JP3069011B2 - Static induction device winding and method of manufacturing the same - Google Patents

Static induction device winding and method of manufacturing the same

Info

Publication number
JP3069011B2
JP3069011B2 JP6252586A JP25258694A JP3069011B2 JP 3069011 B2 JP3069011 B2 JP 3069011B2 JP 6252586 A JP6252586 A JP 6252586A JP 25258694 A JP25258694 A JP 25258694A JP 3069011 B2 JP3069011 B2 JP 3069011B2
Authority
JP
Japan
Prior art keywords
winding
heat collecting
heat
collecting member
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6252586A
Other languages
Japanese (ja)
Other versions
JPH08115823A (en
Inventor
浩 園部
景一 阿部
恭文 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6252586A priority Critical patent/JP3069011B2/en
Publication of JPH08115823A publication Critical patent/JPH08115823A/en
Application granted granted Critical
Publication of JP3069011B2 publication Critical patent/JP3069011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,変圧器などの静止誘導
機器を小形化及び軽量化するのに好適する静止誘導機器
巻線およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction device winding suitable for reducing the size and weight of a static induction device such as a transformer, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、都市部への電力需要の増大に対応
して、都市部に電力機器を設置することが多くなってき
た。この種の電力機器のうち、ビルや地下街に設置され
る静止誘導機器、とりわけ変圧器のような大型機器には
難燃性が要求されている。このため、可燃性の鉱物油を
使用した従来の油入変圧器から、難燃性のエポキシ樹脂
などで巻線をモ−ルド(注型)したモ−ルド変圧器に置
き換えられつつある。
2. Description of the Related Art In recent years, power equipment has been increasingly installed in urban areas in response to an increase in power demand in urban areas. Among these types of power equipment, flame-retardant properties are required for stationary induction equipment installed in buildings and underground malls, especially for large equipment such as transformers. For this reason, conventional oil-immersed transformers using flammable mineral oil are being replaced with mold transformers whose windings are molded (injected) with a flame-retardant epoxy resin or the like.

【0003】しかしながら、モ−ルド巻線を採用した場
合、巻線の冷却はモールド絶縁層外表面からの空気冷却
に依存することになるため、油入変圧器のように液体の
絶縁兼冷却媒体が対流循環して冷却するものに比べて、
冷却性が著しく低下する。このため、巻線の電流密度を
下げるなどの対策が必要になり、機器が大形化し、重量
増加を招く傾向にあった。一方、都市部では地価が高
く、搬入制限の厳しい所に変圧器(静止誘導機器)を設
置するという性格上、変圧器の小形化及び軽量化が最優
先の課題であり、そのために、静止誘導機器の巻線の冷
却性改善が強く望まれている。
However, when a mold winding is employed, cooling of the winding depends on air cooling from the outer surface of the mold insulating layer. Convection cooling and cooling,
Coolability is significantly reduced. For this reason, it is necessary to take measures such as lowering the current density of the windings, which tends to increase the size of the device and increase the weight. On the other hand, downsizing and weight reduction of transformers are top priorities due to the nature of installing transformers (stationary induction equipment) in places where land prices are high and import restrictions are severe in urban areas. There is a strong demand for improved cooling of equipment windings.

【0004】このような課題を解決する構成として、非
ル−プ型細管ヒ−トパイプで巻線を構成して巻線の冷却
性を向上させたものが提案されており、以下、この構成
について図11及び図12を参照して説明する。
As a configuration for solving such a problem, there has been proposed a configuration in which a winding is formed by a non-loop type thin tube heat pipe to improve the cooling performance of the winding. This will be described with reference to FIGS.

【0005】まず図11に示すように、中空管状の電気
絶縁電線として形成された細管コンテナ1で巻線本体2
を構成すると共に、細管コンテナ1の内部に作動液を封
入することにより、巻線本体2が非ル−プ型細管ヒ−ト
パイプとして構成されている。そして、この巻線本体2
は、複数の円板状巻線ユニット3を上下方向に間隔片4
を介して積み上げた形に構成されている。さらに、円板
状巻線ユニット3の層間の所定の箇所には、接続パイプ
(冷却パイプ)5に接続された集熱部材6が間隔片を兼
ねるように挟まれており、該集熱部材6と円板状巻線ユ
ニット3の細管コンテナ1とが密接している。上記接続
パイプ5の残余の部分には、外部熱交換器及び冷媒循環
ポンプが接続されている。
First, as shown in FIG. 11, a winding container 2 is formed by a thin tube container 1 formed as a hollow tubular electrically insulated wire.
And the working fluid is sealed in the thin tube container 1 so that the winding body 2 is formed as a non-loop type thin heat pipe. And this winding body 2
Means that a plurality of disc-shaped winding units 3 are vertically
It is configured in a form stacked through. Further, a heat collecting member 6 connected to a connection pipe (cooling pipe) 5 is sandwiched at a predetermined position between the layers of the disc-shaped winding unit 3 so as to also serve as a spacing piece. And the thin tube container 1 of the disc-shaped winding unit 3 are in close contact. An external heat exchanger and a refrigerant circulation pump are connected to the remaining portion of the connection pipe 5.

【0006】この構成の場合、巻線で発生した熱は、細
管コンテナ1内の作動液の軸方向振動により集熱部材6
に密接する部分(放熱部)へ輸送されると共に、ここで
集熱部材6に伝熱されて集熱される。そして、集熱部材
6で集熱された熱は冷媒に伝達され、該冷媒は、循環ポ
ンプを駆動することにより、接続パイプ5内を強制循環
されて外部熱交換器へ輸送され、そこで外部へ放熱され
るようになっている。
In the case of this configuration, the heat generated in the winding is transferred to the heat collecting member 6 by the axial vibration of the working fluid in the thin tube container 1.
Is transported to a portion (heat radiating portion) that is in close contact with the heat collector, and is transferred to the heat collecting member 6 where heat is collected. Then, the heat collected by the heat collecting member 6 is transmitted to the refrigerant, and the refrigerant is forcedly circulated in the connection pipe 5 by being driven by the circulation pump, and is transported to the external heat exchanger, where it is discharged to the outside. The heat is dissipated.

【0007】また、上記集熱部材6は、図12に示すよ
うに、金属製の板状部材からなり、その内部にほぼU字
状をなす冷媒流路6aが形成されている。これにより、
集熱部材6は、巻線本体2の円板状巻線ユニット3の細
管コンテナ1と十分接触する構成となっている。そして
集熱部材6の表面には例えばエポキシ樹脂等からなる絶
縁コ−ティングが施され、さらに、集熱部材6の冷媒流
路6aの両端部には接続パイプ5がパイプ接続部7を介
して接続されている。
Further, as shown in FIG. 12, the heat collecting member 6 is formed of a metal plate-like member, and has a substantially U-shaped refrigerant passage 6a formed therein. This allows
The heat collecting member 6 is configured to sufficiently contact the thin tube container 1 of the disc-shaped winding unit 3 of the winding main body 2. An insulating coating made of, for example, epoxy resin is applied to the surface of the heat collecting member 6, and connection pipes 5 are provided at both ends of the refrigerant flow path 6 a of the heat collecting member 6 via the pipe connection portions 7. It is connected.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記構成の
巻線本体2をエポキシ樹脂などでモ−ルドする場合に
は、多数本の接続パイプ5を注型用金型の外へ引き出す
と共に、これら引き出した部分には、樹脂洩れ防止用の
シ−ルを施す必要がある。このため、型組みに多くの時
間を要すると共に、樹脂モールド成形時に樹脂漏れ防止
用のシール部から空気を吸い込み、モールド絶縁層にボ
イド欠陥が発生する可能性が増大するという問題があ
る。さらに、多数本の接続パイプ5がモ−ルド絶縁層を
貫通する構成となるので、樹脂と接続パイプ5との境界
面が剥離することによる絶縁性悪化の可能性もかなり高
くなる。特に、モールド絶縁層外表面に導電性薄膜を形
成して外表面接地形の巻線として構成した場合には、上
記の境界面剥離が致命的な欠陥となるおそれもある。
When the winding body 2 having the above structure is molded with an epoxy resin or the like, a large number of connecting pipes 5 are pulled out of the casting mold, and these are connected. It is necessary to apply a seal for preventing resin leakage from the drawn-out portion. For this reason, there is a problem that a lot of time is required for the mold assembly, and there is a problem that air is sucked from a sealing portion for preventing resin leakage at the time of resin molding and a possibility that a void defect is generated in the mold insulating layer is increased. Further, since a large number of connection pipes 5 are configured to penetrate the mold insulating layer, the possibility of deterioration of insulation due to separation of the interface between the resin and the connection pipes 5 is considerably increased. In particular, in the case where a conductive thin film is formed on the outer surface of the mold insulating layer to form a grounded outer surface winding, the above-described boundary surface peeling may be a fatal defect.

【0009】そこで、本発明の目的は、非ル−プ型細管
ヒ−トパイプで巻線本体を構成して冷却性能を向上さ
せ、全体の構成を小形化及び軽量化することができると
共に、絶縁信頼性並びに樹脂でモ−ルド成形する際の製
造性を向上し得る静止誘導機器巻線およびその製造方法
を提供するにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the cooling performance by forming a winding main body with a non-loop-type thin heat pipe, thereby making it possible to reduce the size and weight of the whole structure, as well as to achieve insulation. It is an object of the present invention to provide a static induction device winding and a method for manufacturing the same, which can improve the reliability and the manufacturability in molding by molding with resin.

【0010】[0010]

【課題を解決するための手段】本発明の静止誘導機器巻
線は、中空管状の細管コンテナの内部に作動液を封入し
た非ル−プ型細管ヒ−トパイプで構成されるものであっ
て、軸方向に積み重ねられた複数の円板状巻線ユニット
を有する巻線本体と、複数の円板状巻線ユニットの間に
円板状巻線ユニットの放熱部に密接するように設けら
れ、内部に冷媒流路を有する複数個の平板状の集熱部材
と、巻線本体及び集熱部材を覆うモ−ルド絶縁層と、集
熱部材の冷媒流路と外部熱交換器に接続される接続パイ
プとを備え、複数個の集熱部材は、それぞれ絶縁性の樹
脂で形成し、内部の冷媒流路が連通するように巻線本体
の軸方向に沿って接続して構成したことを特徴とする。
SUMMARY OF THE INVENTION A stationary induction machine winding according to the present invention comprises a non-loop type thin tube heat pipe in which a working fluid is sealed in a hollow tubular thin tube container. A winding body having a plurality of disc-shaped winding units stacked in the axial direction, and a plurality of disc-shaped winding units are provided between the plurality of disc-shaped winding units so as to be in close contact with a heat radiating portion of the disc-shaped winding unit. A plurality of flat heat collecting members having a refrigerant flow path, a mold insulating layer covering the winding body and the heat collecting member, and a connection connected to the refrigerant flow path of the heat collecting member and the external heat exchanger. A plurality of heat collecting members, each formed of an insulating resin, and connected along the axial direction of the winding body so that the internal refrigerant flow paths communicate with each other. I do.

【0011】この場合、集熱部材は、円板状巻線ユニッ
トに当接する部分の肉厚を、他の部分より薄く形成する
ことが好ましい。また集熱部材は、シリカなどの充填材
を配合した樹脂で形成し巻線本体及び集熱部材を覆うモ
−ルド絶縁層とほぼ同等の線膨脹率を有することが好ま
しい。
In this case, it is preferable that the heat collecting member is formed to have a smaller thickness at a portion in contact with the disc-shaped winding unit than at other portions. The heat collecting member is preferably formed of a resin containing a filler such as silica, and has a linear expansion coefficient substantially equal to that of the mold insulating layer covering the winding body and the heat collecting member.

【0012】さらに、集熱部材は、窒化ホウ素などの高
熱伝導性のセラミック粉を充填材として配合した樹脂で
形成し、高熱伝導性であることが好ましい。また、上記
構成の静止誘導機器巻線を製造する方法においては、巻
線本体および集熱部材を注型用金型内に収納する工程
と、注型用金型内に樹脂を注入する工程と、注入した樹
脂が硬化した後、注型用金型を型開きする工程とを備
え、複数個の集熱部材は、それぞれの冷媒流路の連通部
分を相互に接続した状態で注型用金型内に収納するよう
にする。この場合、各集熱部材の冷媒流路の相互接続に
おいて、ゴム状弾性体から成るシ−ル接続部材を用いれ
ば、さらに型組みが容易になる。
Further, the heat collecting member is preferably formed of a resin mixed with a ceramic powder having a high thermal conductivity such as boron nitride as a filler, and preferably has a high thermal conductivity. Further, in the method for manufacturing the static induction device winding having the above configuration, a step of housing the winding body and the heat collecting member in a casting mold, and a step of injecting a resin into the casting mold. Opening the casting mold after the injected resin is cured, wherein the plurality of heat collecting members are connected to each other through the communicating portions of the refrigerant flow paths. Store in the mold. In this case, if a seal connecting member made of a rubber-like elastic body is used for interconnecting the refrigerant channels of the heat collecting members, the mold assembly is further facilitated.

【0013】[0013]

【作用】上記手段によれば、非ル−プ型細管ヒ−トパイ
プで巻線本体を構成しているので、巻線で発生した熱は
巻線本体(円板状巻線ユニット)の放熱部へ輸送され
る。そして放熱部に輸送された熱は、集熱部材を介して
冷媒へ伝達され、この冷媒が接続パイプ内を通って外部
熱交換器へ輸送され、そこで外部へ放熱される。これに
より、巻線本体の冷却性能が向上し、ひいては巻線全体
の構成を小形化及び軽量化することができる。
According to the above means, since the winding body is constituted by a non-loop type thin tube heat pipe, the heat generated by the winding is dissipated by the heat radiating portion of the winding body (disk-shaped winding unit). Transported to Then, the heat transported to the heat radiating portion is transmitted to the refrigerant through the heat collecting member, and the refrigerant is transported to the external heat exchanger through the inside of the connection pipe, where the heat is radiated to the outside. As a result, the cooling performance of the winding main body is improved, and the overall configuration of the winding can be reduced in size and weight.

【0014】ここで、集熱部材は絶縁性の樹脂で形成し
ているので、巻線内に配置しても磁束により集熱部材が
発熱するようなことはない。また、集熱部材内を循環す
る冷媒も絶縁性液体であるため、巻線との絶縁維持のた
めの絶縁コ−ティング等の絶縁層が不要となり、円板状
巻線ユニットに当接する部分の集熱部材の肉厚を薄く形
成すれば、集熱部の熱抵抗を小さいレベルに抑えること
ができる。
Here, since the heat collecting member is formed of an insulating resin, the heat collecting member does not generate heat due to the magnetic flux even if it is arranged in the winding. In addition, since the refrigerant circulating in the heat collecting member is also an insulating liquid, an insulating layer such as an insulating coating for maintaining insulation from the winding is not required, and a portion of the portion that contacts the disk-shaped winding unit is not required. If the thickness of the heat collecting member is reduced, the thermal resistance of the heat collecting portion can be suppressed to a small level.

【0015】ところで、高電圧巻線の場合、円板状巻線
ユニット間のような高電界部分にクラックや剥離欠陥が
存在すると、部分放電が生じ長期運転の後に絶縁破壊に
至ることがある。本発明における静止誘導機器巻線の集
熱部材は、巻線と冷媒の接点となるところであり、大き
な温度差が生じ、使用部材の線膨脹率差により生じる熱
応力でクラックや剥離欠陥が生じ易いが、集熱部材はシ
リカなどの充填材を配合した絶縁性の樹脂で形成されて
おり、巻線本体および集熱部材を覆うモ−ルド絶縁層と
ほぼ同等の線膨脹率を有するため、熱応力でクラックや
剥離欠陥が生じる可能性はない。さらに、集熱部材を、
窒化ホウ素などの高熱伝導性のセラミック粉を充填材と
して配合した樹脂で形成すれば、熱応力が緩和できるだ
けでなく、高熱伝導性であるため、集熱部材の熱抵抗を
さらに小さいレベルに抑えることができる。
In the case of a high-voltage winding, if a crack or a peeling defect exists in a high electric field portion such as between the disk-shaped winding units, partial discharge may occur and dielectric breakdown may occur after long-term operation. The heat collecting member of the winding of the stationary induction device according to the present invention is a contact point between the winding and the refrigerant, where a large temperature difference occurs, and cracks and peeling defects easily occur due to thermal stress caused by a difference in linear expansion coefficient of the used member. However, the heat collecting member is formed of an insulating resin containing a filler such as silica, and has a linear expansion coefficient substantially equal to that of the mold insulating layer covering the winding body and the heat collecting member. There is no possibility that cracks or peeling defects occur due to stress. Furthermore, the heat collecting member,
Forming a resin blended with a high thermal conductive ceramic powder such as boron nitride as a filler not only can reduce thermal stress, but also has a high thermal conductivity, so the thermal resistance of the heat collecting member can be further reduced. Can be.

【0016】一方、本発明の製造方法によれば、予め各
集熱部材の冷媒流路を相互に接続しておくため、注型用
金型から外部へ引き出すものは、上下一本づづの冷媒流
路だけとなる。したがって、従来構成に比べて、樹脂漏
れ防止用のシ−ル箇所を低減でき、型組みが簡単になる
と共に、ボイド欠陥が発生する可能性も大幅に少なくな
る。
On the other hand, according to the manufacturing method of the present invention, since the refrigerant flow paths of the heat collecting members are connected to each other in advance, the refrigerant drawn out of the casting mold to the outside only needs one refrigerant at a time. Only the flow path is provided. Therefore, as compared with the conventional configuration, the number of seal portions for preventing resin leakage can be reduced, the mold assembly can be simplified, and the possibility of occurrence of void defects can be greatly reduced.

【0017】また、各集熱部材の冷媒流路の相互接続に
おいて、ゴム状弾性体から成るシ−ル接続部材を用いれ
ば、接着が不要になるだけでなく、その弾性により製作
誤差が吸収できるので、集熱部材と円板状巻線ユニット
との密接状態を維持することができる。したがって巻線
本体を樹脂モ−ルドする際の製造性を大幅に向上させる
ことができると共に、巻線と集熱部材との間の熱抵抗が
小さい、冷却性に優れた静止誘導機器巻線を得ることが
できる。
Further, if a seal connecting member made of a rubber-like elastic material is used for interconnecting the refrigerant flow paths of the heat collecting members, not only the adhesion becomes unnecessary but also the manufacturing error can be absorbed by the elasticity. Therefore, the close contact between the heat collecting member and the disk-shaped winding unit can be maintained. Therefore, it is possible to greatly improve the manufacturability when the winding body is molded with resin, and to provide a static induction device winding excellent in cooling performance with a small thermal resistance between the winding and the heat collecting member. Obtainable.

【0018】[0018]

【実施例】以下、本発明を変圧器巻線に適用した一実施
例について、図1ないし図10を参照しながら説明す
る。なお、変圧器は、通常、低圧巻線と高圧巻線の二つ
の巻線から構成されているが、以下の説明では、一つの
巻線についてだけ説明し、他方の巻線については説明並
びに図示することを省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a transformer winding will be described below with reference to FIGS. Note that a transformer is usually composed of two windings, a low-voltage winding and a high-voltage winding, but in the following description, only one winding will be described, and the other winding will be described and illustrated. I omit it.

【0019】まず、樹脂でモ−ルドする前の状態の円板
状巻線の全体概略構成を示す図4において、巻線本体1
1は、中空管状の電気絶縁電線として形成された細管コ
ンテナ12を円板状に巻き、かつこの円板状の巻線ユニ
ット13を複数個上下方向に積み重ねて成るもので、巻
初め端部から巻終り端部まで連続して巻き付けることに
より構成されている。上記細管コンテナ12は、例えば
銅やアルミニウム等の低電気抵抗かつ高熱伝導性の中空
管状導体から成り、その外周面上に所定の厚さの絶縁層
を設けて構成されている。ここで、上記絶縁層は、高熱
伝導率を有する材料から形成することが好ましい。そし
て、細管コンテナ12内には、その巻初め端部または巻
終り端部から絶縁生の作動液が封入されており、これに
よって、巻線本体11が非ル−プ型細管ヒ−トパイプと
して構成されている。上記作動液としては、例えば純水
やフッ素系液体等が使用される。
First, in FIG. 4 showing the overall schematic configuration of a disk-shaped winding before molding with resin, a winding main body 1 is shown.
1 is formed by winding a thin tube container 12 formed as a hollow tubular electrically insulated wire in a disk shape, and stacking a plurality of the disk-shaped winding units 13 in the vertical direction. It is constituted by winding continuously to the winding end. The thin tube container 12 is made of a hollow tubular conductor having low electrical resistance and high thermal conductivity such as copper or aluminum, and is provided with an insulating layer having a predetermined thickness on an outer peripheral surface thereof. Here, the insulating layer is preferably formed from a material having high thermal conductivity. An insulating working fluid is sealed in the thin tube container 12 from the winding start end or the winding end end, so that the winding body 11 is configured as a non-loop type thin tube heat pipe. Have been. As the working fluid, for example, pure water or fluorine-based liquid is used.

【0020】また、巻線本体11は、複数の円板状巻線
ユニット13を上下方向に間隔片14を介して積み上げ
た形態に構成されている。上記間隔片14は、円板状巻
線ユニット13間に所定のギャップを設けて絶縁するた
めのものである。また、各円板状巻線ユニット13は、
最内側から最外側まで数タ−ン(例えば7タ−ン)巻回
して構成されている。そして、円板状巻線ユニット13
の層間の所定の箇所である放熱部15には、接続パイプ
16(図2および図3参照)に連通される集熱部材17
が一部の間隔片を兼ねるように挟まれている。また、接
続パイプ16の他端部には、外部熱交換器及び循環ポン
プ(いずれも図示しない)が設けられている。
The winding body 11 is formed in a form in which a plurality of disk-shaped winding units 13 are stacked vertically with a spacing piece 14 interposed therebetween. The spacing pieces 14 are provided for providing a predetermined gap between the disc-shaped winding units 13 to insulate them. In addition, each disc-shaped winding unit 13
It is configured by winding several turns (for example, 7 turns) from the innermost to the outermost. Then, the disc-shaped winding unit 13
A heat collecting member 17 communicated with a connecting pipe 16 (see FIGS. 2 and 3)
Is sandwiched so as to serve also as a part of the spacing piece. An external heat exchanger and a circulation pump (both not shown) are provided at the other end of the connection pipe 16.

【0021】ここで、上記集熱部材17は、図5に示す
ように絶縁性の樹脂(例えばエポキシ樹脂)で形成され
た板状部材171を2枚貼り合わせて形成したものであ
る。この板状部材171は、図6に示すように平板の片
面にほぼU字状をなす冷媒流路17aが形成されると共
に、その冷媒流路17aの出入り口となる貫通口17
b,17cを取り囲むように平板を貫通する方向に延び
る冷媒流路形成パイプ17d,17eが形成されてお
り、この板状部材171を2枚貼り合わせることによっ
て、内部にほぼU字状をなす冷媒流路17aが形成され
ると共に、この冷媒流路17aに連通するようにして、
一方の上下の冷媒流路形成パイプ17d,17eにより
冷媒流入流路20が形成され、他方の上下の冷媒流路形
成パイプ17e,17dにより冷媒流出流路21が形成
される。これにより、集熱部材17は、平板部が巻線本
体2の円板状巻線ユニット13の細管コンテナ12と十
分な接触面積をもって接触し熱伝導されるようになって
いる。この場合、集熱部材17と細管コンテナ12との
接合面に、熱伝導性の良いグリ−スまたは樹脂を塗布し
て、両者の接触熱抵抗を低減させるように構成してもよ
い。
Here, as shown in FIG. 5, the heat collecting member 17 is formed by laminating two plate members 171 made of an insulating resin (for example, epoxy resin). As shown in FIG. 6, the plate-like member 171 has a substantially U-shaped refrigerant flow path 17a formed on one side of a flat plate, and a through-hole 17 serving as an entrance and exit of the refrigerant flow path 17a.
Refrigerant flow path forming pipes 17d and 17e extending in a direction penetrating the flat plate are formed so as to surround the b and 17c. By bonding two plate-like members 171 to each other, a substantially U-shaped refrigerant is formed therein. A channel 17a is formed, and communicates with the refrigerant channel 17a.
One upper and lower refrigerant flow path forming pipes 17d and 17e form a refrigerant inflow path 20, and the other upper and lower refrigerant flow path forming pipes 17e and 17d form a refrigerant outflow path 21. As a result, the heat collecting member 17 is configured such that the flat plate portion comes into contact with the thin tube container 12 of the disc-shaped winding unit 13 of the winding main body 2 with a sufficient contact area, and heat is conducted. In this case, grease or resin having good heat conductivity may be applied to the joint surface between the heat collecting member 17 and the thin tube container 12 so as to reduce the contact thermal resistance between them.

【0022】なお、集熱部材17を構成する板状部材1
71は、図7に示すように、円板状巻線ユニット13に
当接する部分の肉厚tが他の部分の肉厚Tよりも十分に
薄くなるように構成すれば、細管コンテナ12からの熱
伝導にすぐれたものとなり、また他の部分の肉厚Tがそ
れよりも厚くなっていることにより、2枚の板状部材1
71の貼り合わせが容易になる効果がある。
The plate-like member 1 constituting the heat collecting member 17
As shown in FIG. 7, if the thickness t of the portion abutting on the disc-shaped winding unit 13 is configured to be sufficiently smaller than the thickness T of the other portions as shown in FIG. The heat conduction is excellent, and the thickness T of the other portions is larger than that.
This has the effect of facilitating the bonding of 71.

【0023】さて、上記したように構成された巻線本体
11および集熱部材17は、詳しくは後述する製造方法
によって、図1ないし図3に示すように、エポキシ樹脂
等の樹脂でモ−ルド成形され、モ−ルド絶縁層18によ
り覆われる。そして、モ−ルド絶縁層18には、複数個
の集熱部材17がそれぞれ上下の冷媒流路形成パイプ1
7d,17eまたは17e,17dを介して巻線本体1
1の軸方向(図中上下方向)に沿って接続されているこ
とによって、複数個の集熱部材17の内部に形成された
冷媒流路17aと外部熱交換器に接続される接続パイプ
16とを連通する冷媒流路19が形成される。この冷媒
流路19は、冷媒流入流路20と冷媒流出流路21とか
ら構成されている。冷媒流入流路20は、図1および図
2に示すように、巻線本体11の軸方向に沿うと共に、
集熱部材17の冷媒流入用貫通孔17b内を貫通するよ
うに形成されており、最下端部がモ−ルド絶縁層18の
下面に開口し、最上端部がモ−ルド絶縁層18内で閉塞
している。そして、冷媒流入流路20の下端開口部20
aに接続パイプ16の冷媒送出側端部16aが接続され
る。
The winding main body 11 and the heat collecting member 17 configured as described above are molded by a resin such as an epoxy resin as shown in FIGS. It is molded and covered with the mold insulating layer 18. A plurality of heat collecting members 17 are respectively formed on the mold insulating layer 18 by the upper and lower refrigerant flow path forming pipes 1.
7d, 17e or the winding body 1 via 17e, 17d
1 are connected along the axial direction (vertical direction in the figure), so that the refrigerant pipe 17a formed inside the plurality of heat collecting members 17 and the connection pipe 16 connected to the external heat exchanger Is formed. The refrigerant flow path 19 includes a refrigerant inflow path 20 and a refrigerant outflow path 21. As shown in FIGS. 1 and 2, the refrigerant inflow passage 20 extends along the axial direction of the winding body 11,
The heat collecting member 17 is formed so as to penetrate through the coolant inflow through hole 17b. The lowermost end is opened to the lower surface of the mold insulating layer 18, and the uppermost end is formed in the mold insulating layer 18. It is closed. The lower end opening 20 of the refrigerant inflow passage 20
The refrigerant delivery side end 16a of the connection pipe 16 is connected to a.

【0024】同様にして、冷媒流出流路21は、図1及
び図3に示すように、巻線本体11の軸方向に沿うと共
に、集熱部材17の冷媒流出用貫通孔17c内を貫通す
るように形成されており、最上端部がモ−ルド絶縁層1
8の上面に開口し、最下端部がモ−ルド絶縁層18内で
閉塞している。そして、冷媒流出流路21の上端開口部
21aに接続パイプ16の冷媒戻り側端部16bが接続
される。
Similarly, the refrigerant outflow passage 21 extends along the axial direction of the winding main body 11 and through the refrigerant outflow through hole 17c of the heat collecting member 17, as shown in FIGS. And the uppermost end is the mold insulating layer 1.
8, and the lowermost end is closed in the mold insulating layer 18. The refrigerant return side end 16b of the connection pipe 16 is connected to the upper end opening 21a of the refrigerant outflow channel 21.

【0025】接続パイプ16は、絶縁材料、例えばテフ
ロン(商品名)や架橋ポリエチレン等の樹脂で構成され
ていると共に、内部に絶縁性を有する冷媒が封入されて
いる。上記冷媒としては、例えば純水やフッ素系液体等
が使用される。この場合、接続パイプ16は、全体を絶
縁材で構成する必要はなく、そのうちの少なくともモ−
ルド絶縁層18の上端開口部21a及び下端開口部20
aに接続される部分を絶縁材により構成するだけでも良
い。また、モールド絶縁層外表面に導電性薄膜を形成し
て外表面接地形の巻線として構成した場合には、接続パ
イプ16をすべて金属(接地電位)とすることも可能で
ある。
The connection pipe 16 is made of an insulating material, for example, a resin such as Teflon (trade name) or cross-linked polyethylene, and has an insulating refrigerant sealed therein. As the refrigerant, for example, pure water, a fluorine-based liquid, or the like is used. In this case, the connection pipe 16 does not need to be entirely made of an insulating material, and at least
Upper opening 21a and lower opening 20 of field insulating layer 18
The portion connected to a may be simply made of an insulating material. When a conductive thin film is formed on the outer surface of the mold insulating layer to form a grounded outer surface winding, the connection pipe 16 may be entirely made of metal (ground potential).

【0026】そして上記構成の場合、巻線本体11で発
生した熱は、細管コンテナ12内の作動液の軸方向振動
により放熱部15へ輸送され、ここで集熱部材17に伝
達されて集熱される。そして、集熱部材17で集熱され
た熱は、冷媒流路17a内の冷媒に伝達され、さらに、
循環ポンプを駆動することにより、該冷媒は接続パイプ
16内を強制循環して外部熱交換器へ輸送され、ここで
外部へ放熱されるようになっている。これにより、巻線
本体11が効率良く冷却されるのである。
In the above configuration, the heat generated in the winding main body 11 is transported to the heat radiating portion 15 by the axial vibration of the working fluid in the thin tube container 12, where it is transmitted to the heat collecting member 17 where the heat is collected. It is. Then, the heat collected by the heat collecting member 17 is transmitted to the refrigerant in the refrigerant channel 17a, and further,
By driving the circulation pump, the refrigerant is forcibly circulated in the connection pipe 16 and transported to the external heat exchanger, where the refrigerant is radiated to the outside. Thereby, the winding body 11 is efficiently cooled.

【0027】次に、上記構成のモールド巻線を製造する
方法、特には、巻線本体11及び集熱部材17を樹脂で
モ−ルド成形する方法について、図4及び図8を参照し
て説明する。まず、図4に示すと共に、前述したように
して、細管コンテナ12(非ル−プ型細管ヒ−トパイ
プ)で巻線本体11を構成し、巻線本体11の円板状巻
線ユニット13(放熱部15)間に集熱部材17を挿入
嵌合する。ここで、集熱部材17の冷媒流路形成パイプ
17d、17eは、予め適当な長さに切断加工し、各集
熱部材17を挿入嵌合する際に上下方向に対向する先端
部どうしを接着剤により接着して接続部17f,17g
を構成し、巻線本体11の軸方向に沿う冷媒流路を構成
する工程を行う。また、冷媒流入流路20を構成する最
上部の集熱部材17の上方の冷媒流路形成パイプ17d
は封止蓋17hで接着封止し、同様に、冷媒流出流路2
1を構成する最下部の集熱部材17の下部の冷媒流路形
成パイプ17eは封止蓋17iで接着封止しておく。
Next, a method for manufacturing the molded winding having the above structure, particularly, a method for molding the winding body 11 and the heat collecting member 17 with resin will be described with reference to FIGS. I do. First, as shown in FIG. 4 and as described above, the winding body 11 is constituted by the thin tube container 12 (non-loop type thin heat pipe), and the disk-shaped winding unit 13 ( The heat collecting member 17 is inserted and fitted between the heat radiating portions 15). Here, the refrigerant flow path forming pipes 17d and 17e of the heat collecting member 17 are cut in advance to an appropriate length, and when the heat collecting members 17 are inserted and fitted, the tips facing vertically are bonded to each other. 17f, 17g by bonding with adhesive
And a step of forming a refrigerant flow path along the axial direction of the winding body 11 is performed. A refrigerant flow path forming pipe 17d above the uppermost heat collecting member 17 constituting the refrigerant inflow path 20
Is bonded and sealed with a sealing lid 17h.
The refrigerant flow path forming pipe 17e at the lower part of the lowermost heat collecting member 17 which constitutes 1 is bonded and sealed with a sealing lid 17i.

【0028】続いて、図8に示すように巻線本体11及
び集熱部材17を注型用金型24内に収容する工程を行
う。この場合、注型用金型24は、巻線本体11の内周
部に所定の間隙を介して嵌合される内周金型25と、巻
線本体11の外周部に所定の間隙を介して嵌合される外
周金型26と、巻線本体11の上端部を所定の間隙を介
して覆う上端金型27と、巻線本体11の下端部を所定
の間隙を介して覆う下端金型28とを型組みして構成さ
れている。そして、冷媒流入流路20を構成する集熱部
材17の冷媒流路形成パイプ17dの下端部が下端金型
28を貫通して外へ突出するように型組みされる。同様
にして、冷媒流出流路21を構成する集熱部材17の冷
媒流路形成パイプ17eの上端部が上端金型27を貫通
して外へ突出するように型組みされる。なお、上記二つ
のパイプ17d、17eの各貫通部分(二か所)には、
樹脂漏れ防止用のシ−ルが施されている。
Subsequently, as shown in FIG. 8, a step of housing the winding body 11 and the heat collecting member 17 in the casting mold 24 is performed. In this case, the casting mold 24 has an inner peripheral mold 25 fitted to the inner peripheral portion of the winding main body 11 via a predetermined gap, and an inner peripheral mold 25 fitted to the outer peripheral portion of the winding main body 11 via a predetermined gap. And an upper end mold 27 that covers the upper end of the winding body 11 with a predetermined gap, and a lower end mold that covers the lower end of the winding body 11 with a predetermined gap. 28 and a mold. Then, the lower end of the refrigerant flow path forming pipe 17d of the heat collecting member 17 constituting the refrigerant inflow path 20 is molded so as to penetrate the lower end mold 28 and protrude to the outside. Similarly, the upper end of the refrigerant flow path forming pipe 17e of the heat collecting member 17 forming the refrigerant outflow path 21 is formed so as to penetrate the upper end mold 27 and protrude to the outside. In addition, in each penetration part (two places) of said two pipes 17d and 17e,
A seal is provided to prevent resin leakage.

【0029】そして、上記したように注型用金型24に
巻線本体11及び集熱部材17を収容した後、注型用金
型24に例えばエポキシ樹脂を注入する工程を行う。こ
の後、注入した樹脂が硬化したら、注型用金型24を型
開きする工程を行う。これにより、図1ないし図3に示
すようなモ−ルド成形された巻線が製造される。
After the winding main body 11 and the heat collecting member 17 are accommodated in the casting mold 24 as described above, a step of injecting, for example, epoxy resin into the casting mold 24 is performed. Thereafter, when the injected resin is cured, a step of opening the casting mold 24 is performed. As a result, a mold-formed winding as shown in FIGS. 1 to 3 is manufactured.

【0030】このような構成の本実施例によれば、巻線
本体11を形成するにあたっては、非ル−プ型細管ヒ−
トパイプを構成する細管コンテナ12を用いているの
で、通常の巻線導体と同様に巻回作業を行うことがで
き、細管コンテナ12にル−プを形成する必要もなく、
また、放熱部を形成するために巻線の途中から導体を引
き出す必要もなく、さらには、弁体を取付ける必要もな
いため、従来の巻線工程と何等変わりなく容易に巻線を
構成できると共に、絶縁上も最適な構成とすることがで
きる。
According to the present embodiment having such a configuration, when forming the winding body 11, a non-loop type thin tube heat sink is used.
Since the thin tube container 12 constituting the top pipe is used, the winding operation can be performed in the same manner as a normal winding conductor, and there is no need to form a loop in the thin tube container 12,
Also, since it is not necessary to draw out the conductor from the middle of the winding to form the heat radiating portion, and furthermore, it is not necessary to attach a valve body, and the winding can be easily formed without any difference from the conventional winding process. In addition, an optimum configuration can be obtained in terms of insulation.

【0031】また、非ル−プ型細管ヒ−トパイプを構成
する細管コンテナ12には、放熱部を適当に分散配置し
て設ける必要があるが、これに対しては、上記実施例で
は、巻線本体11の対をなす円板状巻線ユニット13の
層間の所定の箇所、即ち、放熱部15に、接続パイプ1
6に連通する集熱部材17を挟んで密接させる構成とし
たので、1タ−ン毎に放熱部15が存在する構成とな
り、放熱部15を分散配置することができる。このた
め、巻線本体11が非ル−プ型細管ヒ−トパイプとして
有効に作動することから、巻線本体11の内部温度分布
を均一化することが可能となる。
Further, in the thin tube container 12 constituting the non-loop type thin tube heat pipe, it is necessary to disperse the heat radiating portions appropriately. A connecting pipe 1 is provided at a predetermined location between the layers of the disc-shaped winding unit 13 forming a pair of the wire main body 11, that is, at the heat radiating portion 15.
Since the heat collecting members 17 communicating with 6 are placed in close contact with each other, the heat radiating portions 15 are provided for each turn, and the heat radiating portions 15 can be dispersedly arranged. For this reason, since the winding main body 11 operates effectively as a non-loop type thin heat pipe, the internal temperature distribution of the winding main body 11 can be made uniform.

【0032】そして、上記構成においては、通電により
巻線本体11で発生した熱は、まず、非ル−プ型細管ヒ
−トパイプの作動、即ち、細管コンテナ12内に封入さ
れた作動液の軸方向振動により、非ル−プ型細管ヒ−ト
パイプの放熱部分である放熱部15へ輸送されて、ここ
で、集熱部材17へ伝達されて集熱される。集熱部材1
7へ集熱された熱は、冷媒流路17a内の冷媒へ伝達さ
れ、さらに、この冷媒は、循環ポンプによる強制循環作
用により、モ−ルド絶縁層18の冷媒流出流路21及び
接続パイプ16を通って外部熱交換器へ輸送され、ここ
で外部へ放熱される。なお、外部熱交換器で冷却された
冷媒は、接続パイプ16及び冷媒流入流路20を通って
集熱部材17の冷媒流路17aに流入して循環するよう
になっている。
In the above configuration, the heat generated in the winding main body 11 by energization firstly acts on the non-loop type thin heat pipe, that is, the shaft of the working fluid sealed in the thin tube container 12. Due to the directional vibration, the heat is transferred to the heat radiating portion 15 which is a heat radiating portion of the non-loop type thin tube heat pipe, where it is transmitted to the heat collecting member 17 and collected. Heat collecting member 1
The heat collected to the refrigerant 7 is transmitted to the refrigerant in the refrigerant flow path 17a, and the refrigerant is forced to circulate by the circulating pump, so that the refrigerant outflow path 21 of the mold insulating layer 18 and the connection pipe 16 To the external heat exchanger, where it is released to the outside. The refrigerant cooled by the external heat exchanger flows through the connection pipe 16 and the refrigerant inflow path 20 into the refrigerant flow path 17a of the heat collecting member 17 and circulates.

【0033】この構成の場合、集熱部材17を巻線本体
11の細管コンテナ12と十分な接触面積を有する形
状、具体的には、平板状に構成したので、巻線本体11
の放熱部15から集熱部材17へ熱が伝わり易くなり、
巻線本体11の冷却効率を大幅に向上させることができ
る。
In the case of this configuration, the heat collecting member 17 is formed in a shape having a sufficient contact area with the thin tube container 12 of the winding main body 11, specifically, in a flat plate shape.
The heat is easily transmitted from the heat radiating portion 15 to the heat collecting member 17,
The cooling efficiency of the winding body 11 can be greatly improved.

【0034】そして集熱部材17を絶縁性の樹脂で形成
したので、巻線内に配置しても磁束により集熱部材17
が発熱し、結果として巻線本体11の冷却効率を低下さ
せてしまうこともない。また、集熱部材17内を循環す
る冷媒もフッ素系液体などの絶縁性液体であるため、巻
線本体11の細管コンテナ12との絶縁維持のための絶
縁層も不要となる。さらに、円板状巻線ユニット13
(細管コンテナ12)に当接する部分の集熱部材17の
肉厚tを薄く形成することにより、集熱部の熱抵抗を小
さいレベルに抑えることができ、巻線本体11の放熱部
15から集熱部材17へ熱が伝わり易くなり、巻線本体
11の冷却効率を向上させることができる。
Since the heat collecting member 17 is formed of an insulating resin, the heat collecting member 17 is formed by magnetic flux even if it is disposed in the winding.
Does not generate heat and, as a result, lowers the cooling efficiency of the winding body 11. Further, since the refrigerant circulating in the heat collecting member 17 is also an insulating liquid such as a fluorine-based liquid, an insulating layer for maintaining the insulation of the winding main body 11 from the thin tube container 12 is not required. Further, the disc-shaped winding unit 13
By forming the thickness t of the heat collecting member 17 at the portion in contact with the (small tube container 12) to be small, the thermal resistance of the heat collecting portion can be suppressed to a small level. Heat is easily transmitted to the heat member 17, and the cooling efficiency of the winding body 11 can be improved.

【0035】一方、本実施例のモ−ルド巻線を製造する
に際しては、図8に示すように、集熱部材17の冷媒流
路形成パイプ17d、17eを相互に接着接続して巻線
本体11の軸方向に沿う冷媒流入流路20及び冷媒流出
流路21を形成した後、巻線本体11を注型用金型24
に収容し、そして、注型用金型24内に樹脂を注入する
ようにした。これにより、注型用金型24から外へ引き
出すものは上下一本づつの冷媒流路形成パイプの一端部
だけとなるから、従来構成(図11参照)に比べて、樹
脂漏れ防止用のシ−ル箇所を大幅に低減できて、型組み
が非常に簡単になると共に、モールド成形時の空気吸い
込みによるボイド欠陥発生の可能性も大幅に少なくな
る。
On the other hand, when manufacturing the mold winding of this embodiment, as shown in FIG. 8, the refrigerant passage forming pipes 17d and 17e of the heat collecting member 17 are bonded and connected to each other. After forming the refrigerant inflow channel 20 and the refrigerant outflow channel 21 along the axial direction of the winding 11, the winding main body 11 is moved to the casting mold 24.
Then, the resin was injected into the casting mold 24. As a result, since only one end of the upper and lower refrigerant flow path forming pipes is pulled out from the casting mold 24, compared with the conventional configuration (see FIG. 11), a system for preventing resin leakage is provided. The number of holes can be greatly reduced, the mold assembly becomes very simple, and the possibility of occurrence of void defects due to air suction during molding is greatly reduced.

【0036】ところで、高電圧巻線の場合、円板状巻線
ユニット間や冷媒流路のような高電界部分にクラックや
剥離欠陥が存在すると、部分放電が生じ長期運転の後に
絶縁破壊に至ることがある。本構成の集熱部材17の挿
入部分および冷媒流路19部分は、巻線と冷媒の接点で
あり、大きな温度差ができ、使用部材の線膨脹率差によ
り生じる熱応力でクラックや剥離欠陥が生じる可能性が
あるが、集熱部材17は、モ−ルド絶縁層18と同様
に、シリカなどの充填材を配合した樹脂で形成されてお
り、巻線本体11、集熱部材17及び冷媒流路形成パイ
プ17d、17eを覆うモ−ルド絶縁層18とほぼ同等
の線膨脹率を有するため、熱応力でクラックや剥離欠陥
が生じる可能性をなくすことができる。したがって、巻
線を樹脂でモ−ルドする際の製造性を総じて向上させる
ことができると共に、絶縁信頼性に優れた静止誘導機器
巻線とすることができる。
In the case of a high-voltage winding, if cracks or peeling defects exist between the disk-shaped winding units or in a high electric field portion such as a refrigerant flow path, partial discharge occurs and dielectric breakdown occurs after long-term operation. Sometimes. The insertion part of the heat collecting member 17 and the refrigerant flow path 19 part of the present configuration are the contact points between the windings and the refrigerant, and a large temperature difference is generated. The heat collecting member 17 is formed of a resin mixed with a filler such as silica, similarly to the mold insulating layer 18, and may be generated. Since it has a linear expansion coefficient substantially equal to that of the mold insulating layer 18 covering the path forming pipes 17d and 17e, it is possible to eliminate the possibility of cracks and peeling defects due to thermal stress. Therefore, it is possible to generally improve the manufacturability when molding the winding with the resin, and it is possible to obtain a static induction machine winding excellent in insulation reliability.

【0037】上記実施例では、集熱部材17をシリカな
どの充填材を配合した樹脂で形成したが、シリカの代わ
りにBN(窒化ホウ素)やALN(窒化アルミニウム)
などの高熱伝導性セラミック粉を充填材として配合した
樹脂で形成すれば、熱応力が緩和できるだけでなく、高
熱伝導性であるため、集熱部の熱抵抗をさらに小さいレ
ベルに抑えることができ、さらに冷却効率を向上させる
ことができる。
In the above embodiment, the heat collecting member 17 is formed of a resin containing a filler such as silica, but instead of silica, BN (boron nitride) or ALN (aluminum nitride) is used.
If it is formed of a resin blended with a high thermal conductive ceramic powder as a filler, not only can thermal stress be reduced, but also because of its high thermal conductivity, the thermal resistance of the heat collecting section can be suppressed to a lower level, Further, the cooling efficiency can be improved.

【0038】また、上記実施例では、各集熱部材17の
冷媒流路形成パイプ17d、17eの相互接続に接着手
段を用いたが、接着する代わりに、図9及び図10に示
すようなゴム状弾性体から成るシ−ル接続部材17jを
用いて、図9に示すように嵌合接続する構成とすれば、
接着が不要となり、型組みが容易になる。また、接着手
段を用いた場合、予め切断加工しておいた冷媒流路形成
パイプ17d、17eが長すぎると、パイプ部で突っ張
ってしまい、集熱部材17と円板状巻線ユニット13が
密接せず、集熱部の熱抵抗が大きくなってしまうことが
あるが、ゴム状弾性体から成るシ−ル接続部材17jを
用いれば、その弾性により製作誤差が吸収できるので、
パイプ部で突っ張ることがなくなり集熱部材17と円板
状巻線ユニット13を密接させることができて集熱部の
熱抵抗が小さい冷却効率の優れた静止誘導機器巻線を得
ることができる。
In the above embodiment, the bonding means is used for interconnecting the refrigerant flow forming pipes 17d and 17e of each heat collecting member 17, but instead of bonding, a rubber as shown in FIGS. 9 and 10 is used. By using a seal connecting member 17j made of an elastic body, a fitting connection is made as shown in FIG.
Adhesion is not required, and mold assembly becomes easy. Also, when the bonding means is used, if the coolant flow path forming pipes 17d and 17e cut in advance are too long, they will be stretched by the pipe portions, and the heat collecting member 17 and the disc-shaped winding unit 13 will be in close contact. Without this, the thermal resistance of the heat collecting part may increase. However, if the seal connecting member 17j made of a rubber-like elastic body is used, a manufacturing error can be absorbed by its elasticity.
Since the heat collecting member 17 and the disc-shaped winding unit 13 can be closely contacted with each other without being stretched by the pipe portion, a static induction device winding having a small heat resistance of the heat collecting portion and excellent cooling efficiency can be obtained.

【0039】[0039]

【発明の効果】本発明は以上の説明で明らかなように、
非ル−プ型細管ヒ−トパイプで巻線本体を構成すると共
に、この巻線本体および複数個の集熱部材を樹脂でモ−
ルド成形し、そのモ−ルド絶縁層内に複数個の集熱部材
により構成され巻線本体の軸方向に沿う冷媒流路を設け
て接続パイプを介して外部熱交換器と接続させる構成と
したので、巻線本体の冷却性能を向上させることがで
き、ひいては全体の構成を小形化及び軽量化することが
でき、また、絶縁信頼性を向上させることができるとい
う優れた効果を奏する。加えて、巻線本体及び集熱部材
をモ−ルド成形する場合に、注型用金型から外へ引き出
すものは二本の冷媒流路形成パイプの一端部だけとなる
ため、従来構成に比べて、樹脂漏れ防止用のシ−ル箇所
を大幅に低減できて、型組みが非常に簡単になると共
に、モールド成形時の空気吸い込みによるボイド欠陥が
発生する可能性も大幅に少なくなり、したがって、製造
性および絶縁信頼性を大幅に向上させることができる。
According to the present invention, as is apparent from the above description,
The winding body is composed of a non-loop type thin tube heat pipe, and the winding body and a plurality of heat collecting members are molded with resin.
In the mold insulating layer, a plurality of heat collecting members are provided in the mold insulating layer, a refrigerant flow path is provided along the axial direction of the winding body, and a connection is made to an external heat exchanger through a connection pipe. As a result, it is possible to improve the cooling performance of the winding main body, thereby reducing the size and weight of the entire structure, and to improve the insulation reliability. In addition, when molding the winding body and the heat collecting member, only one end of the two refrigerant flow path forming pipes is pulled out from the casting mold, so that compared to the conventional configuration. As a result, the number of sealing portions for preventing resin leakage can be greatly reduced, the mold assembly becomes very simple, and the possibility of occurrence of void defects due to air suction during molding is greatly reduced. Manufacturability and insulation reliability can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す静止誘導機器巻線の破
断斜視図
FIG. 1 is a cutaway perspective view of a winding of a stationary induction device showing one embodiment of the present invention.

【図2】図1中II−II線に沿う断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図1中III −III 線に沿う断面図FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】モ−ルド成形する前の状態の巻線本体を示す破
断斜視図
FIG. 4 is a cutaway perspective view showing a winding main body before mold forming.

【図5】本発明で使用する集熱部材を示す斜視図FIG. 5 is a perspective view showing a heat collecting member used in the present invention.

【図6】集熱部材を構成する板状部材を示す斜視図FIG. 6 is a perspective view showing a plate-like member constituting the heat collecting member.

【図7】板状部材の他の実施例の断面図FIG. 7 is a cross-sectional view of another embodiment of the plate member.

【図8】巻線本体を注型用金型に収容した状態を示す破
断斜視図
FIG. 8 is a cutaway perspective view showing a state where the winding body is housed in a casting mold.

【図9】集熱部材の相互接続状態を示す部分断面図FIG. 9 is a partial cross-sectional view showing an interconnected state of a heat collecting member.

【図10】シ−ル接続部材の斜視図FIG. 10 is a perspective view of a seal connecting member.

【図11】従来構成を示す図4相当図FIG. 11 is a diagram corresponding to FIG. 4, showing a conventional configuration.

【図12】従来構成を示す図5相当図FIG. 12 is a diagram corresponding to FIG. 5, showing a conventional configuration.

【符号の説明】[Explanation of symbols]

11は巻線本体、12は細管コンテナ12、13は円板
状の巻線ユニット、16は接続パイプ、17は集熱部
材、17aは冷媒流路、17d,17eは冷媒流路形成
パイプ、18はモールド絶縁層、19は冷媒流路、20
は冷媒流入流路、21は冷媒流出流路、24は注型用金
型、171は板状部材を示す。
11 is a winding body, 12 is a thin tube container 12, 13 is a disk-shaped winding unit, 16 is a connection pipe, 17 is a heat collecting member, 17a is a refrigerant flow path, 17d and 17e are refrigerant flow path forming pipes, 18 Is a mold insulating layer, 19 is a coolant channel, 20
Denotes a refrigerant inflow channel, 21 denotes a refrigerant outflow channel, 24 denotes a casting mold, and 171 denotes a plate member.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 27/08 H01F 27/18 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 27/08 H01F 27/18

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中空管状の細管コンテナの内部に作動液
を封入した非ル−プ型細管ヒ−トパイプで構成されるも
のであって、軸方向に積み重ねられた複数の円板状巻線
ユニットを有する巻線本体と、 前記複数の円板状巻線ユニットの間に前記円板状巻線ユ
ニットの放熱部に密接するように設けられ、内部に冷媒
流路を有する複数個の平板状の集熱部材と、 前記巻線本体及び集熱部材を覆うモ−ルド絶縁層と、 前記集熱部材の冷媒流路と外部熱交換器に接続される接
続パイプとを備え、 前記複数個の集熱部材は、それぞれ絶縁性の樹脂で形成
し、内部の冷媒流路が連通するように前記巻線本体の軸
方向に沿って接続して構成したことを特徴とする静止誘
導機器巻線。
1. A plurality of disc-shaped winding units which are constituted by a non-loop type thin tube heat pipe in which a working fluid is sealed in a hollow tubular thin tube container, and are stacked in the axial direction. A winding body having a plurality of plate-like windings provided between the plurality of disk-like winding units so as to be in close contact with the heat radiating portion of the disk-like winding unit, and having a refrigerant passage therein. A heat insulating member, a mold insulating layer covering the winding body and the heat collecting member, and a connection pipe connected to a refrigerant flow path of the heat collecting member and an external heat exchanger; The static induction device winding, wherein the heat members are each formed of an insulating resin, and are connected along the axial direction of the winding body so that the internal refrigerant flow paths communicate with each other.
【請求項2】 前記集熱部材において、前記円板状巻線
ユニットに当接する部分の肉厚を、他の部分より薄くし
たことを特徴とする請求項1記載の静止誘導機器巻線。
2. The stationary induction machine winding according to claim 1, wherein a thickness of a portion of the heat collecting member that contacts the disc-shaped winding unit is thinner than other portions.
【請求項3】 前記集熱部材は、シリカなどの充填材を
配合した樹脂で形成されており、前記巻線本体及び集熱
部材を覆うモ−ルド絶縁層とほぼ同等の線膨脹率を有す
ることを特徴とする請求項1記載の静止誘導機器巻線。
3. The heat collecting member is formed of a resin containing a filler such as silica, and has a linear expansion coefficient substantially equal to that of a mold insulating layer covering the winding body and the heat collecting member. The winding of a stationary induction machine according to claim 1, wherein:
【請求項4】 前記集熱部材は、窒化ホウ素など高熱伝
導性のセラミック粉を充填材として配合した樹脂で形成
されており、前記巻線本体及び集熱部材を覆うモ−ルド
絶縁層とほぼ同等の線膨脹率を有すると共に、高熱伝導
性であることを特徴とする請求項1記載の静止誘導機器
巻線。
4. The heat collecting member is formed of a resin mixed with a ceramic powder having high thermal conductivity such as boron nitride as a filler, and is substantially formed of a mold insulating layer covering the winding body and the heat collecting member. The static induction device winding according to claim 1, wherein the winding has a similar linear expansion coefficient and high thermal conductivity.
【請求項5】 請求項1記載の静止誘導機器巻線を製造
する方法において、 巻線本体および集熱部材を注型用金型内に収納する工程
と、 前記注型用金型内に樹脂を注入する工程と、 前記注入した樹脂が硬化した後、前記注型用金型を型開
きする工程とを備え、 前記複数個の集熱部材はそれぞれの冷媒流路の連通部分
を相互に接着接続した状態で注型用金型内に収納される
ことを特徴とする静止誘導機器巻線の製造方法。
5. The method for manufacturing a static induction machine winding according to claim 1, wherein the winding body and the heat collecting member are housed in a casting mold, and a resin is provided in the casting mold. And a step of opening the casting mold after the injected resin is cured, wherein the plurality of heat collecting members adhere the communicating portions of the respective coolant flow paths to each other. A method for manufacturing a winding of a static induction device, wherein the winding is stored in a casting mold in a connected state.
【請求項6】 前記各集熱部材の冷媒流路連通部分の相
互接続において、ゴム状弾性体から成るシ−ル接続部材
を用いたことを特徴とする請求項5記載の静止誘導機器
巻線の製造方法。
6. The static induction device winding according to claim 5, wherein a seal connecting member made of a rubber-like elastic material is used for interconnecting the refrigerant flow passage portions of the heat collecting members. Manufacturing method.
JP6252586A 1994-10-19 1994-10-19 Static induction device winding and method of manufacturing the same Expired - Fee Related JP3069011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252586A JP3069011B2 (en) 1994-10-19 1994-10-19 Static induction device winding and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252586A JP3069011B2 (en) 1994-10-19 1994-10-19 Static induction device winding and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08115823A JPH08115823A (en) 1996-05-07
JP3069011B2 true JP3069011B2 (en) 2000-07-24

Family

ID=17239438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252586A Expired - Fee Related JP3069011B2 (en) 1994-10-19 1994-10-19 Static induction device winding and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3069011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045895B1 (en) * 2015-06-18 2019-11-18 엘에스산전 주식회사 Cooling Device of Power Transformer
CN110379608B (en) * 2019-08-01 2024-02-23 国家电网有限公司 Arc-proof winding for secondary side coil of transformer

Also Published As

Publication number Publication date
JPH08115823A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
US4839545A (en) Cooling system for linear motor
US5349498A (en) Integral extended surface cooling of power modules
US6744158B2 (en) Electric machine with cooling rings
US6157282A (en) Transformer cooling method and apparatus therefor
US20070252444A1 (en) Canned Linear Motor Armature and Canned Linear Motor
US6259347B1 (en) Electrical power cooling technique
JP2017511116A (en) Induction motor with transverse liquid-cooled rotor and stator
JP2004537245A (en) Linear motor with cooling structure
KR20050036905A (en) Drive device
JP2005011669A (en) Joint structure of superconducting cable
BRPI0611565B1 (en) HEAT TRANSPORT ARRANGEMENT USED TO THERMICALLY INSULATED ONE OR SEVERAL ELEMENTS, ARRANGEMENT FOR COOLING OF ONE OR VARIOUS ELEMENTS, METHOD FOR NEUTRALIZING OR ELIMINATING TEMPERATURE STRATIFICATION IN A MEDIUM AND USE OF A ARRANGEMENT "
US20040100154A1 (en) Concentrated winding electric motor having optimized winding cooling and slot fill
JP3069011B2 (en) Static induction device winding and method of manufacturing the same
US20140116651A1 (en) Heat sink applicable for eletromagnetic device
JP3192860B2 (en) Static induction device winding and manufacturing method thereof
JP3119995B2 (en) Cooling structure for static induction equipment windings
CN111509910A (en) Motor stator and motor
EP0613179A1 (en) Heat sink
JPH1012458A (en) Resin casting coil and its manufacture
CN114664530A (en) Charging and power receiving coil structure and preparation method
CN108736630B (en) Motor with heat radiation structure
CN106252033A (en) A kind of high-power high-frequency transformer with radiating structure
JPH1022135A (en) Cooling system for stationary induction apparatus
CN220087027U (en) Plane motor
CN115208133B (en) Linear motor and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees