JP3067150B2 - Optical device manufacturing equipment - Google Patents

Optical device manufacturing equipment

Info

Publication number
JP3067150B2
JP3067150B2 JP2050363A JP5036390A JP3067150B2 JP 3067150 B2 JP3067150 B2 JP 3067150B2 JP 2050363 A JP2050363 A JP 2050363A JP 5036390 A JP5036390 A JP 5036390A JP 3067150 B2 JP3067150 B2 JP 3067150B2
Authority
JP
Japan
Prior art keywords
coating material
thin film
substrate
plastic substrate
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2050363A
Other languages
Japanese (ja)
Other versions
JPH03251802A (en
Inventor
孝市 笹川
紳治 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2050363A priority Critical patent/JP3067150B2/en
Publication of JPH03251802A publication Critical patent/JPH03251802A/en
Application granted granted Critical
Publication of JP3067150B2 publication Critical patent/JP3067150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空蒸着法の電子ビーム加熱蒸着に基づ
き、プラスチック基板に光学薄膜を形成するための光学
素子の製造装置に関する。
Description: TECHNICAL FIELD The present invention relates to an optical element manufacturing apparatus for forming an optical thin film on a plastic substrate based on electron beam heating evaporation of a vacuum evaporation method.

〔従来の技術〕[Conventional technology]

プラスチック基板上に形成される光学薄膜は、機能面
から分類すると、反射防止膜、反射増加膜、反射膜、フ
ィルター、偏光フィルター、位相板などに分類され、そ
の多くは光学理論に基づいて構造設計される。その設計
により、単層膜の場合と多層膜の場合とがある。
Optical thin films formed on plastic substrates can be classified into antireflection films, reflection-enhancing films, reflection films, filters, polarizing filters, phase plates, etc., based on their functional aspects, and most of them are structurally designed based on optical theory. Is done. Depending on the design, there are a single-layer film and a multi-layer film.

この光学薄膜は構成材料としては、SiO、SiO2、Zr
O2、MgF2、TiO2、CeO2、ZnS、Al2O3、ZnO、MgOなどの誘
電体、Al、Ag、Au、Geなどの金属又は半金属が使用され
る。
This optical thin film is composed of SiO, SiO 2 , Zr
A dielectric such as O 2 , MgF 2 , TiO 2 , CeO 2 , ZnS, Al 2 O 3 , ZnO, or MgO, or a metal or metalloid such as Al, Ag, Au, or Ge is used.

そして光学薄膜は、一般に0.01〜10μmと薄いため
に、一般には真空蒸着、スパッタリング、イオンプレー
ティングなどで形成される。真空蒸着の場合、被覆材料
を加熱する手段として、抵抗加熱と電子ビーム加熱との
2種がある。抵抗加熱では、融点の低い材質、例えばSi
OX(1≦X<2)しか蒸着できず、それに対して電子ビ
ーム加熱は融点の高い材質、例えばSiO2、ZrO2、TiO2
Mo、W、Ta、Al2O3でも蒸着できる。
Since the optical thin film is generally as thin as 0.01 to 10 μm, it is generally formed by vacuum deposition, sputtering, ion plating, or the like. In the case of vacuum deposition, there are two types of means for heating the coating material: resistance heating and electron beam heating. In resistance heating, a material with a low melting point, such as Si
Only O x (1 ≦ X <2) can be deposited, whereas electron beam heating uses materials with high melting points, such as SiO 2 , ZrO 2 , TiO 2 ,
Mo, W, Ta, Al 2 O 3 can also be deposited.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上述の電子ビーム加熱は、電子ビームを被覆
材料(特に酸化物)にあてて同材料を加熱蒸発させる
が、電子ビームを被覆材料にあてると、同材料を経て広
角に広がった電子ビームより多数の電子が散乱するとい
う自然現象が起きてしまい、他方、光学部品として使用
されるプラスチック基板(主にアクリル)の有機高分子
は、それに電子ビームやイオンビームなどのエネルギー
を与えると、イオンやラジカルが生成されて、その化学
活性力により分解反応が生じる。上述の散乱された多数
の電子が前記基板に接触すると、該基板の表面層に有機
高分子の分解反応につられて電子の分解反応も起きて同
表面層を低分子化させてしまい、そのために、表面層に
接着する前記薄膜の密着性が低下するという問題点が生
じる。
However, in the electron beam heating described above, an electron beam is applied to a coating material (especially an oxide) to heat and evaporate the material. However, when the electron beam is applied to the coating material, the electron beam spreads over a wide angle through the same material. A natural phenomenon occurs in which a large number of electrons are scattered. On the other hand, the organic polymer of a plastic substrate (mainly acrylic) used as an optical component is exposed to energy such as an electron beam or an ion beam to produce ions or ions. Radicals are generated, and a decomposition reaction occurs due to the chemical activity. When a large number of the above-mentioned scattered electrons come into contact with the substrate, the decomposition reaction of the organic polymer is caused on the surface layer of the substrate, and the decomposition reaction of the electrons also occurs to lower the surface layer to a low molecular weight. In addition, there is a problem that the adhesion of the thin film adhered to the surface layer is reduced.

そのために、従来では電子ビーム加熱蒸着により前記
基板上に形成された光学薄膜が、形成の後に前記基板よ
り剥離されてしまうという問題点があった。
Therefore, conventionally, there has been a problem that an optical thin film formed on the substrate by electron beam heating vapor deposition is peeled off from the substrate after formation.

従って、本発明はこれら問題点に鑑みてなされたもの
で、電子ビーム加熱によっても、その後に形成された光
学薄膜が前述のプラスチック基板の表面から剥離するこ
となく、同薄膜の密着性を向上させた光学素子の製造装
置を得ることを目的とする。
Accordingly, the present invention has been made in view of these problems, and even after electron beam heating, the optical thin film formed thereafter does not peel off from the surface of the above-mentioned plastic substrate, thereby improving the adhesion of the thin film. It is an object of the present invention to obtain an optical device manufacturing apparatus.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは研究を進めた結果、真空蒸発法に基づ
き、電子ビーム加熱により被覆材料を蒸発させ、蒸発し
た被覆材料からなる薄膜を光学部品として使用されるプ
ラスチック基板に光学薄膜として成膜して、プラスチッ
ク基板と光学薄膜とにより形成される光学素子の製造す
る装置又は方法において、被覆材料と前記プラスチック
基板との間に間隔をもって複数の励磁手段を並設するよ
うにした。そして、電子ビーム加熱より蒸発した被覆材
料が磁界を経てプラスチック基板に到達し、光学薄膜を
プラスチック基板に形成することで、前記問題点が生じ
ないことを見いだして、本発明の目的を達成するに至っ
た。
As a result of the research conducted by the present inventors, based on the vacuum evaporation method, the coating material was evaporated by electron beam heating, and a thin film made of the evaporated coating material was formed as an optical thin film on a plastic substrate used as an optical component. Thus, in an apparatus or a method for manufacturing an optical element formed by a plastic substrate and an optical thin film, a plurality of excitation means are arranged in parallel with a space between the coating material and the plastic substrate. Then, the coating material evaporated from the electron beam heating reaches the plastic substrate via the magnetic field, and the optical thin film is formed on the plastic substrate. Reached.

[作用] 前述のように本発明では、真空蒸着法に基づき、電子
ビーム加熱により被覆材料を加熱し、プラスチック基板
に光学薄膜を形成するときに、被覆材料とプラスチック
基板の間に、複数の励磁手段により磁界が設けられてい
るので、散乱された電子はプラスチック基板に到達しな
い。したがって、蒸発された被覆材料だけが磁界を経て
プラスチック基板に到達するので、プラスチック基板に
形成された光学薄膜がその基板から剥離してしまうこと
は無い。
[Operation] As described above, in the present invention, when a coating material is heated by electron beam heating based on a vacuum deposition method to form an optical thin film on a plastic substrate, a plurality of excitations are caused between the coating material and the plastic substrate. Because the magnetic field is provided by the means, the scattered electrons do not reach the plastic substrate. Therefore, since only the evaporated coating material reaches the plastic substrate via the magnetic field, the optical thin film formed on the plastic substrate does not peel off from the substrate.

次に、図面により本発明の実施例を説明する。ただ
し、ここでいう「プラスチック基板」とは、単なる平板
にとどまらず、レンズまたはプリズムなどの光学素子で
あっても良い。
Next, an embodiment of the present invention will be described with reference to the drawings. However, the “plastic substrate” here is not limited to a simple flat plate, but may be an optical element such as a lens or a prism.

〔第1実施例〕 第1図は、本発明の第1実施例に係り、前述の電界を
設けたときの光学素子の製造装置を示す概略構成図であ
る。
[First Embodiment] FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing an optical element when the above-described electric field is provided according to a first embodiment of the present invention.

同図において、真空チャンバー1内には、その上側に
配設された支持板2に、光学部品として使用される多数
のプラスチック基板3がセットされている。真空チャン
バー1内の下側には、電子ビームを発光する光源4が配
置されており、光源4の発光部4aには被覆材料5が設け
られている。前記基板3と被覆材料5との間には、該材
料5および前記基板3との離間状態を保って金属片6が
配設されている。真空チャンバー1の外部には、金属片
6に高電圧を印加させるための印加手段7が設けられて
いる。
In FIG. 1, in a vacuum chamber 1, a large number of plastic substrates 3 used as optical components are set on a support plate 2 disposed on the upper side thereof. A light source 4 that emits an electron beam is disposed below the vacuum chamber 1, and a light-emitting portion 4 a of the light source 4 is provided with a coating material 5. A metal piece 6 is provided between the substrate 3 and the coating material 5 while keeping the material 5 and the substrate 3 separated. An application unit 7 for applying a high voltage to the metal piece 6 is provided outside the vacuum chamber 1.

以上の構成であるから、印加手段7により金属片6に
高電圧を印加させた状態において、光源4より電子ビー
ムを被覆材料5にあてると、同材料5を経て広角に広が
った電子ビームより多数の電子が散乱する一方、被覆材
料5と前記印加中の金属片6との間に電界が発生する。
この電界にて前記多数の電子が前述の吸引作用により金
属片6に吸着され、電子ビームより蒸発された前記材料
は金属片6の周辺を経て夫々の前記基板3に成膜され
る。
With the above configuration, when the electron beam is applied to the coating material 5 from the light source 4 in a state where a high voltage is applied to the metal piece 6 by the application unit 7, more electron beams are spread through the material 5 at a wide angle. Are scattered, while an electric field is generated between the coating material 5 and the metal piece 6 being applied.
In this electric field, the large number of electrons are adsorbed on the metal piece 6 by the above-mentioned attraction action, and the material evaporated from the electron beam is formed on the respective substrates 3 via the periphery of the metal piece 6.

第2図は、本発明の第2実施例に係り、前述の磁界を
設けたときの光学素子の製造装置を示す概略構成図であ
る。
FIG. 2 is a schematic configuration diagram showing an apparatus for manufacturing an optical element when the above-described magnetic field is provided according to a second embodiment of the present invention.

この第2図中、第1図中と同一符号の部材は同一部材
であるので、説明を省略する。同図において、被覆材料
5より前記基板3の方に向けた直線lと垂直に位置する
面内Aに、反発力作用の磁界が生じる程の間隔をもって
多数の磁石8が並列されており、これらの磁石8は支持
部材9を経て真空チャンバー1の内周壁に支持されてい
る。
In FIG. 2, the members having the same reference numerals as those in FIG. 1 are the same members, and the description thereof will be omitted. In the figure, a large number of magnets 8 are arranged in parallel in an in-plane A located perpendicular to a straight line 1 from the coating material 5 toward the substrate 3 with an interval such that a repulsive magnetic field is generated. The magnet 8 is supported on the inner peripheral wall of the vacuum chamber 1 via a support member 9.

真空チャンバー1内の上方からみた前記多数の磁石8
の構成を第3図に示し、放射状に伸びた構成からなって
いる。この放射状に伸びた各方向の構成は同一である
が、一部は簡略のために2点鎖線で示されている。第2
図中の面内Aと第3図の紙面内とは同一であり、この面
内に位置する径方向、円周方向およびインボリュート曲
線の方向に、反発力が互いに作用する磁界が生じるよう
に、多数の磁石8が間隔をもって配置されており、これ
らの磁石8は支持部材9を経て第2図中の真空チャンバ
ー1の内周壁に支持されている。尚、前記多数の磁石8
は、反発力作用の磁界を発生させるための励磁手段を構
成する。
The large number of magnets 8 as viewed from above in the vacuum chamber 1
3 is shown in FIG. 3 and has a radially extended configuration. The configuration in each direction extending in the radial direction is the same, but a part is shown by a two-dot chain line for simplification. Second
The plane A in the figure is the same as the plane of the paper in FIG. 3, and a magnetic field in which repulsive force acts in the radial direction, the circumferential direction, and the direction of the involute curve located in this plane is generated. A large number of magnets 8 are arranged at intervals, and these magnets 8 are supported on the inner peripheral wall of the vacuum chamber 1 in FIG. The large number of magnets 8
Constitutes an exciting means for generating a repulsive magnetic field.

以上の構成であるから、第2図に示す光源4より電子
ビームを被覆材料5にあてると、前述と同様に発生され
る散乱電子は、前記磁石8の間隔に生じる磁界の前記反
発力により、前記光源4の方に移動され、そのために前
記基板3への接触を防止することができる。この状態で
あるから、前述の蒸発された前記材料だけが前記磁界を
経て光学薄膜として基板3に成膜される。
With the above configuration, when an electron beam is applied to the coating material 5 from the light source 4 shown in FIG. 2, scattered electrons generated in the same manner as described above are generated by the repulsive force of the magnetic field generated in the space between the magnets 8. The light source 4 is moved toward the light source 4, so that contact with the substrate 3 can be prevented. In this state, only the above-mentioned evaporated material is formed on the substrate 3 as an optical thin film via the magnetic field.

次に、第1図示もしくは第2図示の本装置を使用して
光学素子を作製した夫々の試作例を述べる。
Next, a description will be given of respective trial production examples in which an optical element is produced by using the present apparatus shown in FIG. 1 or 2.

〔試作例1〕 第1図示の本装置を用いて、真空チャンバー1内の支
持板に前記多数のプラスチック基板3をセットし、チャ
ンバー1内を1×10-5Torrまでに排気した。その後に印
加手段7により、500Vの高電圧を金属片6に印加して、
電子ビーム加熱蒸着に基づき、Al2O3、ZrO2、SiO2の被
覆材料5を順に加熱蒸発した。このとき被覆材料5を経
て広角に広がった電子ビームより多数の電子が散乱し、
前記金属片6の周辺の電界における吸引作用により、前
記多数の電子が金属片6に吸着された。他方、電子ビー
ムより蒸発された前記材料が、金属片6の周辺を経て前
記基板3上に順次蒸着され、そのために基板3上に3層
の反射防止膜が形成された。
[Trial Production Example 1] Using the apparatus shown in FIG. 1, a large number of the plastic substrates 3 were set on a support plate in a vacuum chamber 1, and the inside of the chamber 1 was evacuated to 1 × 10 −5 Torr. Thereafter, a high voltage of 500 V is applied to the metal piece 6 by the application means 7,
The coating material 5 of Al 2 O 3 , ZrO 2 , and SiO 2 was heated and evaporated in order based on electron beam heating deposition. At this time, a large number of electrons are scattered from the electron beam spread at a wide angle via the coating material 5, and
The large number of electrons were adsorbed to the metal piece 6 by the attraction action in the electric field around the metal piece 6. On the other hand, the material evaporated from the electron beam was sequentially deposited on the substrate 3 through the periphery of the metal piece 6, so that a three-layer antireflection film was formed on the substrate 3.

〔試作例2〕 試作例1の基板セットから500Vの高電圧印加までと同
様の過程を経て、電子ビーム加熱により、ZrO2、SiO2
ZrO2、SiO2、ZrO2、SiO2の被覆材料5を順に加熱蒸発し
た。このときも前述と同様に多数の電子が散乱して金属
片6に吸着され、蒸発された前記材料は金属片5の周辺
を経て前記基板3上に順次蒸着し、このために、基板3
上に6層の反射防止膜が形成された。
[Trial Production Example 2] Through the same process as from the substrate set in Trial Production Example 1 to the application of a high voltage of 500 V, ZrO 2 , SiO 2 ,
The coating material 5 of ZrO 2 , SiO 2 , ZrO 2 , and SiO 2 was heated and evaporated in order. Also at this time, a large number of electrons are scattered and adsorbed on the metal piece 6 in the same manner as described above, and the evaporated material is sequentially deposited on the substrate 3 through the periphery of the metal piece 5.
A six-layer antireflection film was formed thereon.

〔試作例3〕 第2図示の本装置を用いて、前記多数のプラスチック
基板3をセットし、その後に電子ビーム加熱により、Zr
O2、SiO2、ZrO2、SiO2、ZrO2、SiO2の被覆材料5を順に
加熱蒸発した。このときも前述と同様に多数の電子が散
乱したが、これらの電子は、前記磁石8の間に位置する
磁界の前記反発力により光源4と磁石8との間に行き留
まった。他方、電子ビームより蒸発された前記材料は磁
界を経て前記基板3上に順次蒸着され、6層の反射防止
膜が形成された。
[Trial Production Example 3] Using the present apparatus shown in FIG. 2, a large number of the plastic substrates 3 were set, and then Zr was heated by electron beam.
The coating material 5 of O 2 , SiO 2 , ZrO 2 , SiO 2 , ZrO 2 , and SiO 2 was heated and evaporated in this order. At this time, a large number of electrons were scattered in the same manner as described above, but these electrons stopped between the light source 4 and the magnet 8 due to the repulsive force of the magnetic field located between the magnets 8. On the other hand, the material evaporated from the electron beam was sequentially deposited on the substrate 3 via a magnetic field to form a six-layer antireflection film.

〔試作例4〕 試作例3と同様に前記基板3をセットし、その後に電
子ビーム加熱により、MgO、ZrO2とTiO2の混合物、SiO2
の被覆材料5を順に加熱蒸発した。このときも前述と同
様に散乱された多数の電子は、前記磁界における前記反
発力により光源4と磁石8との間に生き留まり、蒸発さ
れた前記材料だけが磁界を経て前記基板3上に順次蒸着
された。この蒸着により前記基板3上に3層の光学薄膜
が形成された。
[Trial Production Example 4] The substrate 3 was set in the same manner as in Trial Production Example 3, and then MgO, a mixture of ZrO 2 and TiO 2 , SiO 2
Was heated and evaporated in order. Also at this time, a large number of electrons scattered in the same manner as described above survive between the light source 4 and the magnet 8 due to the repulsive force in the magnetic field, and only the evaporated material is sequentially deposited on the substrate 3 via the magnetic field. Deposited. By this vapor deposition, three optical thin films were formed on the substrate 3.

〔比較例1〕 第1図中の金属板6および第2図の磁石8を設けず、
被覆材料5と前記基板3との間に何も配設しない従来の
装置を用いて、電子ビーム加熱により、Al2O3、ZrO2、S
iO2の被覆材料を順に加熱蒸発し、前記基板3上に順次
蒸着させることにより、同基板3上に3層の反射防止膜
を形成した。
Comparative Example 1 The metal plate 6 in FIG. 1 and the magnet 8 in FIG. 2 were not provided.
Using a conventional apparatus in which nothing is disposed between the coating material 5 and the substrate 3, Al 2 O 3 , ZrO 2 , S
The coating material of iO 2 was sequentially heated and evaporated, and was sequentially deposited on the substrate 3 to form a three-layer antireflection film on the substrate 3.

以上より作製した試作例1〜4および比較例1の夫々
の光学素子を用いて、次のような試験を行った。この結
果を第1表に示す。
The following tests were performed using each of the optical elements of Prototype Examples 1 to 4 and Comparative Example 1 produced as described above. Table 1 shows the results.

〔試験例1〕 薄膜表面にセロハンテープを貼ったのち、思い切り剥
がして薄膜の密着性を調べた。
[Test Example 1] After a cellophane tape was stuck on the surface of the thin film, it was peeled off thoroughly and the adhesion of the thin film was examined.

〔試験例2〕 50℃−90%RHの恒温恒湿器内に24時間放置し、その後
に剥離の有無により薄膜の耐湿性を調べた。
[Test Example 2] The film was left to stand in a thermo-hygrostat at 50 ° C.-90% RH for 24 hours, and thereafter, the moisture resistance of the thin film was examined based on the presence or absence of peeling.

〔試験例3〕 70℃の恒温器に24時間放置し、その後に剥離の有無に
より、薄膜の耐熱性を調べた。
[Test Example 3] The thin film was allowed to stand in a thermostat at 70 ° C for 24 hours, and thereafter, the heat resistance of the thin film was examined based on the presence or absence of peeling.

〔試験例4〕 エーテル80%にメチルアルコール20%の混合液を、シ
ルボン紙にたっぷり染み込ませ、そのシルボン紙を薄膜
表面に強く10回こすって、薄膜の耐擦傷性を調べた。
[Test Example 4] A mixture of 80% ether and 20% methyl alcohol was sufficiently impregnated into silbon paper, and the silbon paper was strongly rubbed on the surface of the thin film ten times to examine the scratch resistance of the thin film.

この第1表によれば、試作例1〜4の方が、比較例1
よりも薄膜の密着性、耐湿性などが向上することができ
た。
According to Table 1, the prototypes 1 to 4 are comparative examples 1
The adhesiveness of the thin film, the moisture resistance, and the like could be improved as compared with those of the thin film.

〔試作例5〕 第1図に示す本装置を用いて、前述の試作例1の基板
セットから500Vの高電圧印加までと同様の過程を経て、
電子ビーム加熱よりZrO2の被覆材料5を加熱蒸発した。
このときも前述と同様に、被覆材料5を経た電子ビーム
より多数の電子が散乱して、前記印加中の金属片6に吸
着され、蒸発された上記材料は金属片6の周辺の電界を
経て基板3上に蒸着し、これにより同基板3上に単層の
反射防止膜が形成された。
[Trial Production Example 5] By using the present apparatus shown in FIG. 1, through the same process as the above-described trial production example 1 from the substrate setting to the application of a high voltage of 500 V,
The coating material 5 of ZrO 2 was heated and evaporated by electron beam heating.
At this time, similarly to the above, a large number of electrons are scattered from the electron beam passing through the coating material 5, are adsorbed by the metal piece 6 being applied, and the evaporated material is passed through an electric field around the metal piece 6. Evaporation was performed on the substrate 3, whereby a single-layer antireflection film was formed on the substrate 3.

〔試作例6〕 第2図示の本装置を用いて、試作例3と同様に前記基
板3をセットし、その後に電子ビーム加熱により、ZrO2
の被覆材料5を加熱蒸発した。このときも前述と同様に
多数の電子が散乱して、前記磁界における前記反発力に
より光源4と磁石8との間に生き留まり、電子ビームよ
り蒸発された前記材料が前記磁界を経て前記基板3上に
蒸着し、試作例5と同様に、基板3上に単層の反射防止
膜が形成された。
[Trial Production Example 6] Using the present apparatus shown in FIG. 2, the substrate 3 was set in the same manner as in Trial Production Example 3, and then ZrO 2 was heated by electron beam heating.
Was heated and evaporated. Also at this time, a large number of electrons are scattered in the same manner as described above, and survive between the light source 4 and the magnet 8 by the repulsive force in the magnetic field, and the material evaporated from the electron beam passes through the magnetic field to the substrate 3. A single-layer antireflection film was formed on the substrate 3 in the same manner as in Prototype Example 5.

〔比較例2〕 前述の比較例1と同様に、第1図中の金属板6および
第2図の磁石8を設けず、被覆材料5と前記基板3との
間に何も配設しない従来の装置を用いて、電子ビーム加
熱により、ZrO2の被覆材料5を加熱蒸発し、前記基板3
上に蒸着させることにより、同基板3上に単層の反射防
止膜が形成された。
[Comparative Example 2] Similar to Comparative Example 1, the metal plate 6 in FIG. 1 and the magnet 8 in FIG. 2 are not provided, and nothing is disposed between the coating material 5 and the substrate 3. The coating material 5 of ZrO 2 is heated and evaporated by electron beam heating using the apparatus described above.
A single-layer antireflection film was formed on the substrate 3 by vapor deposition.

前述の試作例3と共に試作例5、6および比較例2に
おいて、電子ビームによる被覆材料5の加熱蒸発の最中
に、ファラデーカップを用いて前記基板3付近の電子量
を測定した。その結果を第2表に示す。
In Prototype Examples 5, 6 and Comparative Example 2 as well as Prototype Example 3 described above, the amount of electrons near the substrate 3 was measured using a Faraday cup during heating and evaporation of the coating material 5 by an electron beam. Table 2 shows the results.

第2表によれば、試作例3、5、6の方が、比較例2
よりも、前記基板3近傍の電子量が少なくなっているこ
とが証明できた。
According to Table 2, the prototypes 3, 5, and 6 are compared with the comparative example 2.
It was proved that the amount of electrons in the vicinity of the substrate 3 was smaller than that of the substrate 3.

また、試作例5、6および比較例2の夫々の光学素子
を用いて、前述の試験例1〜3と同様に、試験を行っ
た。この結果を第3表に示す。
In addition, tests were performed in the same manner as in Test Examples 1 to 3 using the optical elements of Prototype Examples 5 and 6 and Comparative Example 2. Table 3 shows the results.

第3表も、前述の第1表と同様に、試作例5、6の方
が、比較例2よりも薄膜の密着性、耐湿性などが向上す
ることができた。
In Table 3, similarly to Table 1 described above, the prototypes 5 and 6 were able to improve the adhesiveness and moisture resistance of the thin film as compared with Comparative Example 2.

前述の実施例によれば、第1図中の金属片3は、基板
3に平行に位置しているが、これに限らず、基板3の一
面と直交する方向(図中では縦方向)に沿って基板3を
立設するように構成しても良く、基板3の周辺に生じる
電界により散乱電子を金属片3に吸着させ、これにより
前述と同様に効果が得られるのはいうまでもない。
According to the above-described embodiment, the metal piece 3 in FIG. 1 is positioned parallel to the substrate 3, but is not limited thereto, and may be in a direction (vertical direction in the figure) orthogonal to one surface of the substrate 3. The substrate 3 may be erected along the surface, and the scattered electrons are adsorbed on the metal piece 3 by the electric field generated around the substrate 3, so that the same effect as described above can be obtained. .

また、第2図に示す多数の磁石8は、第3図により、
径方向およ円周方向に間隔をもって並設させたが、別の
構成として第2図中の面内Aに、前記磁界が生じる程の
間隔をもって行列状に並設してもよく、さらに前記多数
の磁石8の代わりに、電磁コイルを並設すると共に、同
コイルを経て反発力作用の磁界を発生させるための励磁
部を、例えば第2図中のチャンバー1の外部に設けても
よく、前述と同様に効果を得ることができる。
Further, the large number of magnets 8 shown in FIG.
Although they are arranged side by side in the radial direction and the circumferential direction, they may be juxtaposed in a matrix in an in-plane A in FIG. 2 with an interval enough to generate the magnetic field. Instead of a large number of magnets 8, an electromagnetic coil may be provided in parallel, and an exciting unit for generating a repulsive magnetic field via the coil may be provided, for example, outside the chamber 1 in FIG. The effect can be obtained in the same manner as described above.

さらにまた、本実施例では電子ビーム加熱蒸着だけを
行なうために、光学素子の量産性も向上させることがで
きる。
Furthermore, in this embodiment, since only electron beam heating evaporation is performed, mass productivity of optical elements can be improved.

[発明の効果] 以上の発明によれば、真空蒸着法に基づき、電子ビー
ム加熱により被覆材料を加熱し、プラスチック基板に光
学薄膜を形成する場合に、被覆材料とプラスチック基板
との間に間隔をもって複数の磁石を配置したため、被覆
材料とプラスチック基板との間に磁界が形成され、散乱
された電子がプラスチック基板に到達することを防ぐこ
とができる。
[Effects of the Invention] According to the above invention, when a coating material is heated by electron beam heating based on a vacuum evaporation method to form an optical thin film on a plastic substrate, a gap is provided between the coating material and the plastic substrate. Since a plurality of magnets are arranged, a magnetic field is formed between the coating material and the plastic substrate, so that scattered electrons can be prevented from reaching the plastic substrate.

従って、蒸発された被覆材料だけが前記基板に蒸着し
て、その後に形成される前記基板上の光学薄膜が、前記
基板から剥離されてしまうことはなく、密着性を向上さ
せることができる。
Therefore, only the evaporated coating material is vapor-deposited on the substrate, and the optical thin film formed on the substrate afterward is not separated from the substrate, so that the adhesion can be improved.

また、電子ビーム加熱蒸着で前記基板に成膜できる事
から、被覆材料に制限がなく、反射防止膜、反射膜など
の所望の光学特性を有する光学素子を製造することがで
きる
Further, since the film can be formed on the substrate by electron beam heating evaporation, the coating material is not limited, and an optical element having desired optical characteristics such as an antireflection film and a reflection film can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の第1実施例に係る光学素子の製造装
置を示す概略構成図である。 第2図は、本発明の第2実施例に係る光学素子の製造装
置を示す概略構成図である。 第3図は、第2図中の多数の磁石8を構成した概略上面
図である。 〔主要部分の符号の説明〕 3……プラスチック基板、4……光源 5……被覆材料、6……金属片 7……印加手段、8……磁石
FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing an optical element according to a first embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing an optical element manufacturing apparatus according to a second embodiment of the present invention. FIG. 3 is a schematic top view showing a number of magnets 8 in FIG. [Description of Signs of Main Parts] 3 ... Plastic substrate, 4 ... Light source 5 ... Coating material, 6 ... Metal piece 7 ... Applying means, 8 ... Magnet

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 1/00 - 1/12 G02B 5/20 - 5/28 C23C 14/00 - 14/58 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 1/00-1/12 G02B 5/20-5/28 C23C 14/00-14/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空蒸着法に基づき、電子ビーム加熱によ
り被覆材料を蒸発させ、蒸発した前記被覆材料からなる
薄膜を光学部品として使用されるプラスチック基板に、
光学薄膜として成膜し、前記プラスチック基板と前記光
学薄膜とにより形成される光学素子の製造装置におい
て、 前記被覆材料と前記プラスチック基板との間に間隔をも
って並設し、磁界を形成する複数の励磁手段を設け、前
記電子ビーム加熱より蒸発した前記被覆材料が前記磁界
を経て前記プラスチック基板に到達することで、前記光
学薄膜を前記プラスチック基板に形成することを特徴と
する光学素子の製造装置。
1. A coating material is evaporated by electron beam heating based on a vacuum evaporation method, and a thin film made of the evaporated coating material is formed on a plastic substrate used as an optical component.
In an apparatus for manufacturing an optical element formed as an optical thin film and formed by the plastic substrate and the optical thin film, a plurality of excitations are arranged in parallel with a distance between the coating material and the plastic substrate to form a magnetic field. Means for forming the optical thin film on the plastic substrate by providing a means and allowing the coating material evaporated by the electron beam heating to reach the plastic substrate via the magnetic field.
【請求項2】真空蒸着法に基づき、電子ビーム加熱によ
り被覆材料を蒸発させ、蒸発した前記被覆材料からなる
薄膜を光学部品として使用されるプラスチック基板に、
光学薄膜として成膜し、前記プラスチック基板と前記光
学薄膜とにより形成される光学素子の製造方法におい
て、 前記被覆材料と前記プラスチック基板との間に間隔をも
って複数の励磁手段を並設し、前記電子ビーム加熱より
蒸発した前記被覆材料が前記磁界を経て前記プラスチッ
ク基板に到達することで、前記光学薄膜を前記プラスチ
ック基板に形成することを特徴とする光学素子の製造方
法。
2. A coating material is evaporated by electron beam heating based on a vacuum deposition method, and a thin film made of the evaporated coating material is formed on a plastic substrate used as an optical component.
In the method for producing an optical element formed as an optical thin film and formed by the plastic substrate and the optical thin film, a plurality of exciting means are arranged in parallel with an interval between the coating material and the plastic substrate, and The method of manufacturing an optical element, wherein the coating material evaporated by the beam heating reaches the plastic substrate via the magnetic field, thereby forming the optical thin film on the plastic substrate.
JP2050363A 1990-03-01 1990-03-01 Optical device manufacturing equipment Expired - Lifetime JP3067150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050363A JP3067150B2 (en) 1990-03-01 1990-03-01 Optical device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050363A JP3067150B2 (en) 1990-03-01 1990-03-01 Optical device manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03251802A JPH03251802A (en) 1991-11-11
JP3067150B2 true JP3067150B2 (en) 2000-07-17

Family

ID=12856811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050363A Expired - Lifetime JP3067150B2 (en) 1990-03-01 1990-03-01 Optical device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3067150B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279667A (en) * 1985-06-04 1986-12-10 Matsushita Electric Ind Co Ltd Formation device for thin film by vacuum evaporation
JPS61279801A (en) * 1985-06-06 1986-12-10 Olympus Optical Co Ltd Anti-reflection film for optical parts and its formation
JPS6243601A (en) * 1985-08-22 1987-02-25 Kyowa Gas Chem Ind Co Ltd Formation of multilayered reflection preventive film of optical parts made of synthetic resin

Also Published As

Publication number Publication date
JPH03251802A (en) 1991-11-11

Similar Documents

Publication Publication Date Title
TW320687B (en)
TW200404907A (en) Optical antireflection film and process for forming the same
Collins et al. Effect of ion bombardment on the adhesion of aluminium films on glass
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
JPS63908A (en) Manufacture of transparent conducting film
JP3067150B2 (en) Optical device manufacturing equipment
US6494997B1 (en) Radio frequency magnetron sputtering for lighting applications
US2553289A (en) Method for depositing thin films
US20200165716A1 (en) Film forming method and film forming apparatus
US2463906A (en) Apparatus and method for making optical devices
US5637199A (en) Sputtering shields and method of manufacture
JPH0560904A (en) Optical parts and production thereof
JPS5824143A (en) Photomask
JPS5585671A (en) Sputtering apparatus
JPH0273963A (en) Formation of thin film on low-temperature substrate
JP4396885B2 (en) Magnetron sputtering equipment
JPS6277477A (en) Thin film forming device
JPS6176662A (en) Method and device for forming thin film
JP2000038663A (en) Magnetron sputtering device
TW583323B (en) Manufacturing process of depositing anti-reflection film at room temperature and low reflectivity polarizer manufactured by the same
JPS6017070A (en) Method and device for forming thin film
JPS5831078A (en) Method and device for pretreatment of film substrate
JPS6112992B2 (en)
JPS63274754A (en) Method for adhering thin film
JP2003193221A (en) Method for forming vacuum deposited film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10