JP3070467U - Metal coated fiber material - Google Patents

Metal coated fiber material

Info

Publication number
JP3070467U
JP3070467U JP1999009375U JP937599U JP3070467U JP 3070467 U JP3070467 U JP 3070467U JP 1999009375 U JP1999009375 U JP 1999009375U JP 937599 U JP937599 U JP 937599U JP 3070467 U JP3070467 U JP 3070467U
Authority
JP
Japan
Prior art keywords
fabric
fiber material
yarn
conductive
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1999009375U
Other languages
Japanese (ja)
Inventor
進 高木
茂和 織田
博夫 岸本
英正 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP1999009375U priority Critical patent/JP3070467U/en
Application granted granted Critical
Publication of JP3070467U publication Critical patent/JP3070467U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】繊維本来の柔軟可撓性を損なうこと無く、広帯
域にわたり高シールド性能を維持する電磁波遮蔽材及び
グランディング材などの導電材として用いる導電性繊維
材料を得る。 【解決手段】平均扁平率が1.5〜5である非真円形状
断面を有する熱可塑性合成繊維マルチフィラメント糸を
用いた金属被覆被膜布帛から成る導電性繊維材料。
(57) [Abstract] [Object] To obtain a conductive fiber material used as a conductive material such as an electromagnetic wave shielding material and a grounding material that maintains high shielding performance over a wide band without impairing the inherent flexibility of the fiber. A conductive fiber material comprising a metal-coated coated fabric using a thermoplastic synthetic fiber multifilament yarn having a non-circular cross section having an average aspect ratio of 1.5 to 5.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、合成繊維表面に金属被膜を形成した、電磁波遮 蔽材やグランディング材などの導電材として用いられる導電性繊維材料に関する ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive fiber material having a metal film formed on a synthetic fiber surface and used as a conductive material such as an electromagnetic wave shielding material and a grounding material.

【0002】[0002]

【従来の技術】電子機器からの電磁波の漏洩を防止する目的で導電性布帛がよく 用いられる。その中でもポリエステル、ナイロンなどの高分子材料からなる合成 繊維布帛上に金属被覆させた材料は繊維自身が有する可撓性と金属が有する電磁 波遮蔽性を併せ持つものでガスケット材、テープ材として電子機器に組み込まれ ている。 近年電子機器の小型化、高周波化が進むに伴い電磁波遮蔽材料やグランディング 材などの導電材もその厚みが薄く、高周波域での高シールド性能が求められてき ている。厚みが薄く、高シールド性と言う点では金属箔や高分子フィルムに蒸着 またはスパッタリング法で金属被覆を施した材料があるが電磁波遮蔽材料や導電 材に求められる耐久性、可撓性および柔軟性に欠ける。2. Description of the Related Art Conductive fabrics are often used to prevent leakage of electromagnetic waves from electronic devices. Among these materials, synthetic fiber fabrics made of polymer materials such as polyester and nylon are coated with metal and have both the flexibility of fibers themselves and the electromagnetic wave shielding properties of metals. It is built in. In recent years, as electronic devices have become smaller and higher in frequency, conductive materials such as electromagnetic shielding materials and grounding materials have also become thinner, and high shielding performance in high frequency ranges has been required. In terms of thinness and high shielding properties, there are materials that have been coated with metal foil or polymer film by vapor deposition or sputtering, but the durability, flexibility and flexibility required for electromagnetic wave shielding materials and conductive materials Lack.

【0003】 実開昭64−30899には扁平形状断面を有する金属メッキ繊維と熱融着バイ ンダー繊維とが該バインダー繊維の融着により一体に接合された不織布から成る 電磁波遮蔽シート状物が記載されている。しかし、熱融着バインダー繊維を用い て加熱圧着し、シールド性を向上させているので布帛の柔軟性が損なわれ、しか も、製造工程が増えるためにコスト的にも高いものになってしまう。 特開平8−291432には扁平非真円形状断面を有する金属モノフィラメント を10本以上の繊維からなる芯糸に螺旋状に巻きつけてなる複合糸条を用いた、 柔軟可撓で電磁波遮蔽性を有する織物が紹介されている。しかし、シールド性を 得るには金属モノフィラメントの含有率を上げなくてはならず、繊維自身の柔軟 性を損なうばかりかコスト的にも高いものとなってしまう。Japanese Utility Model Application Laid-Open No. 64-30899 describes an electromagnetic wave shielding sheet made of a nonwoven fabric in which a metal-plated fiber having a flat cross section and a heat-fused binder fiber are integrally joined by fusion of the binder fiber. Have been. However, the heat-compression bonding is carried out using a heat-fusible binder fiber to improve the shielding property, so that the flexibility of the fabric is impaired. In addition, the number of manufacturing steps increases, and the cost becomes high. Japanese Patent Application Laid-Open No. 8-291432 discloses a flexible and flexible electromagnetic wave shielding property using a composite yarn obtained by spirally winding a metal monofilament having a flat non-circular cross section around a core yarn composed of 10 or more fibers. Woven fabrics are introduced. However, in order to obtain shielding properties, the content of the metal monofilament must be increased, which not only impairs the flexibility of the fiber itself but also increases the cost.

【0004】[0004]

【考案が解決しようとする課題】本考案はこのような現状に鑑みて行われたもの で、繊維本来の柔軟可撓性を損なうこと無く、広帯域にわたり高シールド性能を 維持する電磁波遮蔽材やグランディング材などの導電材として用いられる導電性 繊維材料を得ることを目的とするものである。[Problems to be solved by the present invention] The present invention has been made in view of such circumstances, and an electromagnetic wave shielding material or a group that maintains high shielding performance over a wide band without impairing the inherent flexibility and flexibility of fibers. The purpose is to obtain a conductive fiber material used as a conductive material such as a landing material.

【0005】[0005]

【課題を解決する手段】本願で実用新案登録請求される考案は以下の通りである 。 (1)平均扁平率が1.5〜5である非真円形状断面を有する熱可塑性合成繊維 マルチフィラメント糸を用いた布帛に金属被膜を形成したことを特徴とする導電 性繊維材料。 (2)布帛が織物であることを特徴とする(1)に記載の導電性繊維材料。 (3)熱可塑性合成繊維がポリエステルであることを特徴とする(1)乃至(2 )に記載の導電性繊維材料。 (4)織物のカバーファクターが1000〜3000であることを特徴とする( 2)乃至(3)に記載の導電性繊維材料。Means for Solving the Problems The invention for which a utility model registration is requested in the present application is as follows. (1) A conductive fiber material characterized in that a metal coating is formed on a fabric using a thermoplastic synthetic fiber multifilament yarn having a non-circular cross section having an average flatness of 1.5 to 5. (2) The conductive fiber material according to (1), wherein the fabric is a woven fabric. (3) The conductive fiber material according to (1) or (2), wherein the thermoplastic synthetic fiber is polyester. (4) The conductive fiber material according to (2) or (3), wherein the woven fabric has a cover factor of 1,000 to 3,000.

【0006】 本考案の導電性繊維材料に用いる、非真円形状断面を有する熱可塑性合成繊維マ ルチフィラメント糸における扁平率とは、図1に示すようにマルチフィラメント 糸を構成する単糸の扁平断面に外接する長方形を描いたとき、この長方形の長辺 Lを短辺Hで割った値をいい、その平均扁平率は1.5〜5、好ましくは2〜4 がよい。扁平率が5より大きくなると製糸性、及び、製織性が損なわれ、1.5 以下であると導電材の柔軟性が損なわれる。その為には、非真円形状断面糸に外 接する長方形の長辺Lは10〜50μm、好ましくは20〜40μmの範囲がよ い。また、非真円形状断面糸に外接する長方形の短辺Hは2〜30μm、好まし くは6〜20μmの範囲がよい。単糸繊度は1〜10デニール(以下dと表記す る)、好ましくは2〜5dが良い。1d未満になると破断しやすく、製造加工が 難しく成る。10dを越えると布帛が硬くなり、柔軟性が得られにくくなる虞が ある。本考案の非真円形状断面糸から成るマルチフィラメント糸総繊度は10〜 100d、好ましくは20〜80dの範囲がよい。[0006] The flatness of a thermoplastic synthetic fiber multifilament yarn having a non-circular cross section used in the conductive fiber material of the present invention refers to the flatness of a single yarn constituting a multifilament yarn as shown in FIG. When a rectangle circumscribing the cross section is drawn, it refers to a value obtained by dividing the long side L of the rectangle by the short side H, and the average aspect ratio is 1.5 to 5, preferably 2 to 4. If the aspect ratio is more than 5, the yarn formability and the weaving property are impaired, and if it is 1.5 or less, the flexibility of the conductive material is impaired. For this purpose, the long side L of the rectangle circumscribing the non-circular cross-section yarn has a range of 10 to 50 μm, preferably 20 to 40 μm. The short side H of the rectangle circumscribing the non-circular cross-section yarn has a range of 2 to 30 μm, and preferably 6 to 20 μm. The fineness of the single yarn is 1 to 10 denier (hereinafter referred to as d), and preferably 2 to 5 d. If it is less than 1d, it is easily broken, making the manufacturing process difficult. If it exceeds 10d, the fabric becomes hard, and it may be difficult to obtain flexibility. The total fineness of the multifilament yarn comprising the non-circular cross-section yarn of the present invention is in the range of 10 to 100d, preferably 20 to 80d.

【0007】 単糸断面の扁平形状は楕円、矩形、W型、瓢箪型など特に限定されるものではな いが、W型や、瓢箪型など、単糸同士が重なりやすい形状であることが好ましい 。重なることにより布帛の表面平滑性が高まり、柔軟性が向上し、且つ、高い電 磁波遮蔽効果が得られやすい。The flat shape of the cross section of the single yarn is not particularly limited, such as an ellipse, a rectangle, a W shape, and a gourd shape, but it is preferable that the flat shape is such that the single yarns easily overlap each other, such as a W shape or a gourd shape. . By overlapping, the surface smoothness of the fabric is enhanced, the flexibility is improved, and a high electromagnetic wave shielding effect is easily obtained.

【0008】 この様な非真円形状断面糸から成るマルチフィラメント糸を用いた布帛としては 、織物、編物、不織布など特に限定されるものではないが、導電性繊維材料の厚 みや、高いシールド性能の得易さ、及び加工性の点から織物が好ましい。 織物を製織する場合、非真円形状断面糸を、経糸単独、緯糸単独、或いは、経糸 、緯糸両方に用いても良い。また、織り組織は平織り、綾織、朱子織、及び、こ れらの織り方を応用したものなど、特に限定されるものではないが、機械的特性 、糸ほつれ性、地薄な面から平織物が好ましい。 本考案の非真円形状断面糸から成るマルチフィラメント糸を用いた布帛は、高密 度布帛とした場合に優れた効果が得られる。[0008] The fabric using a multifilament yarn having such a non-circular cross-section yarn is not particularly limited, such as a woven fabric, a knitted fabric, or a nonwoven fabric. Woven fabrics are preferred from the viewpoint of ease of obtaining and processability. When weaving a woven fabric, a non-circular cross-section yarn may be used for a warp alone, a weft alone, or both a warp and a weft. The weaving structure is not particularly limited, such as plain weaving, twill weaving, satin weaving, and those applying these weaving methods. Is preferred. The fabric using the multifilament yarn comprising the non-circular cross-section yarn of the present invention can provide excellent effects when used as a high-density fabric.

【0009】 本考案の導電性繊維材料に用いられる熱可塑性合成繊維は、ポリエステル、ポリ アミド、アクリルなど特に限定はされないが、加工性、耐久性などの点からポリ エステルが好ましい。The thermoplastic synthetic fiber used for the conductive fiber material of the present invention is not particularly limited, such as polyester, polyamide, and acryl. However, polyester is preferable from the viewpoint of processability and durability.

【0010】 本考案の非真円形状断面糸を製造する方法としてはカレンダー法や溶融紡糸法な どが挙げられるが、均一な非真円形状断面糸を得るには溶融紡糸法が好ましい。The method for producing the non-circular cross-section yarn of the present invention includes a calendering method and a melt spinning method. The melt spinning method is preferable for obtaining a uniform non-circular cross-section yarn.

【0011】 本考案の導電性繊維材料に織物基材に金属被膜を形成したものを用いる場合は、 織物のカバーファクターを1000〜3000、好ましくは1500〜2500 の範囲がよい。 カバーファクターが1000以下だと布帛の空隙が多くなるため高シールド性が 得られにくくなる。また、3000以上になると、製織性が悪くなるばかりか柔 軟性が損なわれ、更にメッキ液が織物内部に浸透しにくくなり、メッキ加工性や メッキ被膜の耐久性に悪影響を及ぼす。 ここで言う織物のカバーファクターとは、経糸総繊度をD1、経糸密度をN1と し、緯糸総繊度をD2、緯糸密度をN2とすると、(D1)1/2×N1+(D 2)1/2×N2で表される。(糸繊度はデニール、糸密度は本/吋)When using the conductive fiber material of the present invention in which a metal film is formed on a woven fabric substrate, the woven fabric has a cover factor of 1000 to 3000, preferably 1500 to 2500. If the cover factor is 1000 or less, the number of voids in the fabric increases, and it becomes difficult to obtain high shielding properties. On the other hand, if it exceeds 3,000, the weaving property is deteriorated, the flexibility is impaired, and the plating solution is hardly permeated into the fabric, which adversely affects the plating processability and the durability of the plating film. The cover factor of the woven fabric referred to here is the total fineness of the warp as D1, the density of the warp as N1, the total fineness of the weft as D2, and the density of the weft as N2. (D1) 1/2 × N1 + (D2) 1 / It is represented by 2 × N2. (Yarn fineness is denier, yarn density is book / inch)

【0012】 本考案の非真円形状断面糸から成るマルチフィラメント糸を用いた布帛を金属被 覆するには、スパッタリング、真空蒸着、電気メッキ、無電解メッキなど、従来 公知の方法を用いることができるが、糸の交点部分での金属被膜形成性の点から 無電解メッキによる方法が好ましい。無電解メッキは通常公知の手法で行われ、 増感処理、活性化処理、化学メッキ処理からなる。増感処理、活性化処理の目的 は、化学メッキ処理以前に触媒貴金属を付着させるための工程であり、メッキの 均一性を決定付ける工程である。触媒付与工程には塩化錫溶液による感受性化の 後、塩化パラジウム溶液による活性化を行なう方法と錫パラジウムコロイドによ る一液性触媒を付与した後、コロイド表面層の錫イオンを除去し触媒として有効 なパラジウムを露出させる方法があるが特に限定されない。化学メッキ処理にお ける化学メッキ浴および処理条件については、従来実施されている公知条件で行 えばよい。化学メッキ浴は金属塩、還元剤、緩衝剤、pH調整剤等からなる。導 電性金属としては銀、銅、ニッケル、コバルト、錫などがあり、特に限定はされ ないが、メッキ浴の安定性、操作の容易性から銅およびニッケルから選ばれるこ とが好ましい。形成する金属メッキ被膜層の厚さは0.1〜10μmの範囲にあ ることが好ましい。0.1μmより小さいと十分な表面導通性が得られず、10 μmより大きいと表面導通効果はもはや向上せず該繊維材料の風合いも柔軟性が 損なわれたものになってしまう。 また、被メッキ物がマルチフィラメント糸からなる布帛の場合、金属被覆の程度 は厚みよりも単位面積あたりの析出量や表面抵抗で表現することが多い。その場 合金属析出量は5〜50g/m、好ましくは10〜30g/mの範囲がよく 、表面抵抗値は0.001〜1Ω/□、好ましくは0.01〜0.1Ω/□の範 囲がよい。In order to metal-cover a fabric using the multifilament yarn having a non-circular cross-section yarn of the present invention, a conventionally known method such as sputtering, vacuum deposition, electroplating, and electroless plating can be used. Although it is possible, a method using electroless plating is preferred from the viewpoint of forming a metal film at the intersection of the yarns. Electroless plating is generally performed by a known method, and includes a sensitization treatment, an activation treatment, and a chemical plating treatment. The purpose of the sensitization treatment and the activation treatment is to attach the catalytic noble metal before the chemical plating treatment, and to determine the uniformity of the plating. In the catalyst application step, after sensitization with a tin chloride solution, activation with a palladium chloride solution and a one-part catalyst with a tin-palladium colloid are applied, and then tin ions on the colloid surface layer are removed to form a catalyst. There is a method of exposing effective palladium, but there is no particular limitation. The chemical plating bath and the processing conditions in the chemical plating may be performed under conventionally known conditions. The chemical plating bath comprises a metal salt, a reducing agent, a buffer, a pH adjuster and the like. The conductive metal includes silver, copper, nickel, cobalt, tin and the like, and is not particularly limited, but is preferably selected from copper and nickel in view of the stability of the plating bath and the ease of operation. The thickness of the metal plating film layer to be formed is preferably in the range of 0.1 to 10 μm. If it is smaller than 0.1 μm, sufficient surface conductivity cannot be obtained, and if it is larger than 10 μm, the surface conduction effect is no longer improved, and the texture of the fiber material is impaired in flexibility. Further, when the object to be plated is a cloth made of a multifilament yarn, the degree of metal coating is often expressed by the amount of precipitation per unit area or surface resistance rather than the thickness. In this case, the metal deposition amount is in the range of 5 to 50 g / m 2 , preferably 10 to 30 g / m 2 , and the surface resistance is 0.001 to 1 Ω / □, preferably 0.01 to 0.1 Ω / □. Range is good.

【0013】[0013]

【実施例】以下に実施例を示して本考案の導電性繊維材料を説明するが、本考案 は何らこれらに限定されるものではない。The conductive fiber material of the present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【評価方法】【Evaluation methods】

1.表面導電性 測定方法は抵抗値測定器(三菱化学株式会社製 ロレスターMP)を用い、四端 子四探針測定法(JIS−K−7194)により表面抵抗値を測定した。単位は Ω/□。 2.電磁波遮蔽性 測定方法は関西電子工業振興センターの生駒電波測定所の考案による測定セルと 類似のものを作成し、トラッキングジェネレーター付スペクトラムアナライザー (ヒューレットパッカード社製 HP8591EM)により10MHz〜1GH z発振を前述測定セル受信部にて測定サンプルを経て受信し、スペクトラムアナ ライザーで計量した。単位はdB。 3.金属被膜密着性 布帛表面に形成されている金属被膜の密着性をJIS−H−8504に準じて評 価した。 ○ 良い △ やや悪い × 悪い 4.柔軟可撓性 布帛の柔軟可撓性をJIS−L−1096A法(45℃カンチレバー法)に準じ て評価した。単位はmm。 1. The surface conductivity was measured by a four-terminal four-probe measurement method (JIS-K-7194) using a resistance value measuring device (Lorester MP, manufactured by Mitsubishi Chemical Corporation). The unit is Ω / □. 2. The measurement method of the electromagnetic wave shielding property is similar to that of the measurement cell invented by Ikoma Radio Measurement Center of Kansai Electronics Industry Promotion Center. The sample was received by the cell receiver and measured by a spectrum analyzer. The unit is dB. 3. Metal film adhesion The adhesion of the metal film formed on the fabric surface was evaluated according to JIS-H-8504. ○ Good △ Somewhat bad × Bad 4. Soft Flexibility The soft flexibility of the fabric was evaluated according to the JIS-L-1096A method (45 ° C. cantilever method). The unit is mm.

【0014】[0014]

【実施例1】 経糸に50デニール(以下dと表す)−24フィラメント(以下fと表す)の レギュラーポリエステルマルチフィラメント糸、緯糸に長辺35μm、短辺15 μmのW型断面糸(旭化成工業株式会社製 テクノファイン)から成る75d− 30fのポリエステルマルチフィラメント糸からなる平織物を、精練プレセット 後アルカリ加水分解により10%の減量加工を行い、経糸密度124本/吋、緯 糸密度85本/吋、カバーファクター1530の布帛を得た。更に、コンディシ ョニング、キャタライジング、アクセラレート処理を行った後、無電解メッキ法 により銅・ニッケル金属被膜層を銅20g/m、ニッケル5g/m形成させ 目的とする金属被覆材料を得た。評価結果を表1に示す。Example 1 A regular polyester multifilament yarn of 50 denier (hereinafter referred to as d) -24 filament (hereinafter referred to as f) for the warp, and a W-shaped cross-section yarn of 35 μm long side and 15 μm short side for the weft (Asahi Kasei Kogyo Co., Ltd.) Plain woven fabric consisting of 75d-30f polyester multifilament yarns made of Techno Fine Co., Ltd. was refined and pre-set, and then subjected to a 10% weight reduction process by alkali hydrolysis to give a warp density of 124 threads / inch and a weft density of 85 threads / An inch fabric having a cover factor of 1530 was obtained. Further, after performing conditioning, catalyzing, and accelerating treatment, a copper / nickel metal coating layer was formed by copper 20 g / m 2 and nickel 5 g / m 2 by an electroless plating method to obtain a target metal coating material. . Table 1 shows the evaluation results.

【0015】[0015]

【実施例2】 経糸に長辺35μm、短辺15μmのW型断面糸(旭化成工業株式会社製 テク ノファイン)から成る30d−18fのポリエステルマルチフィラメント糸、緯 糸に長辺35μm、短辺15μmのW型異型断面糸(旭化成工業株式会社製 テ クノファイン)から成る50d−30fのポリエステルマルチフィラメント糸を 用いた平織物を、精練プレセット後アルカリ加水分解により10%の減量加工を 行い、経糸密度135本/吋、緯糸密度120本/吋、カバーファクター150 6の布帛を得た。更に、コンディショニング、キャタライジング、アクセラレー ト処理を行った後、無電解メッキ法により銅・ニッケル金属被覆被膜層を銅20 g/m、ニッケル5g/m形成させ目的とする金属被覆材料を得た。評価結 果を表1に示す。Example 2 A 30d-18f polyester multifilament yarn composed of a W-shaped cross-section yarn (Technofine manufactured by Asahi Kasei Kogyo Co., Ltd.) having a long side of 35 μm and a short side of 15 μm for the warp, and a long side of 35 μm and a short side of 15 μm for the weft. A plain woven fabric using a 50d-30f polyester multifilament yarn composed of W-shaped irregular cross-section yarn (Technofine manufactured by Asahi Kasei Kogyo Co., Ltd.) is subjected to a 10% weight reduction treatment by alkali hydrolysis after scouring presetting, and a warp density of 135. A fabric having a weft density of 120 fibers / inch and a cover factor of 1506 was obtained. Furthermore, conditioning, catalyzing, after an accelerated rate processing, copper 20 g / m 2 of copper-nickel metallization film layer by an electroless plating method, the metal coating material of interest was nickel 5 g / m 2 is formed Obtained. Table 1 shows the evaluation results.

【0016】[0016]

【比較例1】 経糸と緯糸に50d−36fのレギュラーポリエステルマルチフィラメント糸 を用いた平織物を、精練プレセット後アルカリ加水分解により10%の減量加工 を行い、経糸密度164本/吋、緯糸密度104本/吋、カバーファクター17 98の布帛を得た。更に、コンディショニング、キャタライジング、アクセラレ ート処理を行った後、無電解メッキ法により銅・ニッケル金属被膜層を銅20g /m、ニッケル5g/m形成させ目的とする金属被覆材料を得た。評価結果 を表1に示す。[Comparative Example 1] A plain woven fabric using regular polyester multifilament yarns of 50d-36f for the warp and the weft was subjected to scouring presetting and then subjected to a 10% weight reduction process by alkali hydrolysis to give a warp density of 164 yarns / inch and a weft density of 164. 104 / inch, a cover factor of 1798 was obtained. Further, after performing conditioning, catalyzing, and accelerating treatment, a copper / nickel metal coating layer was formed by copper 20 g / m 2 and nickel 5 g / m 2 by an electroless plating method to obtain a target metal coating material. . Table 1 shows the evaluation results.

【表1】 [Table 1]

【0017】[0017]

【考案の効果】以上のように、平均扁平率が1.5〜5である非真円形状断面を 有するフィラメントが密に重なり合った構造の熱可塑性合成繊維マルチフィラメ ント糸を用いた布帛に金属被膜を形成して成る導電性繊維材料は、表面が緻密、 均一で平滑な金属被膜層を有し、薄厚で繊維本来の柔軟可撓性を損なうこと無く 、広い周波数域にわたり高い電磁波遮蔽性能を示す。[Effect of the Invention] As described above, a fabric using a thermoplastic synthetic fiber multifilament yarn having a structure in which filaments having a non-circular cross section having an average flatness of 1.5 to 5 are closely overlapped with each other is used. The conductive fiber material formed with the coating has a dense, uniform and smooth metal coating layer on the surface, is thin and has high electromagnetic wave shielding performance over a wide frequency range without impairing the inherent flexibility of the fiber. Show.

【図面の簡単な説明】[Brief description of the drawings]

【図1】扁平率算出のための概念図の例である。FIG. 1 is an example of a conceptual diagram for calculating an oblateness.

【図2】本考案の実施例の織物の表面写真である。FIG. 2 is a photograph of a surface of a woven fabric according to an embodiment of the present invention.

【図3】本考案の実施例の断面写真である。FIG. 3 is a cross-sectional photograph of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…単糸 1: Single yarn

───────────────────────────────────────────────────── フロントページの続き (72)考案者 新家 英正 福井県福井市毛矢1丁目10番1号 セーレ ン株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hidemasa Shinke 1-10-1 Kiya, Fukui City, Fukui Prefecture

Claims (4)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】平均扁平率が1.5〜5である非真円形状
断面を有する熱可塑性合成繊維マルチフィラメント糸を
用いた布帛に金属被膜を形成したことを特徴とする導電
性繊維材料。
1. A conductive fiber material, wherein a metal coating is formed on a fabric using a thermoplastic synthetic fiber multifilament yarn having a non-circular cross section having an average flatness of 1.5 to 5.
【請求項2】布帛が織物であることを特徴とする請求項
1記載の導電性繊維材料。
2. The conductive fiber material according to claim 1, wherein the fabric is a woven fabric.
【請求項3】熱可塑性合成繊維がポリエステルであるこ
とを特徴とする請求項1乃至2記載の電磁波遮蔽材料。
3. The electromagnetic wave shielding material according to claim 1, wherein the thermoplastic synthetic fiber is polyester.
【請求項4】織物のカバーファクターが1000〜30
00であることを特徴とする請求項2乃至3記載の導電
性繊維材料。
4. A fabric having a cover factor of 1000 to 30.
4. The conductive fiber material according to claim 2, wherein
JP1999009375U 1999-12-09 1999-12-09 Metal coated fiber material Expired - Lifetime JP3070467U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1999009375U JP3070467U (en) 1999-12-09 1999-12-09 Metal coated fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1999009375U JP3070467U (en) 1999-12-09 1999-12-09 Metal coated fiber material

Publications (1)

Publication Number Publication Date
JP3070467U true JP3070467U (en) 2000-08-04

Family

ID=43203857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1999009375U Expired - Lifetime JP3070467U (en) 1999-12-09 1999-12-09 Metal coated fiber material

Country Status (1)

Country Link
JP (1) JP3070467U (en)

Similar Documents

Publication Publication Date Title
JP3903457B2 (en) Conductive fabric
EP2458952B1 (en) Electromagnetic shielding sheet
JP3306665B2 (en) Conductive material and method of manufacturing the same
KR100741945B1 (en) Metal coated fiber materials
JPH05269903A (en) Layered member
JPS61239044A (en) Conductive fiber material
JP6293407B2 (en) Magnetic field shielding material
JP2000273762A (en) Base fabric for electromagnetic wave-shielding material and electromagnetic wave-shielding material using the same
KR101004282B1 (en) Plating method of conductive fabric for Using Electromagnetic interference shield
CN1175139C (en) Cold layer-laminated fabric and method for fabricating the same
WO2007069803A1 (en) Camouflage textile with non-electrolytic plated fiber
JP3070467U (en) Metal coated fiber material
JP4575583B2 (en) Metal coated fiber material
JP4298946B2 (en) Electromagnetic shielding material
JP2000208984A (en) Electromagnetic wave shielding material and manufacture thereof
RU2338021C1 (en) Metallised material ''nanotex''
JPH09107195A (en) Manufacture of high electromagnetic wave shielding composite sheet
JP3001248B2 (en) Conductive fiber sheet and method for producing the same
JP4107534B2 (en) Metal-coated glass cloth and method for producing the same
JPH05283890A (en) Electromagnetic wave shielding material
CN109371668A (en) A kind of electromagnetic shielding anti-radiation electric conduction cloth
JP3411044B2 (en) Battery electrode substrate and method of manufacturing the same
JP2009135526A (en) Electromagnetic wave shielding material
JP2004276443A (en) Conductive fibrous material
JP2003166170A (en) Chemical-resistant surface-conductive fabric

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term