JP3065714B2 - Fine movement mechanism of scanning tunneling microscope - Google Patents

Fine movement mechanism of scanning tunneling microscope

Info

Publication number
JP3065714B2
JP3065714B2 JP3144865A JP14486591A JP3065714B2 JP 3065714 B2 JP3065714 B2 JP 3065714B2 JP 3144865 A JP3144865 A JP 3144865A JP 14486591 A JP14486591 A JP 14486591A JP 3065714 B2 JP3065714 B2 JP 3065714B2
Authority
JP
Japan
Prior art keywords
scanning
fine movement
piezo element
movement mechanism
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3144865A
Other languages
Japanese (ja)
Other versions
JPH04369406A (en
Inventor
栄市 羽崎
一雄 青木
理 山田
福原  悟
昭 橋本
龍二 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP3144865A priority Critical patent/JP3065714B2/en
Publication of JPH04369406A publication Critical patent/JPH04369406A/en
Application granted granted Critical
Publication of JP3065714B2 publication Critical patent/JP3065714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は走査型トンネル顕微鏡の
微動機構に係り、特に、走査移動能力を高め且つ精度良
く測定を行える走査型トンネル顕微鏡の微動機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement mechanism of a scanning tunneling microscope, and more particularly to a fine movement mechanism of a scanning tunneling microscope capable of improving a scanning movement ability and performing accurate measurement.

【0002】[0002]

【従来の技術】従来の走査型トンネル顕微鏡(以下、S
TMと記す)の微動機構は、種々の方式のものが提案さ
れている。例えば特開昭63−236992号公報に開
示されるように、円筒形状をしたピエゾ素子の内周面と
外周面の所定の位置に電極を複数配設し、各電極を適宜
に組み合わせて電圧を印加することにより、試料の凹凸
に対応して探針の微動、あるいは試料表面における走査
移動を行うように構成される。具体的に、探針の接近・
退却の微動移動は円筒形状をしたピエゾ素子の軸方向の
伸縮変形で行われ、探針の走査移動は、前記ピエゾ素子
の曲げ変形によって行われる。また、トライポッド形式
の微動機構も存在する。この微動機構は、互いに直角に
配置された3つの棒状ピエゾ素子をベース部材に取り付
け、そのうち1つのピエゾ素子の先部に探針ホルダを設
けて、探針を試料に対し接近・退却移動させると共に、
残りの2つのピエゾ素子が探針を試料表面に沿って走査
させるように構成される。
2. Description of the Related Art A conventional scanning tunneling microscope (hereinafter referred to as S
Various types of fine movement mechanisms (referred to as TM) have been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 63-236992, a plurality of electrodes are arranged at predetermined positions on the inner peripheral surface and the outer peripheral surface of a cylindrical piezo element, and a voltage is applied by appropriately combining the respective electrodes. When applied, the probe is configured to perform fine movement of the probe or scanning movement on the surface of the sample in accordance with the unevenness of the sample. Specifically, approaching the probe
The fine movement of the retreat is performed by the axial expansion and contraction deformation of the cylindrical piezo element, and the scanning movement of the probe is performed by the bending deformation of the piezo element. There is also a tripod-type fine movement mechanism. In this fine movement mechanism, three rod-shaped piezo elements arranged at right angles to each other are attached to a base member, a probe holder is provided at the tip of one of the piezo elements, and the probe is moved toward and away from the sample while being moved. ,
The remaining two piezo elements are configured to scan the probe along the sample surface.

【0003】[0003]

【発明が解決しようとする課題】従来の円筒形状のピエ
ゾ素子を有するSTMの微動機構では、探針の走査範囲
を広くしようとする場合、円筒形状のピエゾ素子の軸方
向の長さ寸法を大きくする必要があり、その結果、固有
振動数の低下を招き、外部からの振動の影響を大きく受
け、高精度の測定ができないという問題があった。また
トライポッド形式の微動機構では、接近・退却用のピエ
ゾ素子が伸縮動作を行うとき、試料表面に沿った走査を
行うための2つのピエゾ素子による制約を受けながら伸
縮動作を行わなければならないため、精度良く探針の軸
方向の微動を行うことができないという問題を有すると
いう不具合が存在した。
In the conventional STM fine movement mechanism having a cylindrical piezo element, if the scanning range of the probe is to be widened, the axial length of the cylindrical piezo element must be increased. As a result, there is a problem in that the natural frequency is reduced, the influence of external vibration is great, and high-precision measurement cannot be performed. Also, in the tripod-type fine movement mechanism, when the approaching / retreating piezo element performs the expansion and contraction operation, the expansion and contraction operation must be performed while being restricted by the two piezo elements for scanning along the sample surface. There is a problem that there is a problem that a fine movement in the axial direction of the probe cannot be performed with high accuracy.

【0004】また、従来のSTMの微動機構では、試料
と微動機構とが接近して配置されるため、高温の試料を
観察する場合、試料の熱により微動機構のピエゾ素子の
精度が劣化し、精度の高い測定を行うことができないと
いう問題も存在した。
In the conventional STM fine movement mechanism, since the sample and the fine movement mechanism are arranged close to each other, when observing a high-temperature sample, the accuracy of the piezo element of the fine movement mechanism deteriorates due to the heat of the sample. There was also a problem that highly accurate measurement could not be performed.

【0005】本発明の目的は、上記の問題に鑑み、試料
の温度状態に関係なく、広い走査範囲で且つ高い精度で
測定を行うことができる構造を有したSTMの微動機構
を提供することにある。
In view of the above problems, an object of the present invention is to provide a fine movement mechanism of an STM having a structure capable of performing measurement with high accuracy over a wide scanning range regardless of the temperature state of a sample. is there.

【0006】[0006]

【課題を解決するための手段】本発明に係るSTMの微
動機構は、上記目的を達成するため、次のように構成さ
れる。 1.試料の凹凸に対応して探針を微動させる第1のピエ
ゾ素子と、この第1のピエゾ素子に対して直角に配置さ
れ且つ互いに直角に配置される探針走査用の第2及び第
3の2つのピエゾ素子とをベース部材に備えてなるST
Mの微動機構であって、第1のピエゾ素子の一端に探針
ホルダを固定し、且つ他端に走査拡大部材を結合し、こ
の走査拡大部材を、断面積の小さい起歪部材を介してベ
ース部材に固定すると共に、第2及び第3のピエゾ素子
の各一端を走査拡大部材における起歪部に近い箇所に結
合し、各他端をベース部材に固定する。 2.試料の凹凸に対応して探針を微動させる第1のピエ
ゾ素子と、この第1のピエゾ素子に対して直角に配置さ
れ且つ互いに直角に配置される探針走査用の第2及び第
3の2つのピエゾ素子とをベース部材に備えてなるST
Mの微動機構であって、第1のピエゾ素子の一端に、探
針ホルダを取付けた走査拡大部材を固定し、第1のピエ
ゾ素子の他端に連結部材が取付けられ、この連結部材に
断面積の小さい起歪部を設け、起歪部を前記ベース部材
に固定すると共に、第2及び第3のピエゾ素子の各一端
を前記連結部材に結合し、各他端をベース部材に固定す
る。 3.前記第2の構成において、好ましくは、走査拡大部
材は、熱伝導率の小さい物質で形成される。
The fine movement mechanism of the STM according to the present invention is configured as follows to achieve the above object. 1. A first piezo element for finely moving the probe corresponding to the unevenness of the sample, and a second and a third for probe scanning arranged at right angles to the first piezo element and at right angles to each other. ST provided with two piezo elements on a base member
A fine movement mechanism of M, wherein a probe holder is fixed to one end of a first piezo element, and a scanning magnifying member is connected to the other end, and this scanning magnifying member is connected via a strain generating member having a small sectional area. In addition to being fixed to the base member, one end of each of the second and third piezo elements is connected to a portion near the strain generating portion of the scanning magnifying member, and the other end is fixed to the base member. 2. A first piezo element for finely moving the probe corresponding to the unevenness of the sample, and a second and a third for probe scanning arranged at right angles to the first piezo element and at right angles to each other. ST provided with two piezo elements on a base member
M, wherein a scanning magnifying member having a probe holder attached thereto is fixed to one end of a first piezo element, and a connecting member is attached to the other end of the first piezo element. A strain-generating portion having a small area is provided, the strain-generating portion is fixed to the base member, one end of each of the second and third piezo elements is connected to the connecting member, and the other end is fixed to the base member. 3. In the second configuration, preferably, the scan enlarging member is formed of a material having low thermal conductivity.

【0007】[0007]

【作用】本発明による第1のSTMの微動機構では、走
査拡大部材を設け、走査用ピエゾ素子による伸縮動作は
走査拡大部材の曲げ変形で増幅される。従って、走査範
囲を拡大することができる。また走査用ピエゾ素子は、
走査拡大部材の基部に固定されたため、走査拡大部材を
寸法的にそれ程長くしなくとも、充分に拡大作用を発揮
させることができる。また寸法的に大きなものにする必
要がないため、小形化及び軽量化を達成でき、微動機構
における固有振動を高いものにすることが可能である。
また、走査拡大部材の基部には変形しやすい起歪部を設
けたため、走査用ピエゾ素子に大きな負荷がかからず、
走査性を良好なものにすることができる。本発明による
第2のSTMの微動機構では、走査拡大部材を熱伝導率
の小さいもので形成し、且つZ軸方向のピエゾ素子と走
査拡大部材の配置関係を逆にしたため、高温試料を測定
するときに、走査拡大部材が熱を遮断し、各ピエゾ素子
に対して熱を伝播しないため、前記の作用に加えて、高
温試料の測定でも高い精度を発揮することができる。
In the fine movement mechanism of the first STM according to the present invention, a scanning magnifying member is provided, and the expansion / contraction operation by the scanning piezo element is amplified by bending deformation of the scanning magnifying member. Therefore, the scanning range can be expanded. The scanning piezo element is
Since the scanning magnifying member is fixed to the base portion, the magnifying effect can be sufficiently exhibited without making the scanning magnifying member long in dimension. Further, since it is not necessary to increase the size, the size and weight can be reduced, and the natural vibration in the fine movement mechanism can be increased.
In addition, since a deformable strain-producing portion is provided at the base of the scanning magnifying member, a large load is not applied to the scanning piezo element.
Scanning properties can be improved. In the fine movement mechanism of the second STM according to the present invention, the scanning magnifying member is formed of a material having a small thermal conductivity, and the arrangement relationship between the piezo element and the scanning magnifying member in the Z-axis direction is reversed. Sometimes, the scanning magnifying member blocks heat and does not propagate heat to each piezo element, so that in addition to the above-described operation, high accuracy can be exhibited even in measurement of a high-temperature sample.

【0008】[0008]

【実施例】以下に、本発明の好適な実施例を添付図面に
基づいて説明する。図1及び図2は本発明の第1の実施
例を示し、図1は正面図であり、図2は側面図である。
この実施例によるSTMの微動機構は、トライポッド方
式の構成を有する。図示例では、STMの装置全体の構
成は示さず、探針及びこれを移動させる微動機構部分の
要部のみを示している。図1において、1は探針で、探
針1はネジ2を用いて探針ホルダ3に固定される。4
は、探針1を、図示しない試料の表面の凹凸に対応して
微動させるピエゾ素子である。ピエゾ素子4は、探針1
をその軸方向(Z軸方向)に微動させるためのアクチュ
エータである。ピエゾ素子3の、図1中の左端に、探針
1を取付けた探針ホルダ3が固定される。探針ホルダ3
は接着剤でピエゾ素子4に固定される。またピエゾ素子
4の図中右端には走査拡大部材5が取付けられる。走査
拡大部材5の基端には、断面積が小さくなった起歪部5
aが形成され、この起歪部5aを介して前記の走査拡大
部材5は、ベース部材6に固定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 show a first embodiment of the present invention. FIG. 1 is a front view, and FIG. 2 is a side view.
The fine movement mechanism of the STM according to this embodiment has a configuration of a tripod system. In the illustrated example, the configuration of the entire STM device is not shown, but only the main part of the probe and the fine movement mechanism for moving the probe is shown. In FIG. 1, reference numeral 1 denotes a probe, and the probe 1 is fixed to a probe holder 3 using screws 2. 4
Is a piezo element for finely moving the probe 1 in accordance with irregularities on the surface of the sample (not shown). The piezo element 4 includes the probe 1
Is an actuator for making fine movement in the axial direction (Z-axis direction). A probe holder 3 to which the probe 1 is attached is fixed to the left end of the piezo element 3 in FIG. Tip holder 3
Is fixed to the piezo element 4 with an adhesive. A scanning magnifying member 5 is attached to the right end of the piezo element 4 in the drawing. At the base end of the scanning magnifying member 5, a strain-generating portion 5 having a reduced cross-sectional area
a is formed, and the scanning magnifying member 5 is fixed to the base member 6 via the strain generating portion 5a.

【0009】7及び8は、それぞれ、探針1を試料表面
上で走査させるためのピエゾ素子である。ピエゾ素子
7,8は、図2に示す如く、直角の角度を形成するよう
に配設されており、ピエゾ素子7は例えばX軸方向のア
クチュエータであり、ピエゾ素子8はY軸方向のアクチ
ュエータである。ピエゾ素子7,8の各一端は、走査拡
大部材5における起歪部近接箇所に接着剤で取付けられ
る。またピエゾ素子7,8の各他端は、接着剤でベース
部材6に固定される。
Reference numerals 7 and 8 denote piezo elements for scanning the probe 1 on the surface of the sample. As shown in FIG. 2, the piezo elements 7 and 8 are disposed so as to form a right angle. The piezo element 7 is, for example, an actuator in the X-axis direction, and the piezo element 8 is an actuator in the Y-axis direction. is there. One end of each of the piezo elements 7 and 8 is attached to a portion of the scanning magnifying member 5 adjacent to the strain generating portion with an adhesive. The other ends of the piezo elements 7 and 8 are fixed to the base member 6 with an adhesive.

【0010】上記の構成を有する探針1の微動機構によ
れば、探針1を走査させるとき、X及びY方向の操作用
ピエゾ素子7,8に電圧を印加して伸縮させ、起歪部5
aで曲げ変形を発生させることにより、走査移動を行
う。かかる構造に基づく走査移動では、起歪部5aとピ
エゾ素子7,8は近接して配設され、且つ走査拡大部材
5は所要の長さを有しているので、小さいピエゾ素子
7,8の伸縮量であっても、探針1においては拡大され
た大きな走査移動量を得ることができる。この場合、走
査拡大部材5の長さ寸法は、さほど大きくする必要はな
い。従って、微動機構全体としては軽量化を図ることが
できる。また、走査移動するために変形させる部分は、
小さい断面積を有した起歪部5aであるので、ピエゾ素
子7,8に加わる負荷も軽く、精度良く高速で伸縮動作
を行うことができる。それゆえに、前記構成によれば、
微動機構を小形、軽量化し、固有振動数を高く設定で
き、精度の高い測定を行うことができる。
According to the fine movement mechanism of the probe 1 having the above-described configuration, when the probe 1 is scanned, a voltage is applied to the operation piezo elements 7 and 8 in the X and Y directions to expand and contract, thereby causing the strain generating section. 5
The scanning movement is performed by causing the bending deformation in a. In the scanning movement based on such a structure, the strain generating portion 5a and the piezo elements 7 and 8 are disposed close to each other, and the scan enlarging member 5 has a required length. Even with the expansion and contraction amount, the probe 1 can obtain a large scanning movement amount that is enlarged. In this case, the length of the scanning magnifying member 5 does not need to be so large. Therefore, the weight of the entire fine movement mechanism can be reduced. Also, the part to be deformed for scanning movement is
Since the strain generating portion 5a has a small cross-sectional area, the load applied to the piezo elements 7 and 8 is light, and the expansion and contraction operation can be performed accurately and at high speed. Therefore, according to the above configuration,
The size and weight of the fine movement mechanism can be reduced, the natural frequency can be set high, and highly accurate measurement can be performed.

【0011】図3は本発明の第2の実施例を示し、微動
機構の正面図を示している。この実施例による微動機構
では、高温の試料を測定する場合に好適である。前記実
施例で説明した実質的に同一の要素には同一の符号を付
している。図3において、探針1、ネジ2、探針ホルダ
3、ピエゾ素子4,7,8は前記実施例で説明した通り
である。探針ホルダ3は、走査拡大部材11の一端に接
着剤で取付けられ、走査拡大部材11の他端には前記Z
軸方向用ピエゾ素子4が接着剤で取付けられる。走査拡
大部材11は、熱伝導率の小さいセラミックで形成され
ている。ピエゾ素子4の他の端部には、連結部材12が
接着剤で連結され、更に連結部材12は、断面積の小さ
い起歪部12aを介してベース6に固定される。X,Y
方向の走査用ピエゾ素子7,8の各一端は、連結部材1
2に接着剤で固定される。その他の構成は、前記実施例
と同じである。
FIG. 3 shows a second embodiment of the present invention, and is a front view of a fine movement mechanism. The fine movement mechanism according to this embodiment is suitable for measuring a high-temperature sample. Substantially the same elements described in the above embodiment are denoted by the same reference numerals. In FIG. 3, the probe 1, screw 2, probe holder 3, and piezo elements 4, 7, 8 are as described in the above embodiment. The probe holder 3 is attached to one end of the scanning magnifying member 11 with an adhesive, and the other end of the scanning magnifying member 11 has the Z
The axial piezo element 4 is attached with an adhesive. The scanning magnifying member 11 is formed of ceramic having a low thermal conductivity. A connecting member 12 is connected to the other end of the piezo element 4 with an adhesive, and the connecting member 12 is fixed to the base 6 via a strain-generating portion 12a having a small sectional area. X, Y
One end of each of the scanning piezo elements 7 and 8 is connected to the connecting member 1.
2 is fixed with an adhesive. Other configurations are the same as those of the above embodiment.

【0012】前記構成を有する微動機構では、前記実施
例の場合と同様に高い固有振動を有する機構にすること
ができ、加えて、同時に熱伝導率の小さな走査拡大部材
11の作用により、微動用ピエゾ素子4,7,8への高
温の伝播を抑制することができ、高い測定精度を得るこ
とができる。
In the fine movement mechanism having the above-described structure, a mechanism having a high natural vibration can be provided as in the case of the above-described embodiment. High temperature propagation to the piezo elements 4, 7, 8 can be suppressed, and high measurement accuracy can be obtained.

【0013】[0013]

【発明の効果】以上の説明で明らかなように本発明によ
れば、広い走査範囲を走査できると同時に、微動機構を
小形、軽量化することができる。また軽量化により固有
振動数を高く設定することができるので、STMの探針
の感度を高め、測定精度を高くすることができる。更に
高温の試料を測定する場合において、走査拡大機能を有
し且つ断熱性を有する部材を間に挟んで微動機構の各ピ
エゾ素子を配設するようにしたため、ピエゾ素子を保護
することができ、高温試料でも高い精度で測定すること
ができる。
As is apparent from the above description, according to the present invention, a wide scanning range can be scanned, and the fine movement mechanism can be reduced in size and weight. In addition, since the natural frequency can be set high by reducing the weight, the sensitivity of the probe of the STM can be increased, and the measurement accuracy can be increased. Further, when measuring a high-temperature sample, since each piezo element of the fine movement mechanism is arranged with a member having a scanning magnification function and a heat insulating property, the piezo element can be protected, Even high-temperature samples can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSTMの微動機構の典型的な実施
例を示す正面図である。
FIG. 1 is a front view showing a typical embodiment of a fine movement mechanism of an STM according to the present invention.

【図2】図1に示した本発明に係るSTMの微動機構の
側面図である。
FIG. 2 is a side view of the fine movement mechanism of the STM according to the present invention shown in FIG.

【図3】本発明に係るSTMの微動機構の他の実施例を
示す正面図である。
FIG. 3 is a front view showing another embodiment of the fine movement mechanism of the STM according to the present invention.

【符号の説明】[Explanation of symbols]

1 探針 3 探針ホルダ 4 Z軸方向のピエゾ素子 5 走査拡大部材 5a 起歪部 6 ベース部材 7 X軸方向のピエゾ素子 8 Y軸方向のピエゾ素子 11 走査拡大部材 12 連結部材 12a 起歪部 REFERENCE SIGNS LIST 1 probe 3 probe holder 4 piezo element in Z-axis direction 5 scanning magnifying member 5a strain-generating portion 6 base member 7 piezo element in X-axis direction 8 piezo element in Y-axis direction 11 scanning magnifying member 12 connecting member 12a strain-generating portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 理 茨城県勝田市市毛882番地 株式会社 日立製作所 那珂工場内 (72)発明者 福原 悟 茨城県勝田市市毛882番地 株式会社 日立製作所 那珂工場内 (72)発明者 橋本 昭 茨城県土浦市神立町650番地 日立建機 株式会社 土浦工場内 (72)発明者 高田 龍二 茨城県土浦市神立町650番地 日立建機 株式会社 土浦工場内 (56)参考文献 特開 平4−265803(JP,A) 特開 平3−35104(JP,A) 特開 昭63−265573(JP,A) 実開 昭64−48862(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01B 7/34 G01N 13/10 - 13/24 G05D 3/00 - 3/20 H01J 37/28 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Osamu Yamada 882 Ma, Katsuta-shi, Ibaraki Prefecture Inside Naka Works, Hitachi, Ltd. (72) Inventor Akira Hashimoto 650, Kandamachi, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. References JP-A-4-265803 (JP, A) JP-A-3-35104 (JP, A) JP-A-63-265573 (JP, A) Japanese Utility Model Showa 64-48862 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01B 7/34 G01N 13/10-13/24 G05D 3/00-3/20 H01J 37/28 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料の凹凸に対応して探針を微動させる
第1のピエゾ素子と、この第1のピエゾ素子に対して直
角に配置され且つ互いに直角に配置される探針走査用の
第2及び第3の2つのピエゾ素子とをベース部材に備え
てなる走査型トンネル顕微鏡の微動機構において、前記
第1のピエゾ素子の一端に探針ホルダを固定し且つ他端
に走査拡大部材を結合し、この走査拡大部材を、断面積
の小さい起歪部を介して前記ベース部材に固定すると共
に、前記第2及び第3のピエゾ素子の各一端を前記走査
拡大部材における前記起歪部に近い箇所に結合し、各他
端を前記ベース部材に固定したことを特徴とする走査型
トンネル顕微鏡の微動機構。
1. A first piezo element for finely moving a probe corresponding to unevenness of a sample, and a first piezo element arranged at right angles to the first piezo element and arranged at right angles to each other for scanning a probe. In a fine movement mechanism of a scanning tunneling microscope having a base member having second and third piezo elements, a probe holder is fixed to one end of the first piezo element, and a scanning magnifying member is connected to the other end. Then, the scanning magnifying member is fixed to the base member via a strain generating portion having a small sectional area, and one end of each of the second and third piezo elements is close to the strain generating portion of the scanning magnifying member. A fine movement mechanism of the scanning tunnel microscope, wherein the other end is fixed to the base member.
【請求項2】 試料の凹凸に対応して探針を微動させる
第1のピエゾ素子と、この第1のピエゾ素子に対して直
角に配置され且つ互いに直角に配置される探針走査用の
第2及び第3の2つのピエゾ素子とをベース部材に備え
てなる走査型トンネル顕微鏡の微動機構において、前記
第1のピエゾ素子の一端に、探針ホルダを取付けた走査
拡大部材を固定し、前記第1のピエゾ素子の他端に連結
部材が取付けられ、この連結部材に断面積の小さい起歪
部を設け、前記起歪部を前記ベース部材に固定すると共
に、前記第2及び第3のピエゾ素子の各一端を前記連結
部材に結合し、各他端を前記ベース部材に固定したこと
を特徴とする走査型トンネル顕微鏡の微動機構。
2. A first piezo element for finely moving a probe corresponding to unevenness of a sample, and a first piezo element arranged at right angles to the first piezo element and arranged at right angles to each other for scanning a probe. In a fine movement mechanism of a scanning tunneling microscope having a base member having second and third two piezo elements, a scanning magnifying member having a probe holder attached thereto is fixed to one end of the first piezo element. A connecting member is attached to the other end of the first piezo element, and a strain generating portion having a small sectional area is provided on the connecting member, and the strain generating portion is fixed to the base member, and the second and third piezoelectric elements are fixed. A fine movement mechanism for a scanning tunneling microscope, wherein one end of each element is connected to the connecting member, and the other end is fixed to the base member.
【請求項3】 請求項2記載の走査型トンネル顕微鏡の
微動機構において、前記走査拡大部材は、熱伝導率の小
さい物質で形成されることを特徴とする走査型トンネル
顕微鏡の微動機構。
3. The fine movement mechanism for a scanning tunneling microscope according to claim 2, wherein said scanning magnifying member is formed of a material having a low thermal conductivity.
JP3144865A 1991-06-17 1991-06-17 Fine movement mechanism of scanning tunneling microscope Expired - Fee Related JP3065714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3144865A JP3065714B2 (en) 1991-06-17 1991-06-17 Fine movement mechanism of scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3144865A JP3065714B2 (en) 1991-06-17 1991-06-17 Fine movement mechanism of scanning tunneling microscope

Publications (2)

Publication Number Publication Date
JPH04369406A JPH04369406A (en) 1992-12-22
JP3065714B2 true JP3065714B2 (en) 2000-07-17

Family

ID=15372196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3144865A Expired - Fee Related JP3065714B2 (en) 1991-06-17 1991-06-17 Fine movement mechanism of scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JP3065714B2 (en)

Also Published As

Publication number Publication date
JPH04369406A (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US7555941B2 (en) Scanner for probe microscopy
US7288762B2 (en) Fine-adjustment mechanism for scanning probe microscopy
US4992728A (en) Electrical probe incorporating scanning proximity microscope
JPH0212381B2 (en)
US8495761B2 (en) Planar positioning device and inspection device provided with the same
JPH0792462B2 (en) Fine movement mechanism of scanning tunneling microscope
US7683634B2 (en) Micromachined capacitive sensor and linkage
US6194813B1 (en) Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
JP3065714B2 (en) Fine movement mechanism of scanning tunneling microscope
JPH039713B2 (en)
JP2007064786A (en) Force sensor
Lu et al. A novel parallel precision stage with large working range based on structural parameters of flexible hinges
JP2008215934A (en) Force sensor, load detector and profile measuring apparatus
CN111613507A (en) Electron microscope in-situ sample rod with high-resolution multi-dimensional manipulation and electrical measurement
JPH06258072A (en) Piezoelectric element thin film evaluating apparatus, interatomic force microscope
JPH067042B2 (en) Piezoelectric element fine movement mechanism
US5627371A (en) Tilting positioner for a micropositioning device
JP3130647B2 (en) Fine movement mechanism
CN212277149U (en) Electron microscope in-situ sample rod with high-resolution multi-dimensional manipulation and electrical measurement
NL1000815C2 (en) XY displacement device.
JP4409986B2 (en) Displacement reduction mechanism
Maroufi et al. MEMS in Nanopositioning
JPH1032988A (en) Cylindrical fine adjustment apparatus
JPH0226723B2 (en)
JP2761507B2 (en) Tube type probe scanner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees