JP3070858B2 - Fault section detection method for multiple transmission lines - Google Patents

Fault section detection method for multiple transmission lines

Info

Publication number
JP3070858B2
JP3070858B2 JP30507789A JP30507789A JP3070858B2 JP 3070858 B2 JP3070858 B2 JP 3070858B2 JP 30507789 A JP30507789 A JP 30507789A JP 30507789 A JP30507789 A JP 30507789A JP 3070858 B2 JP3070858 B2 JP 3070858B2
Authority
JP
Japan
Prior art keywords
processing device
transmission
terminal station
signal
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30507789A
Other languages
Japanese (ja)
Other versions
JPH03165278A (en
Inventor
博資 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP30507789A priority Critical patent/JP3070858B2/en
Publication of JPH03165278A publication Critical patent/JPH03165278A/en
Application granted granted Critical
Publication of JP3070858B2 publication Critical patent/JP3070858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、送電線の多数線路における故障区間検出方
式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fault section detection method for a large number of transmission lines.

〔従来の技術〕[Conventional technology]

第3図に、光ファイバを伝送路として用い、多数線路
を対象とした送電線故障区間検出システムの従来の構成
例を示す。同図に示すように、従来のシステムにおいて
は、送電系統が19aと19bのように複数系統があり、処理
装置(親局)14が単数の場合には、複数の光カプラ16a
と16bを使用して分岐し、故障信号及び送信要求信号を
各送電系統19a,19bに設置した端末局17a〜17bに対して
伝送していた。図中15は光電気変換器、18a〜18eは光フ
ァイバ信号伝送路である。
FIG. 3 shows an example of a conventional configuration of a transmission line fault section detection system using an optical fiber as a transmission line and targeting many lines. As shown in the figure, in the conventional system, there are a plurality of power transmission systems such as 19a and 19b, and when a single processing device (master station) 14 is provided, a plurality of optical couplers 16a
And a transmission request signal are transmitted to the terminal stations 17a to 17b installed in the transmission systems 19a and 19b. In the figure, reference numeral 15 denotes a photoelectric converter, and reference numerals 18a to 18e denote optical fiber signal transmission lines.

また、第4図に示すように、光ファイバ22a〜22dを直
列に接続し、処理装置20と端末局24を接続し、故障信号
及び送信要求信号を各端末局24a〜24dに伝送して送電系
統23a,23bの故障情報を収集するシステムも考えられて
いた。
As shown in FIG. 4, the optical fibers 22a to 22d are connected in series, the processing device 20 is connected to the terminal station 24, and the failure signal and the transmission request signal are transmitted to each of the terminal stations 24a to 24d for power transmission. A system for collecting fault information of the systems 23a and 23b was also considered.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、第3図に示すような従来のシステムでは、
送電線の数が増加すると光カプラの損失によって光電気
変換器15と端末局17間の伝送距離が著しく短くなり、実
用上使用に耐えない。
However, in the conventional system as shown in FIG.
When the number of transmission lines increases, the transmission distance between the photoelectric converter 15 and the terminal station 17 becomes extremely short due to the loss of the optical coupler, and is not practically usable.

また、第4図に示すような方式では、直列に接続でき
る送電系統は限られており、システム構築の際に大きな
制約となっている。
In addition, in the system shown in FIG. 4, the number of power transmission systems that can be connected in series is limited, which is a great limitation when constructing a system.

このことを、従来のシステムで多く使用されているマ
ルチモード光ファイバと光信号波長0.85μmの組合せで
具体的に説明する。
This will be specifically described with a combination of a multimode optical fiber and an optical signal wavelength of 0.85 μm, which are often used in the conventional system.

光源にはLED(発光ダイオード)、受光素子としてPD
(フォトダイオードを使用した場合 ・マルチモード光ファイバの伝送損失 3dB/km ・LEDの発光レベル −18dBm ・PDの受光レベル −35dBm ・光カプラの挿入損失 4.5dB ・システムの伝送マージン 3dB (処理装置(光電気変換器)〜光カプラ間及び光カプラ
間〜光カプラ間の光ファイバの伝送損失は、伝送距離が
短いので0dBとして扱う。) となり、この値で処理装置となり、この値で処理装置と
端末局間の伝送可能な距離を求めると次のようになる。
LED (light emitting diode) as light source, PD as light receiving element
(When using a photodiode ・ Transmission loss of multimode optical fiber 3dB / km ・ Emission level of LED -18dBm ・ Reception level of PD --35dBm ・ Insertion loss of optical coupler 4.5dB ・ Transmission margin of system 3dB (Processing device ( The optical fiber transmission loss between the optical coupler and the optical coupler and between the optical coupler and the optical coupler is treated as 0 dB because of the short transmission distance.) The transmission distance between terminal stations is obtained as follows.

a.送電線が2系統の場合(光カプラは1個である) 35−18−4.5−3=9.5dB したがって、距離は9.5÷3=3.2km b.送電線が3系統の場合(光カプラは2個である) 35−18−4.5−4.5−3=5dB したがって、距離は5÷3=1.7km c.送電線が4系統の場合(光カプラは3個である) 35−18−4.5−4.5−4.5−3=0.5dB したがって、距離は0.5÷3=0.2km 以上のような算出結果から、従来システムにおける処
理装置と端末局間の標準的な伝送距離である2〜3kmを
満足できるのは、2系統までとなる。さらに3系統以上
の場合は実用上使用に耐え得ない値となる。
a. Two transmission lines (one optical coupler) 35-18-4.5-3 = 9.5 dB Therefore, the distance is 9.5 / 3 = 3.2 km. b. Three transmission lines (optical coupler) 35−18−4.5−4.5−3 = 5dB Therefore, the distance is 5 ÷ 3 = 1.7km. C. When there are four transmission lines (three optical couplers) 35−18−4.5 −4.5−4.5−3 = 0.5dB Therefore, the distance is 0.5 ÷ 3 = 0.2km. From the above calculation results, it is possible to satisfy the standard transmission distance of 2-3km between the processing device and the terminal station in the conventional system. Is up to two systems. Further, in the case of three or more systems, the value is not practically usable.

そこで本発明は、このような従来の問題を解決するこ
とを目的とする。
Therefore, an object of the present invention is to solve such a conventional problem.

〔課題を解決するための手段〕[Means for solving the problem]

この目的を達成するため、本発明の送電線の多数線路
における故障区間検出方式は、各送電系統の複数の鉄塔
に設けられた端末局と、各送電系統ごとに設けられ各送
電系統の複数の端末局を接続する光伝送路と、各光伝送
路ごとに設けられた光電気変換器を介して各光伝送路に
接続される論理回路と、該論理回路に接続される処理装
置と、前記端末局に接続されて多発的に発生する故障を
検出する検出器とを備え、前記端末局が、前記処理装置
からのポーリングによる送信要求信号によって時分割で
故障信号を伝送し、前記論理回路が、前記処理装置から
の送信要求信号及び前記各光電気変換器を介して伝送さ
れた故障信号を分岐、制御することにより、前記処理装
置においてデータ収集を行い故障区間を判定することを
特徴とする 〔作用〕 本発明では、光信号を電気信号に変換し、その信号を
分岐するための論理回路を付加するとともに、故障信号
及び送信要求信号などのデータが光ファイバにおいて衝
突しないように、時分割にポーリングすることによって
伝送距離及びシステム構築に影響されることなく複数の
線路のデータの処理が可能となる。
In order to achieve this object, the fault section detection method in the multiple lines of the transmission line according to the present invention includes a terminal station provided in a plurality of towers of each transmission system, and a plurality of transmission stations provided in each transmission system. An optical transmission line for connecting a terminal station, a logic circuit connected to each optical transmission line via a photoelectric converter provided for each optical transmission line, a processing device connected to the logic circuit, A detector connected to the terminal station to detect a failure that occurs frequently, wherein the terminal station transmits a failure signal in a time division manner by a transmission request signal by polling from the processing device, and the logic circuit By branching and controlling a transmission request signal from the processing device and a failure signal transmitted through each of the photoelectric converters, the processing device collects data and determines a failure section. [Action] In the present invention, an optical signal is converted into an electric signal, a logic circuit for branching the signal is added, and polling is performed in a time-division manner so that data such as a failure signal and a transmission request signal do not collide in an optical fiber. This allows data processing on a plurality of lines without being affected by the transmission distance and system construction.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.

第1図は本発明に係る送電線故障区間検出システムの
実施例を示すブロック図であり、図中1は処理装置、2
は第2図に具体的構成を示す論理回路、3a,3bは光電気
変換器、4a〜4bは端末局、5a〜5dは検出器、6a〜6dは磁
気センサ、7a,7bは送電系統、8a〜8dは光ファイバを示
している。
FIG. 1 is a block diagram showing an embodiment of a transmission line fault section detection system according to the present invention. In FIG.
2 is a logic circuit showing a specific configuration in FIG. 2, 3a and 3b are photoelectric converters, 4a to 4b are terminal stations, 5a to 5d are detectors, 6a to 6d are magnetic sensors, 7a and 7b are power transmission systems, 8a to 8d indicate optical fibers.

具体的に述べると、送電系統7a,7bの鉄塔に端末局4a,
4b,4c,4dを設ける。磁気センサ6a,6b,6c,6dによって検
出された故障電流は、検出器5a,5b,5c,5dによって判定
される。端末局4a,4b,4c,4dは光ファイバ8a,8b,8c,8dに
よって接続されており、さらに端末局4a,4cは光電気変
換器3a,3bに接続され、光電気変換器3a,3bは論理回路2
を介して処理装置1に接続されている。
Specifically, terminal stations 4a, 4a,
4b, 4c, 4d are provided. Fault currents detected by the magnetic sensors 6a, 6b, 6c, 6d are determined by the detectors 5a, 5b, 5c, 5d. The terminal stations 4a, 4b, 4c, 4d are connected by optical fibers 8a, 8b, 8c, 8d, and further the terminal stations 4a, 4c are connected to photoelectric converters 3a, 3b, and the photoelectric converters 3a, 3b Is the logic circuit 2
Is connected to the processing apparatus 1 via the.

端末局4a,4b,4c,4dは磁気センサ6a,6b,6c,6dによって
得られた故障電流を検出器5a,5b,5c,5dでそれぞれ収集
し、処理装置1からのポーリングによる送信要求信号に
よって、この故障信号を光ファイバ8a,8b,8c,b8dを介し
て処理装置1へ伝送する。
The terminal stations 4a, 4b, 4c, and 4d collect fault currents obtained by the magnetic sensors 6a, 6b, 6c, and 6d with the detectors 5a, 5b, 5c, and 5d, respectively, and transmit a transmission request signal by polling from the processing device 1. Thus, the failure signal is transmitted to the processing device 1 via the optical fibers 8a, 8b, 8c, and b8d.

端末局4と処理装置1間を伝送される故障信号は、光
電気変換器3a,3bによって電気信号に変換された後、第
2図のブロック図に示すように論理和回路9によって故
障信号A1と故障信号A2は結合される。
The fault signal transmitted between the terminal station 4 and the processing device 1 is converted into an electrical signal by the photoelectric converters 3a and 3b, and then the fault signal A1 is output by the OR circuit 9 as shown in the block diagram of FIG. And the failure signal A2 are combined.

一方、送信要求信号は処理装置1から出力されバッフ
ァ回路10によって分岐されて各端末局4へ送信要求信号
B1及び送信要求信号B2となって光電気変換器3a,3bを経
由して伝送される。この送信要求信号B1,B2によって端
末局4から故障信号A1,A2が返信される。
On the other hand, the transmission request signal is output from the processing device 1, branched by the buffer circuit 10, and transmitted to each terminal station 4.
B1 and a transmission request signal B2 are transmitted via the photoelectric converters 3a and 3b. The failure signals A1 and A2 are returned from the terminal station 4 by the transmission request signals B1 and B2.

故障信号A1,A2は、処理装置1からの送信要求に対し
て時分割に各々の端末局4から伝送される。端末局4か
らの故障信号は、処理装置1からのポーリングによる送
信要求に1対1に対応して、処理装置1の指定されたア
ドレスの端末局4のみが返信される。
The failure signals A1 and A2 are transmitted from each terminal station 4 in a time division manner in response to a transmission request from the processing device 1. The failure signal from the terminal station 4 corresponds to the polling transmission request from the processing apparatus 1 on a one-to-one basis, and only the terminal station 4 at the designated address of the processing apparatus 1 is returned.

第2図のブロック図に示す光電気変換器起動信号D1,D
2及び光電気変換器起動完了信号E1,E2は、処理装置1か
ら端末局4へ送信要求信号を伝送する時、処理装置1か
ら出力又は入力され、それぞれバッファ回路12及び論理
和回路13を介して、端末局4へ伝送される送信要求信号
(光信号)を制御する。
The opto-electric converter start signals D1, D shown in the block diagram of FIG.
2 and the opto-electrical converter activation completion signals E1 and E2 are output or input from the processing device 1 when transmitting a transmission request signal from the processing device 1 to the terminal station 4, and are transmitted through the buffer circuit 12 and the OR circuit 13, respectively. Thus, a transmission request signal (optical signal) transmitted to the terminal station 4 is controlled.

同様に、光キャリア検出信号C1,C2は端末局4から返
信される故障信号(光信号)のキャリアを検出し、端末
局4から返信されたことを論理和回路11を介して処理装
置1に出力する。
Similarly, the optical carrier detection signals C1 and C2 detect the carrier of the failure signal (optical signal) returned from the terminal station 4, and notify the processing device 1 via the OR circuit 11 that the signal has been returned from the terminal station 4. Output.

処理装置1は、端末局4から伝送された故障信号によ
って、各検出器毎に故障電流の有無を判定する。この結
果から故障電流を検出した検出器(鉄塔)と未検出の検
出器(鉄塔)の間を事故点と判定し、処理装置1は事故
点に最も近い検出器(鉄塔)の間を故障区間として表示
をする。
The processing device 1 determines the presence or absence of a fault current for each detector based on the fault signal transmitted from the terminal station 4. From this result, a fault point is determined between a detector (pylon) that has detected a fault current and a detector (pylon) that has not detected the fault current, and the processing device 1 determines a fault zone between the detector (pylon) closest to the fault point. Display as

なお、以上の実施例において、送電系統は第1図のブ
ロック図のように2系統に限定されず、複数の送電系統
においても可能である。
In the above embodiment, the number of power transmission systems is not limited to two as shown in the block diagram of FIG. 1, but may be a plurality of power transmission systems.

伝送する信号は、故障電流に限らず、雷閃絡、航空障
害灯等の検出信号の伝送も可能である。
The signal to be transmitted is not limited to the fault current, and it is also possible to transmit a detection signal of a lightning flash, an aviation obstacle light, or the like.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明においてはポーリングに
よる時分割伝送方式を使用し、端末局へ個別に送信要求
するとともに光電気変換を行い、論理回路により送信要
求及び故障情報の分岐結合をを行うため、多数の線路を
持つデータ処理の際に伝送距離が短くなるということが
なく、送電線の監視及び保守の迅速化を図ることができ
る。
As described above, the present invention uses the time-division transmission method by polling, individually requests transmission to the terminal station, performs optical-electric conversion, and performs the branching of the transmission request and the failure information by the logic circuit. Therefore, the transmission distance is not shortened when processing data having a large number of lines, and the monitoring and maintenance of the transmission line can be speeded up.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る送電線故障区間検出システムの実
施例を示すブロック図、第2図は本発明実施例における
論理回路のブロック図、第3図及び第4図はそれぞれ従
来の送電線故障区間検出システムのブロック図である。 1:処理装置、2:論理回路 3a,3b:光電気変換器、4a,4b,4c,4d:端末局 5a,5b,5c,5d:検出器、6a,6b,6c,6d:磁気センサ 7a,7b:送電系統、8a,8b,8c,8d:光ファイバ 9,11,13:論理和回路、10,12:バッファ回路 14:処理装置、15:光電気変換器 16a,16b:光カプラ(光分岐結合器) 17a,17b,17c,17d:端末局 18a,18b,18c,18d,18e:光ファイバ 19a,19b:送電系統、20:処理装置 21:光電気変換器 22a,22b,22c,22d:光ファイバ 23a,23b:送電系統 24a,24b,24c,24d:端末局
FIG. 1 is a block diagram showing an embodiment of a transmission line fault section detection system according to the present invention, FIG. 2 is a block diagram of a logic circuit in the embodiment of the present invention, and FIGS. It is a block diagram of a fault section detection system. 1: processing unit, 2: logic circuit 3a, 3b: photoelectric converter, 4a, 4b, 4c, 4d: terminal station 5a, 5b, 5c, 5d: detector, 6a, 6b, 6c, 6d: magnetic sensor 7a , 7b: power transmission system, 8a, 8b, 8c, 8d: optical fiber 9, 11, 13: OR circuit, 10, 12: buffer circuit 14: processing device, 15: photoelectric converter 16a, 16b: optical coupler ( 17a, 17b, 17c, 17d: Terminal station 18a, 18b, 18c, 18d, 18e: Optical fiber 19a, 19b: Transmission system, 20: Processing unit 21: Opto-electrical converter 22a, 22b, 22c, 22d: Optical fiber 23a, 23b: Transmission system 24a, 24b, 24c, 24d: Terminal station

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/08 G08C 15/00 G08C 15/06 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01R 31/08 G08C 15/00 G08C 15/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各送電系統の複数の鉄塔に設けられた端末
局と、各送電系統ごとに設けられ各送電系統の複数の端
末局を接続する光伝送路と、各光伝送路ごとに設けられ
た光電気変換器を介して各光伝送路に接続される論理回
路と、該論理回路に接続される処理装置と、前記端末局
に接続されて多発的に発生する故障を検出する検出器と
を備え、前記端末局が、前記処理装置からのポーリング
による送信要求信号によって時分割で故障信号を伝送
し、前記論理回路が、前記処理装置からの送信要求信号
及び前記各光電気変換器を介して伝送された故障信号を
分岐、制御することにより、前記処理装置においてデー
タ収集を行い故障区間を判定することを特徴とする送電
線の多数線路における故障区間検出方式。
1. A terminal station provided on a plurality of towers of each power transmission system, an optical transmission line provided for each power transmission system and connecting a plurality of terminal stations of each power transmission system, and provided for each optical transmission line. Logic circuit connected to each optical transmission line via the opto-electrical converter, a processing device connected to the logic circuit, and a detector connected to the terminal station for detecting a failure that occurs frequently. Wherein the terminal station transmits a failure signal in a time-sharing manner by a transmission request signal by polling from the processing device, and the logic circuit transmits the transmission request signal from the processing device and each of the photoelectric converters. A fault section detection method for multiple lines of a transmission line, wherein the fault signal transmitted via the control unit is branched and controlled to collect data in the processor and determine a fault section.
JP30507789A 1989-11-24 1989-11-24 Fault section detection method for multiple transmission lines Expired - Lifetime JP3070858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30507789A JP3070858B2 (en) 1989-11-24 1989-11-24 Fault section detection method for multiple transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30507789A JP3070858B2 (en) 1989-11-24 1989-11-24 Fault section detection method for multiple transmission lines

Publications (2)

Publication Number Publication Date
JPH03165278A JPH03165278A (en) 1991-07-17
JP3070858B2 true JP3070858B2 (en) 2000-07-31

Family

ID=17940838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30507789A Expired - Lifetime JP3070858B2 (en) 1989-11-24 1989-11-24 Fault section detection method for multiple transmission lines

Country Status (1)

Country Link
JP (1) JP3070858B2 (en)

Also Published As

Publication number Publication date
JPH03165278A (en) 1991-07-17

Similar Documents

Publication Publication Date Title
US4234968A (en) Optical coupler module in a distributed processing system
US4306313A (en) High reliability optical fiber communication system
JPS5896436A (en) Optical data communication system
US5229875A (en) Fault-tolerant fiber optic coupler/repeater for use in high speed data transmission and the like
EP0219320B1 (en) High-reliability fiber-optic repeater
EP0190662B1 (en) T-connection fiber-optic repeater
US7327960B1 (en) Receiver transponder for protected networks
CN109302229A (en) A kind of multichannel optical cable safety pre-warning system based on wavelength-division multiplex
JP3070858B2 (en) Fault section detection method for multiple transmission lines
CN210119289U (en) Multi-defense-zone vibration detection device based on optical fiber dual-mode coupling
CN210402615U (en) Outer broken alarm device is prevented to optic fibre type cable
JPS62260433A (en) Optical transmission system between equipments
JP2593555B2 (en) Transmission line position detector
CN110243456A (en) A kind of more defence area vibration detecting devices based on the coupling of optical fiber double mode
CN213933066U (en) Optical fiber detection device
JPS61281206A (en) Able lightwave guide coupling apparatus
CN107144888A (en) A kind of equipment and system protected for railway perimeter security
JPS6114212Y2 (en)
JP2677290B2 (en) Optical fiber line test method
JPS6225006Y2 (en)
CN101162950A (en) Broken wire protecting equipment and method of passive optical fiber network
JPS5917743A (en) Optical branching device
JPH05327622A (en) Optical transmitter
JPS6253032A (en) Optical fiber two-way transmission system
JPH0884116A (en) Optical transmitter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100526