation pump, and separates and removes solids containing fine particles from the absorbed cooling water. The open side of the circulation channel that discharges the clear water that has passed through the liquid separation device to the cooling water tank and the circulation channel that discharges the cooling water into the cooling water tank is branched into two branches in parallel, and one of the pipes is discharged into the cooling water tank for cooling. A sedimentation preventer for turbulently stirring the cooling water in the water tank and a gas-liquid mixer connected to the other pipe.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案が属する技術分野】[Technical field to which the invention belongs]

本考案は、主として、冷却塔(クーリングタワー)等の冷却水循環システムに おいて、冷却水の中に住み着いているバクテリアの変種で耐塩素性病原菌である レジオネラ属菌の繁殖を抑制し、且つ、その冷却水を浄化することのできる冷却 塔等の冷却水循環システムにおける冷却水のレジオネラ属菌繁殖抑制用浄化装置 に関するものである。 The present invention mainly suppresses the propagation of Legionella spp., A chlorin-resistant pathogen, which is a variant of bacteria resident in cooling water, in a cooling water circulation system such as a cooling tower. The present invention relates to a purification device for suppressing the propagation of Legionella spp. In a cooling water circulation system such as a cooling tower capable of purifying the cooling water.

【0002】[0002]

【従来の技術】[Prior art]

我が国において、地方の過疎地を除く住環境は、人工建物、構造物、各種機械 装置等を含む構築機械建造物に囲まれ、様々な環境汚染に晒されている。就中、 空調や冷凍装置の冷却水系統には、その環境や温度条件から、藻や微生物、バク テリアが発生し易く、特に、夏期においては冷却塔設備では高い確率でレジオネ ラ属菌の棲息が確認されている。 In Japan, the living environment, excluding depopulated rural areas, is surrounded by construction machinery and structures, including man-made buildings, structures, and various types of machinery, and is exposed to various environmental pollutions. Especially, in the cooling water system of air conditioners and refrigeration equipment, algae, microorganisms and bacteria are likely to be generated due to the environment and temperature conditions. Has been confirmed.

【0003】 レジオネラ属菌についてはそれを原因菌とする肺炎の集団発生が世界各国から 報告されている。レジオネラ症には、非肺炎型と肺炎型がある。[0003] With regard to Legionella spp., Outbreaks of pneumonia caused by the causative bacteria have been reported from all over the world. There are two types of legionellosis: non-pneumonia and pneumonia.

【0004】 冷却塔の冷却水中でレジオネラ属菌が繁殖し、それが空気中に飛散し、周辺住 民や通行人の感染を誘発することが原因の一つである。[0004] One of the causes is that Legionella spp. Propagate in the cooling water of the cooling tower and scatter in the air, causing infection of nearby residents and passers-by.

【0005】 それらの抑制対策として、厚生省も事態を重視して平成6年に管理基準を示し て、冷却塔中のレジオネラ属菌を1デシリットル当り100個に抑える規制の通 達をしたが、実態は、規制基準を越えて運転されている設備が多い。[0005] As a countermeasure for such control, the Ministry of Health and Welfare issued a control standard in 1994 with an emphasis on situations, and issued a regulation to limit the number of Legionella bacteria in the cooling tower to 100 per deciliter. Many facilities are operated beyond regulatory standards.

【0006】 従来、レジオネラ属菌の除菌方法として検討された以下の各手段にはそれぞれ 欠点があった。即ち、 1.塩素剤の冷却水中への混入は金属の腐食性が強い。 2.各種有機殺菌剤の冷却水中への混入使用は毒性が懸念され、飛沫として空中 に飛散するので危険であり、薬剤の濃度制御が困難である。 3.抗菌金属(銅、銀)の使用はコストが高く、実用上困難である。 4.冷却水の紫外線処理は冷却水の紫外線透過率の低下に伴い殺菌効果が低減す る。[0006] Heretofore, each of the following means examined as a method for removing bacteria of the genus Legionella has respective disadvantages. That is, 1. Mixing chlorine agents into cooling water is highly corrosive to metals. 2. The use of various organic disinfectants in cooling water is a concern because it is toxic, and it is dangerous because it is scattered in the air as droplets. 3. The use of antibacterial metals (copper, silver) is expensive and practically difficult. 4. The ultraviolet treatment of the cooling water reduces the sterilizing effect as the ultraviolet transmittance of the cooling water decreases.

【0007】 そこで、冷却塔等の冷却水循環システムにおける冷却水のレジオネラ属菌の繁 殖抑制を有効且つ廉価に行える装置の開発が望まれていた。[0007] Therefore, there has been a demand for the development of an apparatus that can effectively and inexpensively control the propagation of Legionella bacteria in cooling water in a cooling water circulation system such as a cooling tower.

【0008】[0008]

【考案が解決しようとする課題】[Problems to be solved by the invention]

その観点から、本考案は、厚生省指針に沿って、冷却水のレジオネラ属菌の繁 殖抑制を行える外、その冷却水の浄化を有効且つ廉価に行うことのできる冷却塔 等の冷却水循環システムにおける冷却水のレジオネラ属菌繁殖抑制用浄化装置を 得ようとするものである。 From this point of view, the present invention provides a cooling water circulation system, such as a cooling tower, that can suppress the growth of Legionella spp. It is an object of the present invention to obtain a purification device for controlling the propagation of Legionella bacteria in cooling water.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は上記の如き観点に鑑みてなされたものであって、その主たる構成は、 冷却水槽の内外のいずれかに配設されたオゾンガス(マイナスイオン)発生装置 と、前記オゾン発生装置の作動によって発生したオゾンガスを該冷却水槽の冷却 水中に送気管を介して入気案内する気液混合器と、前記冷却水槽の外部に配置さ れた循環ポンプと、前記循環ポンプの作動により前記冷却水槽から吸水し、該吸 水した冷却水中から微粒子を含む固形物を分離除去する固液分離装置と、前記固 液分離装置を経た澄水を前記冷却水槽に放水する循環水路と、前記冷却水槽内に 冷却水を放水する前記循環水路の開放側において二股に並列分岐し、その一方の パイプに前記冷却水槽内に放水して前記冷却水槽内の冷却水を乱流してかき混ぜ る沈澱防止器と、その他方のパイプに前記気液混合器が接続されてなる冷却塔等 の冷却水循環システムにおける冷却水のレジオネラ属菌繁殖抑制用浄化装置を提 供しようとするものである。 The present invention has been made in view of the above point of view, and its main configuration is an ozone gas (negative ion) generator disposed inside or outside a cooling water tank, and an operation of the ozone generator. A gas-liquid mixer that guides the generated ozone gas into the cooling water of the cooling water tank through an air supply pipe, a circulation pump disposed outside the cooling water tank, and the cooling water tank that operates by operating the circulation pump. A solid-liquid separator that absorbs water and separates and removes solids containing fine particles from the absorbed cooling water, a circulation channel that discharges clear water that has passed through the solid-liquid separator to the cooling water tank, and cools the cooling water tank. A sedimentation prevention device that branches into two branches in parallel on the open side of the circulating water channel that discharges water, discharges water into the cooling water tank to one of the pipes, and turbulently flows and mixes the cooling water in the cooling water tank; It is intended to provide a Legionella breeding suppression purifying apparatus for cooling water in its other cooling water circulation system of the cooling tower such that the pipe gas-liquid mixer is connected to.

【0010】[0010]

【考案の実施の形態】[Embodiment of the invention]

以下、図面を参照しながら説明する。 図1は本考案一実施例を示す構成図であって、オゾンガス(マイナスイオン) 発生装置10が冷却水槽1の内外のいずれかに配設され、その電源に接続される コンセント11への給電により該オゾン発生装置10は作動してオゾンガスを発 生する。そして、該オゾン発生装置10で発生したオゾンガスを該冷却水槽1の 冷却水中に配設した気液混合器20へ入気案内する送気管2が配管されている。 This will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, in which an ozone gas (negative ion) generator 10 is disposed either inside or outside a cooling water tank 1 and is supplied with power to an outlet 11 connected to a power supply thereof. The ozone generator 10 operates to generate ozone gas. Further, an air supply pipe 2 for guiding the ozone gas generated by the ozone generator 10 into a gas-liquid mixer 20 disposed in the cooling water of the cooling water tank 1 is provided.

【0011】 前記冷却水槽1の外部に循環ポンプ30が配置され、その電源に接続されるコ ンセント31への給電により該循環ポンプ30は作動する。該循環ポンプ30に は該循環ポンプ30の作動により前記冷却水槽1から吸水し、該吸水した冷却水 中から微粒子を含む固形物を分離除去する固液分離装置40を介在し、該固液分 離装置40を経た固液分離器(分離装置)戻り液である澄水を該冷却水槽1に放 水する循環水路3が配管されている。A circulating pump 30 is arranged outside the cooling water tank 1, and the circulating pump 30 operates by supplying power to an outlet 31 connected to the power supply. The circulation pump 30 is interposed with a solid-liquid separation device 40 that absorbs water from the cooling water tank 1 by the operation of the circulation pump 30 and separates and removes solids containing fine particles from the absorbed cooling water. A circulation channel 3 for discharging clear water, which is a return liquid from the solid-liquid separator (separating device) through the separating device 40, to the cooling water tank 1 is provided.

【0012】 前記循環水路3は前記冷却水槽1内に冷却水を放水する開放側において二股に 並列分岐し、その一方のパイプには澄化された冷却水を該冷却水槽1内に放水し て前記冷却水槽1内の冷却水を乱流してかき混ぜる沈澱防止器50が設けられ、 他方のパイプには同様に澄化した冷却水が注入される前記気液混合器20が接続 されている。The circulating water passage 3 branches in parallel into two branches on the open side where the cooling water is discharged into the cooling water tank 1, and one of the pipes discharges the clarified cooling water into the cooling water tank 1. The sedimentation preventing device 50 for turbulently stirring the cooling water in the cooling water tank 1 is provided, and the other pipe is connected to the gas-liquid mixer 20 into which the similarly cooled cooling water is injected.

【0013】 図2は、本考案一実施例に使用される一例の気液混合器20の両端側の回転軸 の間に、その回転軸方向に沿って設けられた混合羽根21の構成の一部を示す説 明図であって、ねじれの方向が右巻きの右エレメント羽根22と左巻きの左エレ メント羽根23とが交互に一体的に連結された混合羽根が構成されている。FIG. 2 shows an example of the configuration of a mixing blade 21 provided between the rotation shafts at both ends of an example gas-liquid mixer 20 used in one embodiment of the present invention along the rotation shaft direction. FIG. 4 is an explanatory view showing a portion, and constitutes a mixing blade in which right-handed element blades 22 having a right-handed twist and left-handed element blades 23 having a left-handed twist are alternately and integrally connected.

【0014】 そのように構成された気液混合器20の入口の各所定部に前記オゾン発生装置 10からのオゾンガスと前記循環水路3から前記他方のパイプを経た澄化冷却水 とが注入されると、それらの注入圧力により該気液は一つのエレメントを通過す る毎に2分割されると共に、ねじれ面に沿って器管の中央部から周辺部へ、そし て周辺部から中央部へと変流しながら回転方向が逆転し、その逆転部で急激な慣 性力の反転が生じる。それらの物理的な作用が連続的に起こる過程で乱流攪拌の 現象が自然に発生して注入された気液は均一に混合され、それによってオゾンガ スは澄化冷却水中に最大限に溶解されて該気液混合器20の出口から前記冷却水 槽1に流出する。The ozone gas from the ozone generator 10 and the clarifying cooling water from the circulating water channel 3 through the other pipe are injected into predetermined portions of the inlet of the gas-liquid mixer 20 configured as described above. And the injection pressure splits the gas-liquid into two every time it passes through one element, and along the twisted surface from the center to the periphery of the vessel, and from the periphery to the center. The direction of rotation is reversed while the current changes, and a sudden reversal of the inertial force occurs at the reversal point. In the process where these physical actions occur continuously, the phenomenon of turbulent stirring naturally occurs, and the injected gas and liquid are mixed uniformly, whereby the ozone gas is dissolved maximally in the clarified cooling water. Then, the gas flows out from the outlet of the gas-liquid mixer 20 into the cooling water tank 1.

【0015】 前記気液混合器20から前記冷却水槽1に流出するオゾン溶液によって該冷却 水槽1に棲息するレジオネラ属菌は殺菌駆除され、それによってレジオネラ属菌 は繁殖抑制される。The Legionella spp. Inhabiting the cooling water tank 1 is killed by the ozone solution flowing out of the gas-liquid mixer 20 into the cooling water tank 1, thereby suppressing the growth of Legionella spp.

【0016】 図3は前記固液分離装置40の公知の内部の構成を示す概略説明図であって、 前記冷却水槽1から循環ポンプ30の作動により吸水された冷却水は入口41か ら接線方向で流入し渦流状に回流する。そして該冷却水は接線方向に設けられた スリット状の回転機構を通過することによって加速されてその内側に配設された 分離筒42の内側へ勢いよく流れ込む。そこで該冷却水中に含まれる液体より重 い固形物は、遠心力により、該分離筒42の内壁43に当りながら固形物と液体 の分離(一次分離)が始まる。分離された固形物44は、内壁43に沿ってゆっ くりと沈降して行き下部のコレクションチャンバーに溜る。FIG. 3 is a schematic explanatory view showing a known internal configuration of the solid-liquid separation device 40. The cooling water absorbed from the cooling water tank 1 by the operation of the circulation pump 30 is tangentially directed from an inlet 41. And circulates in a vortex. Then, the cooling water is accelerated by passing through a tangentially provided slit-shaped rotating mechanism, and vigorously flows into the inside of the separation cylinder 42 disposed inside the cooling water. Therefore, the solid matter that is heavier than the liquid contained in the cooling water hits the inner wall 43 of the separation cylinder 42 due to the centrifugal force, and the separation of the solid matter and the liquid (primary separation) starts. The separated solids 44 slowly settle down along the inner wall 43 and accumulate in the lower collection chamber.

【0017】 他方、回転渦となって下降して来た液体は下部案内羽根機構45によって瞬間 的に急減速されて、速度エネルギーが圧力エネルギーに変わり、さらに固液分離 (二次分離)される。それらの固液分離による固形物を含まない液体(澄水)は 中心の渦46によって急上昇して出口から前記循環水路3に吐出される。On the other hand, the liquid that has descended as a rotating vortex is instantaneously and rapidly decelerated by the lower guide blade mechanism 45, the velocity energy is changed to pressure energy, and further, solid-liquid separation (secondary separation) is performed. . The liquid (clear water) containing no solid matter by the solid-liquid separation rises rapidly by the central vortex 46 and is discharged from the outlet into the circulation channel 3.

【0018】 前記下部のコレクションチャンバー47に堆積した固形物は、ドレーン48か ら必要に応じ、定期的に、あるいは、連続的に排出する。The solid matter deposited in the lower collection chamber 47 is periodically or continuously discharged from the drain 48 as needed.

【0019】 図4は前記沈澱防止器50の構成を示す外観正面図、図5は同側面図、図6は その内部の構成と動作の態様を示す説明図である。前記循環水路3の開放側の一 方のパイプに嵌着する短い管片51が中心に設けられ、その先端の出口部は内径 が流線形状に絞られたノズル部52が形成され、該ノズル部52の延長方向には 該ノズル部52の先端が中心に臨むラッパ状に開いた入口部53と、内腔が流線 形状に絞られた胴部54と、拡開した出口部55とが一体に形成されたディフュ ーザー56が位置され、該管片51とディフューザー56とは該管片51の側面 から一体的に張出した連結アーム57により一体的に連結されている。FIG. 4 is an external front view showing the structure of the sedimentation preventing device 50, FIG. 5 is a side view thereof, and FIG. 6 is an explanatory diagram showing the internal structure and operation thereof. A short pipe piece 51 fitted to one of the pipes on the open side of the circulating water passage 3 is provided at the center, and a nozzle part 52 having an inner diameter narrowed in a streamline shape is formed at the outlet at the tip thereof. In the extension direction of the part 52, an inlet part 53 opened like a trumpet with the tip of the nozzle part 52 facing the center, a body part 54 whose inner cavity is narrowed in a streamline shape, and an outlet part 55 that is expanded. An integrally formed diffuser 56 is located, and the pipe piece 51 and the diffuser 56 are integrally connected by a connecting arm 57 that extends integrally from a side surface of the pipe piece 51.

【0020】 前記沈澱防止器50において、前記循環水路3の開放側の一方のパイプから管 片51に流入した澄化冷却水は、絞られたノズル部52から勢いよくディフュー ザー56の入口部53から胴部54へ流水し、その過程で同時に、該管片51と ディフューザー56との間の空間に負圧が自然に発生し、それによって該空間か ら前記冷却水槽1の冷却水を該ディフューザー56の入口部53に大量に吸入し て、前記循環水路3から放出される澄化冷却水と前記冷却水槽1の冷却水とが胴 部54を経て出口部55から該冷却水槽1中に噴出し、それによって、該冷却水 槽1の冷却水中に乱流が発生し、以って、該冷却水槽1に沈澱物が堆積するのを 防止する。In the sedimentation preventing device 50, the clarified cooling water flowing into the pipe piece 51 from one of the pipes on the open side of the circulating water channel 3 vigorously flows from the narrowed nozzle portion 52 to the inlet portion 53 of the diffuser 56. From the water to the body 54, and at the same time, a negative pressure is naturally generated in the space between the pipe piece 51 and the diffuser 56, whereby the cooling water of the cooling water tank 1 is discharged from the space to the diffuser. The cooling water discharged from the circulation channel 3 and the cooling water in the cooling water tank 1 are discharged into the cooling water tank 1 from the outlet 55 through the body 54 after being sucked in a large amount into the inlet 53 of the cooling water tank 3. Thereby, a turbulent flow is generated in the cooling water in the cooling water tank 1, thereby preventing a deposit from being deposited in the cooling water tank 1.

【0021】 図7は、本考案一実施例に使用される他の例の一体型の気液混合器20Aの構 成を示す説明図であって、該気液混合器20は、管片51とその先端の出口部に 形成されたノズル部52と、該ノズル部52の延長方向に、該ノズル部52の先 端が中心に臨むラッパ状に開いた入口部53と、胴部54と、出口部55とが一 体に形成されたディフューザー56と、該管片51とディフューザー56とは該 管片51の側面から一体的に張出した連結アーム57により一体的に連結されて いる。更に、該ディフューザー56の出口部55に対して、両端側の回転軸の間 に、ねじれの方向が右巻きの右エレメント羽根22と左巻きの左エレメント羽根 23とが交互に一体的に連結されてなる混合羽根が結合されている。FIG. 7 is an explanatory view showing a configuration of another example of the integrated gas-liquid mixer 20 A used in one embodiment of the present invention. A nozzle part 52 formed at an outlet part at the tip of the nozzle part, an inlet part 53 opened like a trumpet with the tip end of the nozzle part 52 facing the center in the extension direction of the nozzle part 52, and a trunk part 54; The diffuser 56 formed integrally with the outlet portion 55, and the pipe piece 51 and the diffuser 56 are integrally connected by a connecting arm 57 that protrudes integrally from a side surface of the pipe piece 51. Further, the right-handed right-handed blades 22 and the left-handed-handed left element blades 23 are alternately and integrally connected to the outlet portion 55 of the diffuser 56 between the rotating shafts at both ends. Mixing blades are combined.

【0022】 そのように構成された気液混合器20Aには、前記オゾン発生装置10からの オゾンガスが前記ディフューザー56の入口部53から導入され、又、前記固液 分離装置40の循環水路3の開放側の端部が前記管片51に嵌着されて固液分離 器戻り液が注入される。The ozone gas from the ozone generator 10 is introduced from the inlet 53 of the diffuser 56 into the gas-liquid mixer 20 A thus configured, and the ozone gas from the circulating water channel 3 of the solid-liquid separator 40 is The open end is fitted to the pipe piece 51 and the return liquid of the solid-liquid separator is injected.

【0023】 前記循環水路3の開放側から管片51に流入した澄化冷却水は、絞られたノズ ル部52から勢いよくディフューザー56の入口部53から胴部54へ流水し、 その過程で同時に、該管片51とディフューザー56との間の空間に負圧が自然 に発生し、それによって前記オゾンガスが該空間から該ディフューザー56の入 口部53へ導入される。このようにして、該循環水路3から放出される澄化冷却 水と前記オゾン発生装置10からのオゾンガスとが胴部54を経て出口部55か ら噴出する。The clarified cooling water that has flowed into the pipe piece 51 from the open side of the circulating water channel 3 rushes from the narrowed nozzle portion 52 to the body portion 54 from the inlet portion 53 of the diffuser 56, and in the process. At the same time, a negative pressure naturally occurs in the space between the pipe piece 51 and the diffuser 56, whereby the ozone gas is introduced from the space into the inlet 53 of the diffuser 56. Thus, the clarified cooling water discharged from the circulation channel 3 and the ozone gas from the ozone generator 10 are ejected from the outlet 55 through the body 54.

【0024】 前記出口部55から噴出する澄化冷却水とオゾンガスとは、それらの噴出圧力 により該気液は一つのエレメントを通過する毎に2分割されると共に、ねじれ面 に沿って器管の中央部から周辺部へ、そして周辺部から中央部へと変流しながら 回転方向が逆転し、その逆転部で急激な慣性力の反転が生じる。それらの物理的 な作用が連続的に起こる過程で乱流攪拌の現象が自然に発生して注入された気液 は均一に混合され、それによってオゾンガスは澄化冷却水中に最大限に溶解され て該気液混合器20Aの出口から冷却水槽1にオゾン混合液体として流出する。The clarified cooling water and the ozone gas ejected from the outlet 55 are divided into two by the ejection pressure of the gas and liquid each time they pass through one element. The direction of rotation is reversed while the current flows from the central part to the peripheral part and from the peripheral part to the central part. In the process where these physical actions occur continuously, the phenomenon of turbulent stirring naturally occurs, and the injected gas and liquid are mixed uniformly, whereby the ozone gas is dissolved maximally in the clarified cooling water. The gas flows out from the outlet of the gas-liquid mixer 20A to the cooling water tank 1 as an ozone mixed liquid.

【0025】[0025]

【考案の効果】[Effect of the invention]

以上の説明により明らかなように、本考案に係る冷却塔等の冷却水循環システ ムにおける冷却水のレジオネラ属菌繁殖抑制用浄化装置によれば、冷却水槽の内 外のいずれかに配設されたオゾンガス(マイナスイオン)発生装置と、前記オゾ ン発生装置の作動によって発生したオゾンガスを該冷却水槽の冷却水中に送気管 を介して入気案内する気液混合器と、前記冷却水槽の外部に配置された循環ポン プと、前記循環ポンプの作動により前記冷却水槽から吸水し、該吸水した冷却水 中から微粒子を含む固形物を分離除去する固液分離装置と、前記固液分離装置を 経た澄水を前記冷却水槽に放水する循環水路と、前記冷却水槽内に冷却水を放水 する前記循環水路の開放側において二股に並列分岐し、その一方のパイプに前記 冷却水槽内に放水して前記冷却水槽内の冷却水を乱流してかき混ぜる沈澱防止器 と、その他方のパイプに前記気液混合器が接続されてなるものであるから、固液 分離装置によって澄化された還流の冷却水中にオゾンガスが最大限に溶解され、 それが冷却水槽内の冷却水に注水されるので、レジオネラ属菌の殺菌に効果的に 作用する。 As is apparent from the above description, according to the purification device for suppressing the propagation of Legionella spp. In the cooling water in the cooling water circulation system such as the cooling tower according to the present invention, the cooling water is disposed inside or outside the cooling water tank. An ozone gas (negative ion) generator, a gas-liquid mixer that guides the ozone gas generated by the operation of the ozone generator into the cooling water of the cooling water tank through an air supply pipe, and an externally disposed cooling water tank. A circulating pump, a solid-liquid separator that absorbs water from the cooling water tank by the operation of the circulating pump, and separates and removes solids containing fine particles from the absorbed cooling water; and clear water that has passed through the solid-liquid separator. And a bifurcated parallel branch at the open side of the circulating water channel that discharges cooling water into the cooling water tank, and one of the pipes is discharged into the cooling water tank. And the gas-liquid mixer is connected to the other pipe so that the cooling water in the cooling water tank is turbulently stirred. The ozone gas is dissolved in the cooling water to the maximum, and the ozone gas is injected into the cooling water in the cooling water tank, effectively acting to kill Legionella spp.

【0026】 そして、澄化された還流の冷却水が沈澱防止器によって冷却水槽の冷却水中に 噴流するから、冷却水槽内の冷却水が大きく乱流攪拌されるので、該冷却水槽に おける沈澱物の堆積防止効果が極めて大である。Then, since the clarified reflux cooling water is jetted into the cooling water in the cooling water tank by the sedimentation preventing device, the cooling water in the cooling water tank is largely turbulently stirred. Has an extremely large effect of preventing the accumulation of slag.

【0027】 このように、冷却水槽内の冷却水の浄化と冷却水のレジオネラ属菌の殺菌除菌 を物理的手段と化学的手段との有機的な相乗効果によって有効且つ廉価に行うこ とができる。As described above, the purification of the cooling water in the cooling water tank and the sterilization and elimination of the Legionella genus of the cooling water can be effectively and inexpensively performed by the organic synergistic effect of the physical means and the chemical means. it can.

【0028】 更に、前記オゾンガスは、ある種の金属やゴム、樹脂類に対し腐食性があり、 その取扱には注意が必要であり、特に本装置のようにオゾンガスを液体中に吹き 込む場合、一般的にはファンを用いるが、腐食を考慮した既成の適正なファンを 市中で求めるのは困難であり、特注品とすればかなり高価になる。しかし、本考 案一実施例に使用される固液分離装置40を作動させる循環ポンプ30の帰還圧 力を沈澱防止器50の管片51に導くことによりラッパ状の入口部53に発生す る負圧を利用することによってファンを使用することなくオゾンガスは液体中に 吹き込まれ、更に混合羽根21を有する混合部を通過させることにより有効に冷 却水に溶け込ませることができる。Furthermore, the above-mentioned ozone gas is corrosive to certain metals, rubbers, and resins, and care must be taken when handling it. In particular, when ozone gas is blown into a liquid as in this apparatus, Generally, a fan is used, but it is difficult to find a suitable existing fan in consideration of corrosion in the market. However, when the return pressure of the circulating pump 30 for operating the solid-liquid separator 40 used in the embodiment of the present invention is guided to the pipe piece 51 of the sedimentation preventing device 50, it is generated at the trumpet-shaped inlet portion 53. By using the negative pressure, the ozone gas is blown into the liquid without using a fan, and can be effectively dissolved in the cooling water by passing through the mixing section having the mixing blade 21.

【0029】 このように、前記沈澱防止器50や一体型の気液混合器20Aによるときは、 従来の如き気体がすぐに水面に向かって浮上して液体に混合できない多孔質の散 気手段や高価である反面処理量が少なく一般的でない浸透膜手段とは異なって、 腐食防止と共に装置を簡略化し設備費の軽減にも寄与することができる。As described above, when the settling preventive device 50 and the integrated gas-liquid mixer 20A are used, the conventional gas diffuser which can immediately float to the surface of the water and cannot be mixed with the liquid is used. Unlike the permeable membrane means, which is expensive but has a small amount of treatment, it can contribute to the prevention of corrosion and the simplification of the equipment as well as the reduction of equipment costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本考案一実施例に使用される一例の気液混合器
の混合羽根の構成の一部を示す説明図である。
FIG. 2 is an explanatory view showing a part of a configuration of a mixing blade of an example of a gas-liquid mixer used in one embodiment of the present invention.

【図3】本考案一実施例に使用される固液分離装置の内
部の構成を示す概略説明図である。
FIG. 3 is a schematic explanatory view showing an internal configuration of a solid-liquid separation device used in one embodiment of the present invention.

【図4】本考案一実施例に使用される沈澱防止器の構成
を示す外観正面図である。
FIG. 4 is an external front view showing the structure of a settling preventer used in one embodiment of the present invention.

【図5】本考案一実施例に使用される沈澱防止器の構成
を示す外観側面図である。
FIG. 5 is an external side view showing a configuration of a settling preventer used in one embodiment of the present invention.

【図6】本考案一実施例に使用される沈澱防止器の内部
の構成と動作の態様を示す説明図である。
FIG. 6 is an explanatory view showing the internal structure and operation of the sedimentation preventer used in the embodiment of the present invention.

【図7】本考案一実施例に使用される他の例の気液混合
器の構成を示す説明図である。
FIG. 7 is an explanatory view showing a configuration of another example of the gas-liquid mixer used in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷却水槽 2 送気管 3 循環水路 10 オゾンガス(マイナスイオン)発生装置 11 コンセント 20 気液混合器 20A 気液混合器 21 混合羽根 22 右エレメント羽根 23 左エレメント羽根 30 循環ポンプ 31 コンセント 40 固液分離装置 41 入口 42 分離筒 43 内壁 44 固形物 45 下部案内羽根機構 46 渦 47 コレクションチャンバー 48 ドレーン 50 沈澱防止器 51 管片 52 ノズル部 53 入口部 54 胴部 55 出口部 56 ディフューザー 57 連結アーム DESCRIPTION OF SYMBOLS 1 Cooling water tank 2 Air supply pipe 3 Circulating water channel 10 Ozone gas (negative ion) generator 11 Outlet 20 Gas-liquid mixer 20A Gas-liquid mixer 21 Mixing blade 22 Right element blade 23 Left element blade 30 Circulation pump 31 Outlet 40 Solid-liquid separator 41 Inlet 42 Separation tube 43 Inner wall 44 Solid 45 Lower guide blade mechanism 46 Vortex 47 Collection chamber 48 Drain 50 Precipitation preventer 51 Tube piece 52 Nozzle part 53 Inlet part 54 Body part 55 Outlet part 56 Diffuser 57 Connecting arm

【手続補正書】[Procedure amendment]

【提出日】平成12年6月6日(2000.6.6)[Submission date] June 6, 2000 (2000.6.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】実用新案登録請求の範囲[Correction target item name] Claims for utility model registration

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【実用新案登録請求の範囲】[Utility model registration claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/78 C02F 1/78 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 7 Identification code FI C02F 1/78 C02F 1/78

Claims (5)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 冷却水槽1の内外のいずれかに配設され
たオゾンガス(マイナスイオン)発生装置10と、 前記オゾン発生装置10の作動によって発生したオゾン
ガスを該冷却水槽1の冷却水中に送気管2を介して入気
案内する気液混合器20と、 前記冷却水槽1の外部に配置された循環ポンプ30と、 前記循環ポンプ30の作動により前記冷却水槽1から吸
水し、該吸水した冷却水中から微粒子を含む固形物を分
離除去する固液分離装置40と、 前記固液分離装置40を経た澄水を前記冷却水槽1に放
水する循環水路3と、 前記冷却水槽1内に冷却水を放水する前記循環水路3の
開放側において二股に並列分岐し、その一方のパイプに
前記冷却水槽1内に放水して前記冷却水槽1内の冷却水
を乱流してかき混ぜる沈澱防止器50と、その他方のパ
イプに前記気液混合器20が接続されてなることを特徴
とする冷却塔等の冷却水循環システムにおける冷却水の
レジオネラ属菌繁殖抑制用浄化装置。
1. An ozone gas (negative ion) generator 10 disposed inside or outside a cooling water tank 1, and an ozone gas generated by the operation of the ozone generator 10 is supplied to a cooling water of the cooling water tank 1 by an air pipe. A gas-liquid mixer 20 that guides the air flow through the cooling water tank 2, a circulation pump 30 disposed outside the cooling water tank 1, and the cooling water tank 1 that absorbs water from the cooling water tank 1 by operating the circulation pump 30. A solid-liquid separator 40 for separating and removing solids containing fine particles from water; a circulating water channel 3 for discharging clear water passing through the solid-liquid separator 40 to the cooling water tank 1; and discharging cooling water into the cooling water tank 1. A sedimentation preventing device 50 that bifurcates in parallel at the open side of the circulating water channel 3, discharges water into the cooling water tank 1 to one of the pipes, and turbulently flows the cooling water in the cooling water tank 1 to stir; Square pipes in the gas-liquid mixer 20 is Legionella breeding suppression purification system of the cooling water in the cooling water circulation system of the cooling tower or the like, characterized by comprising connected.
【請求項2】 前記気液混合器20は、両端側の回転軸
の間に、ねじれの方向が右巻きの右エレメント羽根22
と左巻きの左エレメント羽根23とが交互に一体的に連
結されてなる請求項1記載の冷却塔等の冷却水循環シス
テムにおける冷却水のレジオネラ属菌繁殖抑制用浄化装
置。
2. The gas-liquid mixer 20 includes a right element blade 22 having a right-handed twist between the rotation shafts at both ends.
The purification device for suppressing the propagation of Legionella spp. In a cooling water circulation system such as a cooling tower according to claim 1, wherein the left-handed left element blades 23 are alternately and integrally connected to each other.
【請求項3】 前記沈澱防止器50は、 前記循環水路3の開放側の一方のパイプに嵌着する管片
51とその先端の出口部に形成されたノズル部52と、 前記ノズル部52の延長方向に、該ノズル部52の先端
が中心に臨むラッパ状に開いた入口部53と、胴部54
と、出口部55とが一体に形成されたディフューザー5
6と、 前記管片51とディフューザー56とは、該管片51の
側面から一体的に張出した連結アーム57により一体的
に連結されている請求項1記載の冷却塔等の冷却水循環
システムにおける冷却水のレジオネラ属菌繁殖抑制用浄
化装置。
3. The sedimentation preventing device 50 includes a pipe piece 51 fitted to one of the pipes on the open side of the circulating water channel 3 and a nozzle part 52 formed at an outlet at the tip thereof. In the extension direction, a trumpet-shaped inlet portion 53 with the tip of the nozzle portion 52 facing the center, and a body portion 54
And a diffuser 5 in which the outlet portion 55 is integrally formed.
6. The cooling system according to claim 1, wherein the pipe piece 51 and the diffuser 56 are integrally connected by a connection arm 57 that extends integrally from a side surface of the pipe piece 51. A purification device for controlling the propagation of Legionella spp. In water.
【請求項4】 前記気液混合器20は、管片51とその
先端の出口部に形成されたノズル部52と、 前記ノズル部52の延長方向に、該ノズル部52の先端
が中心に臨むラッパ状に開いた入口部53と、胴部54
と、出口部55とが一体に形成されたディフューザー5
6と、 前記管片51とディフューザー56とは、該管片51の
側面から一体的に張出した連結アーム57により一体的
に連結され、 更に前記ディフューザー56の出口部55に対して、両
端側の回転軸の間に、ねじれの方向が右巻きの右エレメ
ント羽根22と左巻きの左エレメント羽根23とが交互
に一体的に連結されてなる混合羽根が結合された請求項
1記載の冷却塔等の冷却水循環システムにおける冷却水
のレジオネラ属菌繁殖抑制用浄化装置。
4. The gas-liquid mixer 20 has a pipe piece 51 and a nozzle 52 formed at an outlet at the tip thereof, and the tip of the nozzle 52 faces the center in the extension direction of the nozzle 52. A trumpet-shaped inlet 53 and a trunk 54
And a diffuser 5 in which the outlet portion 55 is integrally formed.
6, the pipe piece 51 and the diffuser 56 are integrally connected by a connecting arm 57 integrally extending from a side surface of the pipe piece 51, and further, with respect to an outlet portion 55 of the diffuser 56, 2. A cooling tower or the like according to claim 1, wherein a mixing blade formed by alternately and integrally connecting right element blades 22 with right-handed turns and left element blades 23 with left-handed turns is connected between the rotating shafts. A purification device for controlling the propagation of Legionella spp. In the cooling water in the cooling water circulation system.
【請求項5】前記オゾンガス発生装置10、前記気液混
合器20、前記循環ポンプ30、前記固液分離装置40
及び前記沈澱防止器50のいずれかは、前記冷却水槽1
の規模に応じて複数個設けられている請求項1〜4のい
ずれれかに記載の冷却塔等の冷却水循環システムにおけ
る冷却水のレジオネラ属菌繁殖抑制用浄化装置。
5. The ozone gas generator 10, the gas-liquid mixer 20, the circulation pump 30, the solid-liquid separator 40.
And any one of the settling preventers 50 is provided in the cooling water tank 1
The purification device for controlling the propagation of Legionella bacteria in cooling water in a cooling water circulation system such as a cooling tower according to any one of claims 1 to 4, wherein a plurality of cooling devices are provided in accordance with the scale of the cooling water.
JP2000002508U 2000-03-14 2000-03-14 Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower Expired - Fee Related JP3073117U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002508U JP3073117U (en) 2000-03-14 2000-03-14 Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002508U JP3073117U (en) 2000-03-14 2000-03-14 Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower

Publications (1)

Publication Number Publication Date
JP3073117U true JP3073117U (en) 2000-11-14

Family

ID=43206364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002508U Expired - Fee Related JP3073117U (en) 2000-03-14 2000-03-14 Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower

Country Status (1)

Country Link
JP (1) JP3073117U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083135A (en) * 2015-10-30 2017-05-18 東芝プラントシステム株式会社 Legionella bacteria countermeasure system for water-cooled substation, cooled body cooling system, legionella bacteria countermeasure method, and cooled body cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083135A (en) * 2015-10-30 2017-05-18 東芝プラントシステム株式会社 Legionella bacteria countermeasure system for water-cooled substation, cooled body cooling system, legionella bacteria countermeasure method, and cooled body cooling method

Similar Documents

Publication Publication Date Title
CN208471780U (en) A kind of ship ballast water treatment device
CN109502882A (en) A kind of sewage disposal device and its processing method
CN107673508A (en) A kind of non-ferrous metals processing wastewater treatment equipment
JP3073117U (en) Purification equipment for controlling the propagation of Legionella spp. In cooling water in a cooling water circulation system such as a cooling tower
JP2010536553A (en) Anion generating water purification apparatus and treatment method thereof
CN109851164A (en) A kind of organic matter purification device for water ecology maintenance
JP2007301460A (en) Method and device for producing high-concentration oxygen dissolved water, and method for using produced high-concentration oxygen dissolved water
CN204324936U (en) Vertical-flow ozone air-float equipment
CN209835851U (en) Waste cutting fluid purifying device
CN108101284A (en) A kind of automation control sewage-treatment plant
CN209292083U (en) A kind of micro-nano plugflow aeration machine
CN207581517U (en) A kind of industrial wastewater settler
CN112897792A (en) Accurate fracturing waste liquid purifier who disinfects
CN209397074U (en) A kind of sewage treatment aeration system
CN208308594U (en) A kind of spray painting factory wastewater treatment equipment
CN213738938U (en) Slaughter sewage purification unit
CN110642401A (en) Sewage treatment device
CN201509506U (en) Water-purifying system for aquaculture
CN214611884U (en) A treatment facility for chemical wastewater
CN2786103Y (en) Sewage treatment device utilized ozone for disinfection
CN206143006U (en) Electro -coppering zinc -nickel washing wastewater's processing apparatus
KR102664947B1 (en) Micro-nano bubble generating device with pressure turning method applied
CN214437854U (en) A exhaust treatment system for traditional chinese medicine preparation
CN208762279U (en) A kind of non-ferrous metals processing wastewater treatment equipment
CN213651976U (en) Sewage disinfection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees