JP3070584B2 - Ship detection device - Google Patents

Ship detection device

Info

Publication number
JP3070584B2
JP3070584B2 JP10254305A JP25430598A JP3070584B2 JP 3070584 B2 JP3070584 B2 JP 3070584B2 JP 10254305 A JP10254305 A JP 10254305A JP 25430598 A JP25430598 A JP 25430598A JP 3070584 B2 JP3070584 B2 JP 3070584B2
Authority
JP
Japan
Prior art keywords
ship
water pressure
target
circuit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10254305A
Other languages
Japanese (ja)
Other versions
JP2000088962A (en
Inventor
宏之 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10254305A priority Critical patent/JP3070584B2/en
Publication of JP2000088962A publication Critical patent/JP2000088962A/en
Application granted granted Critical
Publication of JP3070584B2 publication Critical patent/JP3070584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶検出装置に関
し、特に海底に敷設されて目標船舶の船体長を検出する
ことが可能で、模擬音源を曳航する船舶と通常航行の船
舶目標とを識別することのできる船舶検出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ship detection device, and more particularly to a ship detection device which can be installed on the seabed to detect the length of a target ship, and distinguishes between a ship towing a simulated sound source and a normally sailing ship target. The present invention relates to a ship detecting device capable of performing the following.

【0002】[0002]

【従来の技術】従来の音響を利用した船舶検出装置では
船舶の放射雑音の音量のみで船舶の接近を検出してお
り、船舶の放射雑音と同種の音を発生する模擬音源も誤
って目標と判定してしまう。図12に従来の一例を示
す。図12では船舶のプロペラキャビテーションによる
放射雑音2が音響センサ4で受波される。音響センサ4
は船舶の放射雑音を受信信号402に変換し、検波回路
12で帯域制限及び検波を行い、その検波信号レベルが
閾値102を上回った際に目標検出信号1001を出力
する。この方式では船舶検出装置の妨害策として使用さ
れる曳航式の模擬音源11を動作させると模擬放射雑音
21により検波信号レベルが閾値を上回り、誤って目標
検出を行うという問題があった。
2. Description of the Related Art In a conventional ship detecting apparatus using sound, approach of a ship is detected only by the volume of the radiated noise of the ship, and a simulated sound source that generates the same kind of sound as the radiated noise of the ship is erroneously detected as a target. I will judge. FIG. 12 shows an example of the related art. In FIG. 12, radiation noise 2 due to propeller cavitation of a ship is received by acoustic sensor 4. Acoustic sensor 4
Converts the radiation noise of the ship into a reception signal 402, performs band limitation and detection by the detection circuit 12, and outputs a target detection signal 1001 when the detection signal level exceeds the threshold value 102. In this method, there is a problem in that when the towed simulated sound source 11 used as a disturbance measure of the ship detection device is operated, the simulated radiated noise 21 causes the detection signal level to exceed the threshold value, thereby erroneously detecting the target.

【0003】[0003]

【発明が解決しようとする課題】従来技術の第1の問題
点は、従来の方式は目標を検出することはできるが、目
標の船体長を検出する機能が無いため、大きさを判定す
ることができなかったことである。
A first problem of the prior art is that the conventional method can detect a target, but does not have a function of detecting a target hull length. That was not possible.

【0004】第2の問題点は、音響を使用しているた
め、船舶の放射雑音を模擬した模擬音源があると、誤っ
て航行中の船舶であると判定してしまうことである。す
なわち従来技術では、音源が船舶のものか曳航式の模擬
音源のものか判断できない問題がある。
[0004] The second problem is that since sound is used, if there is a simulated sound source that simulates radiated noise of a ship, it is erroneously determined that the ship is a navigating ship. That is, in the related art, there is a problem that it cannot be determined whether the sound source is from a ship or a towed simulated sound source.

【0005】本発明の目的は、曳航式の疑似音源のよう
な偽目標と実際の航行船舶を識別することができる船舶
検出装置を提供することである。
It is an object of the present invention to provide a ship detecting apparatus capable of distinguishing a false target such as a tow-type pseudo sound source from an actual navigating ship.

【0006】また、本発明の目的は、船舶の位置情報・
速力情報・水圧変化時間から目標の船舶サイズを検出す
ることができる船舶検出装置を提供することである。
Another object of the present invention is to provide position information and
An object of the present invention is to provide a ship detection device capable of detecting a target ship size from speed information / water pressure change time.

【0007】[0007]

【課題を解決するための手段】本発明の船舶検出装置は
船舶の通過時、船体の排水による船首及び船尾での水圧
変化の時間を検出する。より具体的には変化幅算出回路
(図1の7)を持つ。目標の速力を直上からの角度と深
度データから算出する。具体的には目標速力算出回路
(図1の8)を持つ。目標の速力データと水圧の変化時
間から目標の船体長を算出する。具体的には船体長算出
回路(図1の9)を持つ。
SUMMARY OF THE INVENTION A ship detecting apparatus according to the present invention detects the time of a change in water pressure at the bow and stern due to drainage of a hull when passing through a ship. More specifically, it has a change width calculation circuit (7 in FIG. 1). The target speed is calculated from the angle and the depth data from directly above. Specifically, it has a target speed calculation circuit (8 in FIG. 1). The target hull length is calculated from the target speed data and the change time of the water pressure. Specifically, it has a hull length calculation circuit (9 in FIG. 1).

【0008】また、船舶通過後の水圧の変化発生時に船
舶の方向が直上から一定角度以内にあることを判定する
ことも他の特徴である。具体的には目標検出回路(図1
の10)を持つ。
Another feature is that it is determined that the direction of the ship is within a certain angle from immediately above when the water pressure changes after passing through the ship. Specifically, a target detection circuit (FIG. 1)
10).

【0009】本発明においては、船舶のプロペラキャビ
テーションによる放射雑音から船舶の位置・速力を算出
するととともに、船体の通過時に船体の排水による船首
船尾の水圧の変化時間幅をとらえるため、船舶の速力×
水圧変化時間幅で船体長が算出できる。
In the present invention, the position and speed of the ship are calculated from the radiation noise due to propeller cavitation of the ship, and the time width of the change in the water pressure at the bow and stern due to the drainage of the hull when passing through the hull is captured.
The hull length can be calculated from the water pressure change time width.

【0010】また通常の航行船舶は水圧変化が終了する
時点に放射雑音が直上方向から到来するが、曳航式の模
擬音源は曳航船の放射雑音レベルよりはるかに大きい音
量で模擬音を放射しているため、曳航船の水圧変化が終
了する時点に模擬音は直上方向では無く、曳航された模
擬音源の方向から到来することになる。このため、水圧
変化終了時の放射雑音の到来方向が直上方向かどうかを
判定することで曳航式の模擬音源が使用されているかが
判定できる。
In a normal navigating ship, radiation noise comes from directly above at the time when the water pressure change ends, but a towing type simulated sound source emits a simulated sound at a volume much larger than the radiation noise level of the towing ship. Therefore, at the time when the change in the water pressure of the towed vessel ends, the simulated sound comes not from the upward direction but from the direction of the simulated sound source towed. For this reason, it can be determined whether or not the towing-type simulated sound source is used by determining whether the arrival direction of the radiation noise at the end of the water pressure change is the upward direction.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。図1に本発明の実施
形態の構成を示し、図2・図3・図5を参照しながら以
下動作を説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of the embodiment of the present invention, and the operation will be described below with reference to FIGS. 2, 3, and 5.

【0012】図1の水圧センサ3は船舶検出装置が敷設
されている深度の水圧値を平均化して換算し、深度デー
タ301とする。この平均化は風浪やうねりの周期より
長い時間で、潮の満ち引きを検出できる程度の時定数で
平均化する。また水圧センサ3は図2に示すように、検
出した水圧値303を潮の干満に応答する程度の長い時
定数で処理し水圧時定数処理値304とする。次に船舶
の通過に伴う水圧変化を水圧レベル302=ABS(3
03−304)で水圧レベル302を出力する。(AB
S( )は( )内の絶対値を算出) 図1で水圧レベル302は水圧検出回路5に入力され閾
値と比較され、閾値をこえた場合に水圧検出信号501
を「1」とし閾値を越えない場合は「0」を出力する。
船舶通過時に水圧検出信号501は船首船尾通過の水圧
変化発生時に「1」となる。変化幅算出回路7は船首通
過時に発生した水圧検出信号501と船尾通過時に発生
した501の時間間隔を計測し、水圧変化時間701と
する。
The water pressure sensor 3 shown in FIG. 1 averages and converts the water pressure value at the depth where the ship detecting device is laid, to obtain depth data 301. This averaging is performed for a time longer than the cycle of wind waves and swells, and with a time constant that can detect the ebb and flow of tide. Further, as shown in FIG. 2, the water pressure sensor 3 processes the detected water pressure value 303 with a time constant that is long enough to respond to the ebb and flow of the tide to obtain a water pressure time constant processing value 304. Next, the change in water pressure due to the passage of the ship is calculated as follows:
03-304), the water pressure level 302 is output. (AB
In FIG. 1, the water pressure level 302 is input to the water pressure detection circuit 5 and compared with a threshold value. When the water pressure level exceeds the threshold value, a water pressure detection signal 501 is output.
Is set to “1”, and if the threshold is not exceeded, “0” is output.
When passing through the ship, the water pressure detection signal 501 becomes “1” when a change in the water pressure occurs when passing through the stern of the bow. The change width calculating circuit 7 measures a time interval between the water pressure detection signal 501 generated at the time of passing through the bow and 501 generated at the time of passing through the stern, and sets the time interval as a water pressure change time 701.

【0013】音響センサ4は船舶の放射雑音2を受波
し、電気信号に変換する。音響センサ4は図3に示すよ
うに直交した軸上に3つの受波器41,42,43が設
置されており、方位検出回路6において42−41間の
受波器出力の時間差からxz平面の角度Θxを、43−
41間の受波器出力の位相差からyz平面の角度Θyを
算出する。次にΘx,Θyをベクトル合成し、直上から
目標への天頂角Θを算出する。
The acoustic sensor 4 receives the radiated noise 2 from the ship and converts it into an electric signal. As shown in FIG. 3, the acoustic sensor 4 has three receivers 41, 42, and 43 installed on orthogonal axes, and the azimuth detecting circuit 6 uses the time difference of the receiver output between 42 and 41 in the xz plane. Of the angle 43x
The angle Θy on the yz plane is calculated from the phase difference between the receiver outputs 41. Next, {x, Δy are vector-combined to calculate the zenith angle Θ from directly above to the target.

【0014】次に目標速力算出回路8の動作を図5を参
照しながら説明する。水圧センサ3からの深度データ3
01(図5のD)と、天頂角Θ1 より直上距離R′を
R′=D×tan(Θ1 )での移動距離rはr=R′−
Rで算出され、船舶の移動速力V801はV=r/Tで
算出される。
Next, the operation of the target speed calculation circuit 8 will be described with reference to FIG. Depth data 3 from water pressure sensor 3
01 (FIG. D 5), the movement distance r just above than the zenith angle theta 1 distance R 'and R' = D × tan (Θ 1) r = R'-
The moving speed V801 of the ship is calculated by V = r / T.

【0015】また図1に示すように目標検出回路10に
は水圧検出信号501と天頂角601が入力される。目
標検出回路10の内部では天頂角Θ601を角度閾値と
比較し、天頂角Θ601が角度閾値以下の場合、角度検
出信号1000を「1」とし、角度閾値以上の場合は
「0」とする。そして角度検出信号1000と水圧検出
信号701の論理積をとり、目標検出信号1001を出
力する。
As shown in FIG. 1, a water pressure detection signal 501 and a zenith angle 601 are input to the target detection circuit 10. Inside the target detection circuit 10, the zenith angle Θ 601 is compared with the angle threshold, and when the zenith angle Θ 601 is equal to or smaller than the angle threshold, the angle detection signal 1000 is set to “1”, and when the zenith angle Θ 601 is equal to or larger than the angle threshold, it is set to “0”. Then, a logical product of the angle detection signal 1000 and the water pressure detection signal 701 is obtained, and a target detection signal 1001 is output.

【0016】以上のように水圧検出信号501が「1」
であり、なおかつ角度検出信号1000が「1」、つま
り到来音が直上から一定角度以内の領域からの場合、目
標検出信号1001が「1」として出力され、船舶目標
と判定される。
As described above, the water pressure detection signal 501 is "1".
If the angle detection signal 1000 is "1", that is, if the incoming sound is within a certain angle from immediately above, the target detection signal 1001 is output as "1" and determined to be the ship target.

【0017】船体長算出回路9は目標検出信号1001
が「1」の場合にのみ水圧変化時間701(Δt)と移
動速力801(V)から船体長901(L)を、L=Δ
t×Vで算出し、出力する。
The hull length calculation circuit 9 generates a target detection signal 1001
Only when “1” is “1”, the hull length 901 (L) is calculated from the water pressure change time 701 (Δt) and the moving speed 801 (V) by L = Δ
It is calculated by t × V and output.

【0018】図1の方位検出回路6が角度を検出する方
式を図3更に図4を用いて詳細に説明を行う。まず図3
を参照し天頂角Θの算出方式について述べる。図3に示
すように受波器41,42,43は直交するXY軸上に
配置されている。この時、目標音は直上Z軸から天頂角
Θ601の角度で到来している。方位検出回路6は受波
器41,42を使用し目標方位Θxを、受波器41,4
3を使用し目標方位Θyを検出することで、天頂角Θ6
01をΘ={Θx+Θy}として算出する。ここで、
{ }はベクトル合成を示す。
The manner in which the azimuth detecting circuit 6 of FIG. 1 detects an angle will be described in detail with reference to FIG. 3 and FIG. First, FIG.
The calculation method of the zenith angle Θ will be described with reference to FIG. As shown in FIG. 3, the receivers 41, 42, 43 are arranged on orthogonal XY axes. At this time, the target sound arrives at an angle of the zenith angle Θ 601 from the Z axis directly above. The azimuth detection circuit 6 uses the receivers 41 and 42 to determine the target azimuth Θx and the receivers 41 and 4
3 to detect the target direction Θy, the zenith angle Θ6
01 is calculated as Θ = {x + {y}}. here,
{} Indicates vector composition.

【0019】次に図4を用いてΘxの検出例を示す。音
響中心間距離Dで配置された受波器41,42におい
て、Θx方向から到来した音波は42の受波器に対して
41の受波器は距離Δr分遅れを発生する。この場合受
波器41の信号の遅れ時間はt=Δr/cとなる。方位
検出回路6は、この遅れ時間tを計測し、事前に把握さ
れている音速c及び音響中心距離Dから目標方位Θxを
Θx=ARCSIN(t×c/D)で算出する。また同
様の方法で受波器41,43を使用してΘyを算出す
る。
Next, an example of detection of Δx will be described with reference to FIG. In the receivers 41 and 42 arranged at the acoustic center distance D, the sound wave arriving from the Θx direction is delayed by a distance Δr in the 41 receivers with respect to the 42 receivers. In this case, the delay time of the signal of the receiver 41 is t = Δr / c. The azimuth detecting circuit 6 measures the delay time t, and calculates the target azimuth Θx from 音 x = ARCSIN (t × c / D) from the sound speed c and the acoustic center distance D which are grasped in advance. Also, Δy is calculated using the receivers 41 and 43 in the same manner.

【0020】次に図6から図9を用いて目標検出信号1
001の出力処理例を詳細に説明する。図6は航行中の
船舶目標が検出される状態を示し、この状態で水圧セン
サ3からは図7−aに示す水圧レベル302が入力され
る。水圧検出回路5は入力される水圧レベル302を閾
値と比較し、図7−bに示すように閾値を越えた場合に
水圧検出信号501を「1」を、閾値を越えない場合は
「0」を出力する。この水圧検出信号501が「1」に
なった場合は船首で501α、船尾で501βとして発
生している。変化幅算出回路7は501αと501βの
時間間隔Δtを計測し、水圧変化時間701(図7のΔ
t)とする。次に方位検出回路6では図7−cに示す天
頂角Θ601を出力している。目標検出回路10ではこ
の天頂角Θ601を角度閾値と比較し、図7−dに示す
ように天頂角Θ601が角度閾値を下回った時、つまり
直上の一定角度内の領域から音が到来する場合に角度検
出信号1000を「1」を出力する。また、天頂角Θ6
01が角度閾値を上回った時、つまり直上の一定角度の
領域外から音が到来する場合に角度検出信号1000を
「0」を出力する。図7−eでは水圧検出信号501と
角度検出信号1000の論理積で目標検出信号1001
が「1」となり、水圧が検出され、目標音が直上の一定
角度内の領域から音が到来しているため、船舶と判定さ
れ目標検出信号1001が「1」と出力されている。
Next, the target detection signal 1 will be described with reference to FIGS.
An example of the output process 001 will be described in detail. FIG. 6 shows a state in which the target of a ship during navigation is detected. In this state, the water pressure level 302 shown in FIG. The water pressure detection circuit 5 compares the input water pressure level 302 with a threshold value, and as shown in FIG. 7B, sets the water pressure detection signal 501 to "1" when the threshold value is exceeded and "0" when the threshold value is not exceeded. Is output. When the water pressure detection signal 501 becomes “1”, it is generated as 501α at the bow and 501β at the stern. The change width calculation circuit 7 measures the time interval Δt between 501α and 501β, and calculates the hydraulic pressure change time 701 (Δt in FIG. 7).
t). Next, the azimuth detecting circuit 6 outputs the zenith angle Θ601 shown in FIG. The target detection circuit 10 compares the zenith angle Θ 601 with the angle threshold value, and when the zenith angle Θ 601 falls below the angle threshold value, as shown in FIG. The angle detection signal 1000 outputs "1". Also, zenith angle 頂 6
When “01” exceeds the angle threshold value, that is, when a sound comes from outside the area of a fixed angle immediately above, the angle detection signal 1000 outputs “0”. 7E, the target detection signal 1001 is obtained by the logical product of the water pressure detection signal 501 and the angle detection signal 1000.
Becomes "1", the water pressure is detected, and the sound comes from a region within a certain angle immediately above the target sound. Therefore, it is determined that the ship is a ship, and the target detection signal 1001 is output as "1".

【0021】次に図8を用いて船舶が曳航式の模擬音源
を曳航している場合に偽目標と判定される本発明の動作
を説明する。
Next, the operation of the present invention, which is determined to be a false target when a ship is towing a tow-type simulated sound source, will be described with reference to FIG.

【0022】水圧センサから水圧レベル302が入力さ
れる。図7と同じく図9−bでは船首船尾において水圧
検出信号501α・501βが発生している。次に図9
−cでは方位検出回路6が天頂角Θ601を出力してい
るが、曳航された模擬音源からの音響信号を受信してい
るため水圧検出信号501βが発生した時には、音は直
上より一定角度外の領域から到来している。このため図
9−cに示すように水圧検出信号501βが「1」にな
った時刻に天頂角Θ601は角度閾値を越えており、図
9−dの角度検出信号1000は「0」のままである。
従って図9−eに示すように水圧検出信号501と角度
検出信号1000の論理積をとった場合、目標検出信号
は「0」のままであり、直上の一定角度外の領域からの
到来音のため、偽目標と判定され、目標検出はされな
い。
A water pressure level 302 is input from a water pressure sensor. In FIG. 9B as in FIG. 7, the water pressure detection signals 501α and 501β are generated at the stern of the bow. Next, FIG.
In −c, the azimuth detecting circuit 6 outputs the zenith angle Θ601, but when the water pressure detection signal 501β is generated because the acoustic signal from the towed simulated sound source is received, the sound is out of a certain angle from immediately above. Coming from the territory. Therefore, as shown in FIG. 9C, the zenith angle Θ 601 exceeds the angle threshold at the time when the water pressure detection signal 501β becomes “1”, and the angle detection signal 1000 in FIG. 9D remains “0”. is there.
Therefore, when the logical product of the water pressure detection signal 501 and the angle detection signal 1000 is obtained as shown in FIG. 9-e, the target detection signal remains “0”, and the sound coming from the region immediately above the fixed angle and outside the predetermined angle is left. Therefore, it is determined to be a false target, and no target is detected.

【0023】図3において放射雑音の方位計測用に直交
配列した受波器を使用し、その位相差を使用して方位検
出を行っている。他の実施形態として図10に示すよう
に複数の受波器を広く配列し、鋭い受波指向性を作り受
波指向性の主極方向を振り、もっとも大きい音量を受け
る主極方向を天頂角Θとする形態が可能である。
In FIG. 3, orthogonally arranged receivers are used for azimuth measurement of radiation noise, and azimuth detection is performed using the phase difference. As another embodiment, as shown in FIG. 10, a plurality of receivers are widely arranged to form a sharp receiving directivity and swing the main pole direction of the receiving directivity.形態 is possible.

【0024】また図1の水圧センサでは時定数処理によ
って水圧レベル302を出力している。これに対して図
11のように機構的に海水導入パイプの直径・長さを変
え、水圧変化に対する応答速度の差から差圧を検出する
ことで水圧レベルとする方式も考えられる。
Further, the water pressure sensor of FIG. 1 outputs a water pressure level 302 by time constant processing. On the other hand, as shown in FIG. 11, a method of mechanically changing the diameter and length of the seawater introduction pipe and detecting the differential pressure from the difference in response speed to a change in water pressure to obtain a water pressure level is also conceivable.

【0025】[0025]

【発明の効果】本発明の第1の効果は、船舶の大きさ
(船体長)が検出できることである。その理由は、音響
センサにより目標の速力Vを検出し、水圧センサにより
水圧変化時間Δtを検出し、船体長L=L×Δtで算出
できるからである。
A first effect of the present invention is that the size (hull length) of a ship can be detected. The reason is that the target speed V is detected by the acoustic sensor, the hydraulic pressure change time Δt is detected by the hydraulic pressure sensor, and the hull length L = L × Δt can be calculated.

【0026】第2の効果は、曳航式の模擬音源を排除で
きることである。その理由は、船舶通過による水圧変化
が発生した時の音響の到来方向を検出し、模擬音源かど
うか判定することができるからである。
The second effect is that a tow-type simulated sound source can be eliminated. The reason is that it is possible to detect the arrival direction of the sound when the water pressure change due to the passage of the ship occurs, and determine whether the sound source is a simulated sound source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の船舶検出装置ブロック
図。
FIG. 1 is a block diagram of a ship detection device according to an embodiment of the present invention.

【図2】図1の実施の形態における水圧検出処理を示す
図。
FIG. 2 is a diagram showing a water pressure detection process in the embodiment of FIG.

【図3】図1の実施の形態における音響センサによる位
置検出を示す図。
FIG. 3 is a diagram showing position detection by the acoustic sensor according to the embodiment of FIG. 1;

【図4】図1の音響センサによる方位検出の原理を示す
図。
FIG. 4 is a view showing the principle of azimuth detection by the acoustic sensor of FIG. 1;

【図5】図1の目標速力算出回路の動作を説明する図。FIG. 5 is a view for explaining the operation of the target speed calculation circuit of FIG. 1;

【図6】本発明による船舶検出の状態例を示す図。FIG. 6 is a diagram showing a state example of ship detection according to the present invention.

【図7】図6の状態での船舶検出における図1の主要構
成要素の出力を示す図。
FIG. 7 is a diagram showing outputs of main components of FIG. 1 in detecting a ship in the state of FIG. 6;

【図8】本発明による模擬音源がある場合の船舶検出の
状態例を示す図。
FIG. 8 is a diagram showing an example of a state of ship detection when a simulated sound source according to the present invention is present.

【図9】図8の状態での船舶検出における図1の主要構
成要素の出力を示す図。
FIG. 9 is a diagram showing outputs of main components of FIG. 1 in detecting a ship in the state of FIG. 8;

【図10】図1の音響センサの他の構成例を示す図。FIG. 10 is a diagram showing another configuration example of the acoustic sensor of FIG. 1;

【図11】図1の水圧センサの他の構成例を示す図。FIG. 11 is a diagram showing another configuration example of the water pressure sensor of FIG. 1;

【図12】従来の船舶検出装置を示す図。FIG. 12 is a diagram showing a conventional ship detection device.

【符号の説明】[Explanation of symbols]

1 水圧 2 船舶放射雑音(プロペラキャビテーションノイ
ズ) 3 水圧センサ 4 音響センサ 5 水圧検出回路 6 方位検出回路 7 変化幅算出回路 8 目標速力算出回路 9 船体長算出回路 10 目標検出回路 11 曳航式模擬音源 21 模擬放射雑音 301 深度データ 302 水圧レベル 401 受波信号 501 水圧検出信号 601 天頂角 701 水圧変化時間 801 移動速力 901 船体長
DESCRIPTION OF SYMBOLS 1 Water pressure 2 Ship radiation noise (propeller cavitation noise) 3 Water pressure sensor 4 Acoustic sensor 5 Water pressure detection circuit 6 Azimuth detection circuit 7 Change width calculation circuit 8 Target speed calculation circuit 9 Hull length calculation circuit 10 Target detection circuit 11 Towing simulated sound source 21 Simulated radiation noise 301 Depth data 302 Water pressure level 401 Received signal 501 Water pressure detection signal 601 Zenith angle 701 Water pressure change time 801 Moving speed 901 Hull length

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01S 3/80 - 3/86 G01S 5/18 - 5/30 G01S 7/52 - 7/64 G01S 15/00 - 15/96 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01S 3/80-3/86 G01S 5/18-5/30 G01S 7/52-7/64 G01S 15 / 00-15/96

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 船舶の通過に伴う水圧変化を検出する水
圧検出手段と、目標船舶の速力を検出する速力検出手段
と、水圧の変化時間と速力とから目標船舶の船体長を算
出する船舶長算出手段を持つことを特徴とする船舶検出
装置。
1. A water pressure detecting means for detecting a change in water pressure accompanying passage of a ship, a speed detecting means for detecting a speed of a target ship, and a ship length for calculating a hull length of the target ship from a change time and speed of the water pressure. A ship detection device having calculation means.
【請求項2】 船舶通過後の水圧変化時に目標船舶の音
源位置が直上から所定の角度内にあることを算出する目
標検出回路とを有することを特徴とする請求項1の船舶
検出装置。
2. The ship detecting apparatus according to claim 1, further comprising a target detecting circuit for calculating that a sound source position of the target ship is within a predetermined angle from immediately above when a water pressure changes after passing through the ship.
【請求項3】 水圧センサと、水圧センサの出力を受け
船舶の通過に伴う船首と船尾に対応する水圧変化の時間
間隔を検出する変化幅算出回路と、船舶放射雑音を検出
する音響センサと、音響センサの出力を受け方位を検出
する方位検出回路と、方位検出回路の出力と水圧センサ
からの深度データにより検出対象の速力を算出する速力
算出回路と、変化幅算出回路の出力と速力算出回路の出
力とから船体長を算出する船体長算出回路とを具備する
船舶検出装置。
3. A water pressure sensor, a change width calculation circuit that receives an output of the water pressure sensor and detects a time interval of a water pressure change corresponding to a bow and a stern accompanying passage of a ship, and an acoustic sensor that detects ship radiation noise. An azimuth detection circuit for detecting the azimuth by receiving the output of the acoustic sensor; a speed calculation circuit for calculating the speed of the detection target based on the output of the azimuth detection circuit and the depth data from the water pressure sensor; an output of the change width calculation circuit and the speed calculation circuit And a hull length calculation circuit for calculating a hull length from the output of the hull.
【請求項4】 水圧センサと、水圧センサの出力を受け
検出対象の先端と末端の通過に伴う水圧変化を検出する
水圧検出回路と、検出対象からの放射雑音を検出する音
響センサと、音響センサの出力を受け検出対象の方位を
検出する方位検出回路と、水圧検出回路の出力と方位検
出回路の出力を受け検出対象が船舶か否かを判定する目
標検出回路とを具備する船舶検出装置。
4. A water pressure sensor, a water pressure detection circuit that receives an output of the water pressure sensor and detects a change in water pressure accompanying passage of a tip and an end of a detection target, an acoustic sensor that detects radiation noise from the detection target, and an acoustic sensor And a target detection circuit that receives the output of the sensor and detects the azimuth of the detection target, and receives the output of the water pressure detection circuit and the output of the azimuth detection circuit and determines whether the detection target is a ship.
【請求項5】 目標検出回路が、検出対象の末端の通過
時の水圧変化時の方位検出回路の出力の方位方向により
判定することを特徴とする請求項4の船舶検出装置。
5. The ship detecting apparatus according to claim 4, wherein the target detecting circuit makes a determination based on an azimuth direction of an output of the azimuth detecting circuit at the time of a change in water pressure when the detection target passes.
【請求項6】 目標検出回路が、検出対象の末端の通過
時の水圧変化時の方位方向が所定の角度以下のとき検出
対象が船舶と判定する請求項5の船舶検出装置。
6. The ship detection device according to claim 5, wherein the target detection circuit determines that the detection target is a ship when the azimuth direction at the time of a change in water pressure at the time of passing the end of the detection target is equal to or smaller than a predetermined angle.
【請求項7】 水圧センサの出力を受け船舶の船尾の通
過に伴う水圧変化のときの方位検出力回路からの検出方
位から船舶であるかどうかを判定する目標検出回路を具
備する請求項3の船舶検出装置。
7. A target detecting circuit according to claim 3, further comprising a target detecting circuit which receives the output of the water pressure sensor and determines whether or not the ship is a ship from the direction detected by the direction detecting power circuit when the water pressure changes due to the passage of the stern of the ship. Ship detection device.
JP10254305A 1998-09-08 1998-09-08 Ship detection device Expired - Fee Related JP3070584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254305A JP3070584B2 (en) 1998-09-08 1998-09-08 Ship detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254305A JP3070584B2 (en) 1998-09-08 1998-09-08 Ship detection device

Publications (2)

Publication Number Publication Date
JP2000088962A JP2000088962A (en) 2000-03-31
JP3070584B2 true JP3070584B2 (en) 2000-07-31

Family

ID=17263152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254305A Expired - Fee Related JP3070584B2 (en) 1998-09-08 1998-09-08 Ship detection device

Country Status (1)

Country Link
JP (1) JP3070584B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977445B1 (en) 2010-05-06 2010-08-24 대한민국 Calibration controller for a split beam transducer of scientific echosounder based on a research vessel
KR101303734B1 (en) 2013-06-21 2013-09-09 대한민국 Apparatus for adjusting of acoustic sensor

Also Published As

Publication number Publication date
JP2000088962A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP6782312B2 (en) Angular resolution in radar
JP5252578B2 (en) Underwater detection device and fish species discrimination method
CN113884986B (en) Beam focusing enhanced strong impact signal space-time domain joint detection method and system
KR20180096482A (en) Method for analyzing motion of underwater target
JP3070584B2 (en) Ship detection device
RU2659710C1 (en) Vessel speed measuring method by the doppler log
JP3069663B1 (en) Sound source direction measuring method and device
JP3573090B2 (en) Underwater target position detecting device and method
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
JP4211218B2 (en) Target discrimination method
JP2875118B2 (en) Ultrasonic detector
JP2642759B2 (en) Underwater detector
JP6311230B2 (en) Target detection apparatus, target detection method, program, and recording medium
JPH03248082A (en) Sea bottom detector
JP2944481B2 (en) Underwater active sound detector
JP3039492B2 (en) Underwater detection method using active sonar and active sonar device
CN107621639B (en) Underwater obstacle detection method based on continuous linearity and evidence accumulation criterion
JP5515214B2 (en) Active sonar device and dereverberation method using active sonar device
JP2820311B2 (en) Acoustic navigation measurement system for submersibles
JPH0560073B2 (en)
JP2000241545A (en) Device and method for detecting distance to navigation object
JP2845851B2 (en) Wake detector
JPS603556A (en) Method for measuring ship speed especially, in ultrasonic current direction and current speed meter
Zhang et al. Design and Implementation of a Long-Term Ship-Monitoring System Using Vector Hydrophone
JP2021134968A (en) Homing device and homing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000425

LAPS Cancellation because of no payment of annual fees