JP3062031B2 - Method for producing optical component made of rutile single crystal - Google Patents

Method for producing optical component made of rutile single crystal

Info

Publication number
JP3062031B2
JP3062031B2 JP7050650A JP5065095A JP3062031B2 JP 3062031 B2 JP3062031 B2 JP 3062031B2 JP 7050650 A JP7050650 A JP 7050650A JP 5065095 A JP5065095 A JP 5065095A JP 3062031 B2 JP3062031 B2 JP 3062031B2
Authority
JP
Japan
Prior art keywords
single crystal
cut
plane
optical
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7050650A
Other languages
Japanese (ja)
Other versions
JPH08220301A (en
Inventor
利光 稲垣
明夫 高橋
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP7050650A priority Critical patent/JP3062031B2/en
Publication of JPH08220301A publication Critical patent/JPH08220301A/en
Application granted granted Critical
Publication of JP3062031B2 publication Critical patent/JP3062031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ルチル単結晶からなる
光学部品の製造方法に関し、更に詳しく述べると、ルチ
ル単結晶インゴットを光学軸〈001〉に対して交差す
るようにスライスしてウエハとし、該ウエハから光学面
が(110)面となるように多数の単結晶チップを切り
出し、各単結晶チップの(110)面を揃えて研磨加工
することで、切断及び研磨を精度良く且つ容易に行う技
術に関するものである。この技術はルチル単結晶(Ti
2 )からなる偏光子や位相差板などの各種光学部品の
製造に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical component made of a rutile single crystal, and more particularly, to a wafer obtained by slicing a rutile single crystal ingot so as to intersect an optical axis <001>. A large number of single crystal chips are cut out from the wafer so that the optical surface becomes the (110) plane, and the (110) plane of each single crystal chip is aligned and polished, so that cutting and polishing can be performed accurately and easily. The technology involved. This technology uses rutile single crystal (Ti
It is useful for manufacturing various optical components such as a polarizer and a retardation plate composed of O 2 ).

【0002】[0002]

【従来の技術】ルチル単結晶は複屈折性を呈することか
ら、偏光子や位相差板などの光学部品として注目されて
おり、現在、フローティングゾーン法あるいはベルヌー
イ法などにより単結晶インゴットが育成されている。フ
ローティングゾーン法で単結晶を育成する場合、単結晶
は光学軸〈001〉方向に成長する。そして、このルチ
ル単結晶インゴットを光学部品に加工する際、光学軸
〈001〉を基準にして所定の形状に切り出し研磨して
いる。この形状例を図1のA,Bに示す。
2. Description of the Related Art Rutile single crystals have attracted attention as optical components such as polarizers and retardation plates because of their birefringence properties. Currently, single crystal ingots have been grown by the floating zone method or Bernoulli method. I have. When growing a single crystal by the floating zone method, the single crystal grows in the optical axis <001> direction. When processing this rutile single crystal ingot into an optical component, the rutile single crystal ingot is cut and polished into a predetermined shape with reference to the optical axis <001>. Examples of this shape are shown in FIGS.

【0003】図1のAは平行平板型に加工する例であ
る。光学軸〈001〉を加工面に平行にとり、両光学面
(光の入出射面)10を鏡面研磨する。図1のBは楔型
に加工した複屈折偏光子の例である。光学軸〈001〉
は垂直線に対して22.5°傾いており、相対向する光
学面は平行状態から角度α(約4°程度)ずれている。
この場合は、一方の光学面(図1のBでは前面に位置す
る光学面12)が光学軸〈001〉に平行になっている
が、両方の光学面は鏡面研磨される。なお図1におい
て、破線矢印で示されているのが光学軸である。
FIG. 1A shows an example of processing into a parallel plate type. The optical axis <001> is set parallel to the processing surface, and both optical surfaces (light input / output surfaces) 10 are mirror-polished. FIG. 1B shows an example of a birefringent polarizer processed into a wedge shape. Optical axis <001>
Is inclined by 22.5 ° with respect to the vertical line, and the opposing optical surfaces are shifted from the parallel state by an angle α (about 4 °).
In this case, one optical surface (the optical surface 12 located on the front surface in FIG. 1B) is parallel to the optical axis <001>, but both optical surfaces are mirror-polished. In FIG. 1, the optical axis is indicated by a broken arrow.

【0004】従来技術では、光学軸〈001〉が光学面
内にあればよいため、これらの光学面の方位は全く任意
に(自由に)選定されていた。ごく一般的には、単結晶
インゴットから所望の形状の光学部品をできるだけ多く
切り出せるように切断し、切り出した単結晶チップの光
学面を並べて鏡面研磨していた。
In the prior art, since the optical axis <001> only needs to be in the optical plane, the orientations of these optical planes are arbitrarily (arbitrarily) selected. In general, optical components having a desired shape are cut from a single crystal ingot so as to be cut as much as possible, and the optical surfaces of the cut single crystal chips are arranged and mirror-polished.

【0005】[0005]

【発明が解決しようとする課題】従来の方法でルチル単
結晶からなる光学部品を製造すると、切断時にエッジ部
にクラックやチッピングが多発する現象が生じることが
あった。また、単結晶チップを多数配列して研磨する時
に研磨量にムラができ精度よく加工できなかったり、そ
の修正(再加工)に多くの時間と手間がかかることが生
じるなどの問題があった。そのため製造効率が悪く、修
正のための研磨かこうによって所望の厚さより薄くなっ
てしまい不良品となることもあり、単結晶インゴットか
らできるだけ多数の単結晶チップを切り出しているにも
かかわらず、歩留りが悪いという欠点があった。
When an optical component made of a rutile single crystal is manufactured by a conventional method, a phenomenon that cracks and chipping frequently occur at an edge portion at the time of cutting may occur. In addition, when a large number of single crystal chips are arranged and polished, there is a problem in that the polishing amount becomes uneven, so that processing cannot be performed with high accuracy, and that correction (reworking) requires much time and labor. For this reason, the manufacturing efficiency is poor, and the polishing for repairing may result in a thinner than desired thickness, resulting in a defective product.Although the single crystal ingot is cut out from the single crystal ingot as much as possible, the yield is low. There was a disadvantage that it was bad.

【0006】本発明の目的は、単結晶インゴットから単
結晶チップを切り出す際に、クラックやチッピング等の
外観不良が発生し難く、また多数の単結晶チップを一括
してラップ盤で鏡面研磨する際に、均一に精度よく、且
つ効率よく加工できる方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for cutting a single crystal chip from a single crystal ingot, which is unlikely to cause appearance defects such as cracks and chipping, and for mirror polishing a large number of single crystal chips collectively on a lapping machine. Another object of the present invention is to provide a method capable of processing uniformly, accurately, and efficiently.

【0007】[0007]

【課題を解決するための手段】本発明は、光学軸〈00
1〉を加工面に平行にとるルチル単結晶光学部品の製造
方法である。ここで本発明の特徴は、ルチル単結晶イン
ゴットを光学面〈001〉に対して交差するようにスラ
イスしてウエハとし、そのウエハから光学面が(11
0)面となるように多数の単結晶チップを切り出し、切
り出した各単結晶チップを、全て(110)面を揃えて
貼り付け定盤上に配列固定し一括して鏡面に研磨する点
にある。
According to the present invention, there is provided an optical system comprising: an optical axis <00;
This is a method for producing a rutile single crystal optical component in which 1> is taken in parallel with a processing surface. Here, the feature of the present invention is that a rutile single crystal ingot is sliced so as to intersect with the optical surface <001> to form a wafer, and the optical surface is (11)
A point is that a large number of single crystal chips are cut out so as to have a (0) plane, all of the cut out single crystal chips are aligned and fixed on a surface plate, and all are polished to a mirror surface. .

【0008】光学軸〈001〉を加工面に平行にとるル
チル単結晶光学部品を製造する際、多種多様な方位面で
加工が可能である。代表的な加工面としては(100)
面あるいは(110)面などがあるが、もちろんその間
で傾いている面でもよい。ところが、実際にルチル単結
晶のインゴットから種々の方位面で内周刃(ダイヤモン
ドカッター)を用いて単結晶チップを切り出すと、方位
面によってクラックやチッピングの発生状況が大きく異
なることが判明した。更に、方位面によって研磨速度が
異なることも判明した。従来技術で研磨を精度よく且つ
効率よく行えないのは、方位面を考慮せずに切り出した
単結晶チップを、多数貼り付け定盤に貼り付けて鏡面研
磨するために、削れ易い面と削れ難い面との差で傾いた
状態で回転するためと考えられる。本発明は、かかる現
象の知得に基づきなされたものである。
When manufacturing a rutile single crystal optical component having the optical axis <001> parallel to the processing surface, processing can be performed in a variety of azimuthal planes. Typical processing surface is (100)
There is a plane or a (110) plane, and of course, a plane inclined between them may be used. However, it has been found that when a single crystal chip is actually cut out from a rutile single crystal ingot at various orientations using an inner peripheral blade (diamond cutter), the occurrence of cracks and chipping greatly differs depending on the orientation. Further, it was also found that the polishing rate was different depending on the orientation plane. The reason that conventional technology cannot perform polishing accurately and efficiently is that a large number of single crystal chips cut out without considering the azimuthal surface are stuck on a surface plate and mirror-polished. It is considered that the robot rotates in a state of being tilted by a difference from the surface. The present invention has been made based on knowledge of such a phenomenon.

【0009】[0009]

【作用】(100)面から垂直に(110)面を切り出
した場合は、(110)面から垂直に(100)面を切
り出した場合に比べて、切断後のチッピング量は非常に
小さく抑えられる。また、(110)面は(100)面
に比べて硬度が低く削れ易い。そのため、切り出した各
単結晶チップを、全て(110)面を揃えて研磨定盤上
に配列固定し一括して鏡面に研磨すると、全ての単結晶
チップが同じ速度で効率よく研磨され、貼り付け定盤内
のチップが傾かず、その結果、寸法精度の高い加工が行
える。因に、研磨加工の際に、配列した単結晶チップの
方位が揃っていない場合には、各単結晶チップ毎に研磨
速度が異なるため、研磨され易いものと研磨され難いも
のとができて傾いて研磨され、形状不良が生じ易く、研
磨の途中で修正が必要となるなど、研磨調整が極めて困
難となる。
When the (110) plane is cut out perpendicularly from the (100) plane, the amount of chipping after cutting is very small as compared with the case where the (100) plane is cut out perpendicularly from the (110) plane. . Further, the (110) plane has a lower hardness than the (100) plane and is more easily cut. Therefore, when all of the cut single crystal chips are aligned and fixed on a polishing platen with all (110) planes aligned and polished to a mirror surface at a time, all the single crystal chips are efficiently polished at the same speed and attached. The chips in the surface plate do not tilt, and as a result, processing with high dimensional accuracy can be performed. However, during the polishing process, if the orientations of the arranged single crystal chips are not aligned, the polishing rate is different for each single crystal chip, so that the one that is easy to be polished and the one that is hard to be polished are inclined. It is very difficult to adjust the polishing, for example, the shape is liable to be polished and a shape defect is likely to occur, and a correction is required during the polishing.

【0010】[0010]

【実施例】フローティングゾーン法によってルチル単結
晶を育成した。この方法の場合、単結晶は光学軸〈00
1〉方向に成長し、大きなインゴットが得られる。図1
のAに示すような平行平板型の光学部品を製作する場合
には、図2のAに示すように、インゴット20を光学軸
〈001〉に垂直にスライスしてウエハ22を切り出す
(切断面1a)。このウエハ22からウエハ切断面、即ち
(001)面に対して垂直に縦横に(110)面が現れ
るように単結晶チップ24を切り出す(切断面1b,1
c)。そして、切り出した多数の単結晶チップ24を、
全て(110)面(切断面1b)を揃えて貼り付け定盤上
に配列固定し、一括して鏡面に研磨する。この鏡面研磨
は、相対向する両面について行い、それらを光学面(入
出射面)とする平行平板型の光学部品が得られる。
EXAMPLE A rutile single crystal was grown by the floating zone method. In this method, the single crystal has an optical axis <00
Growing in the 1> direction, a large ingot is obtained. FIG.
2A, the ingot 20 is sliced perpendicular to the optical axis <001> to cut out the wafer 22 (cut surface 1a), as shown in FIG. 2A. ). The single crystal chip 24 is cut out from the wafer 22 such that the (110) plane appears vertically and horizontally to the wafer cut plane, that is, the (001) plane (cut planes 1b and 1).
c). Then, a large number of cut single crystal chips 24 are
All (110) surfaces (cut surface 1b) are aligned and fixed on a platen, and polished to a mirror surface at once. This mirror polishing is performed on both opposing surfaces to obtain a parallel plate type optical component using them as optical surfaces (input / output surfaces).

【0011】図1のBに示すような楔型の光学部品を製
作する場合には、図2のBに示すように、インゴット2
0を光学軸〈001〉に対して22.5°傾けてスライ
スしてウエハ23を切り出す(切断面2a)。このウエハ
23からウエハ切断面に対して垂直に(110)面が現
れるように切断し(切断面2b)、更に切断面2a,2bに垂
直に切断して単結晶チップ25を切り出す(切断面2
c)。そして、(110)面(切断面2b)の一方の面を
斜めに(約4°の角度)研磨して楔型に整形する。楔型
に整形した単結晶チップを、全て(110)面(切断面
2b)を揃えて貼り付け定盤上に配列固定し、一括して鏡
面に研磨する。この鏡面研磨は、相対向する両面につい
て行う。これによって、それらの面を光学面(入出射
面)とする楔型の光学部品が得られる。
When manufacturing a wedge-shaped optical component as shown in FIG. 1B, as shown in FIG.
0 is inclined at 22.5 ° with respect to the optical axis <001> to slice the wafer 23 (cut surface 2a). The wafer 23 is cut so that the (110) plane appears perpendicular to the wafer cut plane (cut plane 2b), and further cut perpendicular to the cut planes 2a and 2b to cut out the single crystal chip 25 (cut plane 2).
c). Then, one surface of the (110) plane (cut surface 2b) is polished obliquely (at an angle of about 4 °) and shaped into a wedge shape. Wedge-shaped single crystal chips are all (110) plane (cut plane)
2b) is aligned and attached and fixed on the platen, and polished to a mirror surface all at once. This mirror polishing is performed on both opposing surfaces. As a result, a wedge-shaped optical component having those surfaces as optical surfaces (input / output surfaces) is obtained.

【0012】切断加工手順を、平行平板型の光学部品の
場合は、切断面1a,1b,1cの順に、また楔型の光学部品
の場合は、2a,2b,2cの順に行うことで、クラックやチ
ッピングの無い単結晶チップ24,25を切り出すこと
ができた。このような切断順序を採用するのは、(10
0)面が(110)面より硬いため、切断面1a,2aを後
で切断すると、エッジにクラックやチッピングが多発す
るためである。また切断面1b,2bの鏡面研磨加工では研
磨量にムラガ無く、精度良く加工できた。
The cutting procedure is performed in the order of the cut surfaces 1a, 1b, and 1c in the case of the parallel plate type optical component, and in the order of 2a, 2b, and 2c in the case of the wedge type optical component. Single crystal chips 24 and 25 without chipping or chipping could be cut out. Such a cutting order is adopted in (10
This is because, since the (0) plane is harder than the (110) plane, if the cut surfaces 1a and 2a are cut later, cracks and chipping frequently occur at the edges. In addition, the mirror polishing of the cut surfaces 1b and 2b could be accurately performed without unevenness in the polishing amount.

【0013】本発明方法が有効な理由について、実験結
果に基づき更に詳しく説明する。3μmラップによる研
磨加工を行いルチル単結晶チップの各方位面の硬さを測
定した。まず、(100)面及び(110)面を光学面
とするように5mm角の平行平板型ルチル単結晶チップを
切り出し、それぞれ3個ずつ用意した。図3に示すよう
に、それぞれ107mmφのセラミックス定盤30に、同
じ面方位のルチル単結晶チップ32を正三角形状に貼り
付けた。そしてケメット定盤で10分間加工した。1分
間当たりの削れ量の測定結果を表1に示す。
The reason why the method of the present invention is effective will be described in more detail based on experimental results. Polishing was performed with a 3 μm wrap, and the hardness of each orientation plane of the rutile single crystal chip was measured. First, a parallel plate type rutile single crystal chip of 5 mm square was cut out so that the (100) plane and the (110) plane were used as optical surfaces, and three chips each were prepared. As shown in FIG. 3, rutile single crystal chips 32 having the same plane orientation were stuck on a ceramic platen 30 having a diameter of 107 mm in a regular triangular shape. And it processed for 10 minutes with a Kemet surface plate. Table 1 shows the measurement results of the scraping amount per minute.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から分かるように、ルチル単結晶は面
方位によって硬度に異方性があり、(100)面の方が
(110)面よりも削れ難いことが分かる。つまり、
(100)面が最も硬く、(100)面から(110)
面方位に傾けていくにしたがって軟らかくなり、(11
0)面が最も軟らかくなる。軟らかい面の方が研磨加工
し易く、硬い面の方が研磨加工中に傷が入りやすい。こ
のことから、(110)面を光学面とすることが最も好
ましいことが分かる。
As can be seen from Table 1, the hardness of the rutile single crystal has anisotropy depending on the plane orientation, and the (100) plane is harder to grind than the (110) plane. That is,
The (100) plane is the hardest, from the (100) plane to (110)
As the surface tilts, it becomes softer, and (11
0) The surface is softest. A soft surface is easier to polish, and a hard surface is easier to scratch during polishing. This indicates that it is most preferable that the (110) plane be an optical surface.

【0016】更に図4に示すように、セラミックス定盤
30の半分の領域に(100)面を上にしたルチル単結
晶チップ32aを3個、残りの半分の領域に(110)
面を上にしたルチル単結晶チップ32bを3個、正六角
形状に貼り付けて、上記と同様の条件で研磨加工を行っ
た。4回の研磨加工を行った後の高さの測定結果を表2
に示す。表1でも示したように、面方位によって硬度に
異方性があり、(110)面に比べて(100)面は削
れ難く、そのため同じセラミックス定盤に異なる面方位
のルチル単結晶チップを貼り付けて研磨を行うと、研磨
が進むにつれて高さが異なり大きく傾いてしまう。
Further, as shown in FIG. 4, three (100) faced rutile single crystal chips 32a are provided in a half area of the ceramic platen 30, and a (110) chip is provided in the other half area.
Three rutile single crystal chips 32b with their faces facing upward were attached in a regular hexagonal shape, and polished under the same conditions as described above. Table 2 shows the measurement results of the height after performing the polishing process four times.
Shown in As shown in Table 1, there is anisotropy in hardness depending on the plane orientation, and the (100) plane is harder to be cut than the (110) plane. Therefore, a rutile single crystal chip having a different plane orientation is attached to the same ceramic surface plate. When polishing is performed with the polishing, the height is different and the inclination is large as polishing proceeds.

【0017】[0017]

【表2】 [Table 2]

【0018】従って、この状態では、全てのルチル単結
晶チップの寸法精度を出すことはできない。これを修正
するには、偏荷重をかけて再研磨加工する必要が生じ
る。しかし、偏荷重をかけて再加工し適切な寸法を出す
ことは熟練を要し、極めて難しい。何度も再加工をして
いるうちに、予定寸法よりも削り過ぎてしまうことも生
じる。軟らかい(110)面を揃えて鏡面研磨すること
で、傾くことなく均一に且つ効率よく加工を行うことが
できる。
Therefore, in this state, the dimensional accuracy of all the rutile single crystal chips cannot be obtained. In order to correct this, it is necessary to perform re-polishing with an uneven load. However, it is extremely difficult to rework by applying an eccentric load to obtain an appropriate size, which requires skill. After reworking many times, it may be cut too much than the expected size. By mirror-polishing the soft (110) planes uniformly, the processing can be performed uniformly and efficiently without tilting.

【0019】図5及び表3は内周刃(ダイヤモンドカッ
ター)により(110)面から垂直に(100)面が現
れるように切断した場合と、(100)面から垂直に
(110)面が現れるように切断した場合について、チ
ッピング量を(100)切断面と(110)切断面につ
いて観察測定した結果である。図5のAは切断面が(1
00)面の場合のチッピングの状態を、また図5のBは
切断面が(110)面の場合のチッピングの状態をそれ
ぞれ示している。
FIG. 5 and Table 3 show the case where the inner peripheral blade (diamond cutter) is cut so that the (100) plane appears perpendicularly from the (110) plane, and the case where the (110) plane appears perpendicularly from the (100) plane. This is the result of observing and measuring the amount of chipping on the (100) cut surface and the (110) cut surface in the case of cutting as described above. In FIG. 5A, the cut surface is (1).
FIG. 5B shows the state of chipping when the cut surface is the (110) plane, respectively.

【0020】[0020]

【表3】 [Table 3]

【0021】表3から、切断面が(100)面である場
合に比べて切断面が(110)面の場合は、チッピング
量が最大値で約1/3に、平均値で約半分程度まで低減
できることが分かる。この理由は、前記表1の結果から
分かるように、(100)面は(110)面よりも硬い
ので、硬い(100)面で切断するとエッジにクラック
やチッピングが発生し易いためと考えられる。単結晶チ
ップを切り出す際に、光学面を(110)面とし、軟ら
かい(110)面を後で切断することで、チッピングの
少ない外観良好な単結晶チップが得られ、その分、歩留
りが向上し、また研磨量も少なくて済む。
From Table 3, it can be seen that, when the cut surface is the (110) plane, the amount of chipping is about one-third at the maximum value and about half as the average value when the cut surface is the (100) plane. It can be seen that it can be reduced. It is considered that the reason for this is that, as can be seen from the results in Table 1, since the (100) plane is harder than the (110) plane, cutting or cutting on the hard (100) plane easily causes cracks and chipping at edges. When a single crystal chip is cut out, the optical surface is set to the (110) surface, and the soft (110) surface is cut later, so that a single crystal chip with good chipping and good appearance can be obtained, and the yield is improved accordingly. Also, the amount of polishing is small.

【0022】[0022]

【発明の効果】本発明は、ルチル単結晶の各方位面の硬
度異方性を考慮し、クラックやチッピングの少ない単結
晶チップを切り出すことができ、多数を一度に鏡面研磨
加工する際に、研磨し易くなり、それらによって外観が
良好で且つ寸法精度の高い光学部品を、効率よく製造す
ることができる。
According to the present invention, it is possible to cut out a single crystal chip with less cracks and chipping in consideration of the hardness anisotropy of each azimuthal plane of the rutile single crystal. Polishing is facilitated, and thereby, an optical component having a good appearance and high dimensional accuracy can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ルチル単結晶からなる光学部品の形状例を示す
説明図。
FIG. 1 is an explanatory diagram showing an example of the shape of an optical component made of a rutile single crystal.

【図2】本発明に係るルチル単結晶光学部品の加工順序
の例を示す説明図。
FIG. 2 is an explanatory view showing an example of a processing order of a rutile single crystal optical component according to the present invention.

【図3】研磨試験に用いたルチル単結晶チップの貼り付
け状態の説明図。
FIG. 3 is an explanatory view showing a state of attachment of a rutile single crystal chip used in a polishing test.

【図4】他の研磨試験に用いたルチル単結晶チップの貼
り付け状態の説明図。
FIG. 4 is an explanatory view showing a state of attachment of a rutile single crystal chip used in another polishing test.

【図5】(100)面と(110)面での切断状態の説
明図。
FIG. 5 is an explanatory view of a cutting state on the (100) plane and the (110) plane.

【符号の説明】[Explanation of symbols]

10,12 光学面 20 単結晶インゴット 22,23 ウエハ 24,25 単結晶チップ 10, 12 Optical surface 20 Single crystal ingot 22, 23 Wafer 24, 25 Single crystal chip

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学軸〈001〉を加工面に平行にとる
ルチル単結晶光学部品の製造方法において、単結晶イン
ゴットを光学軸〈001〉に交差するようにスライスし
てウエハとし、該ウエハから光学面が(110)面とな
るように多数の単結晶チップを切り出し、切り出した各
単結晶チップを、全て(110)面を揃えて貼り付け定
盤上に配列固定し一括して鏡面に研磨することを特徴と
するルチル単結晶からなる光学部品の製造方法。
1. A method of manufacturing a rutile single crystal optical component having an optical axis <001> parallel to a processing surface, wherein a single crystal ingot is sliced so as to intersect the optical axis <001> to form a wafer, and A large number of single crystal chips are cut out so that the optical surface becomes the (110) plane, and all the cut out single crystal chips are aligned and fixed on the platen with the (110) planes aligned and polished to a mirror surface at once. A method for producing an optical component comprising a rutile single crystal.
【請求項2】 光学軸〈001〉を加工面に平行にとる
平行平板型のルチル単結晶光学部品の製造方法におい
て、単結晶インゴットを光学軸〈001〉に対して垂直
にスライスしてウエハとし、このウエハ切断面に対して
垂直に縦横に(110)面が現れるように切断して前記
ウエハから多数の単結晶チップを切り出し、切り出した
各単結晶チップを、光学面となる(110)面を揃えて
貼り付け定盤上に配列固定し一括して鏡面に研磨するこ
とを特徴とするルチル単結晶からなる光学部品の製造方
法。
2. The optical axis <001> is set parallel to the processing surface.
In the manufacturing method of parallel plate type rutile single crystal optical components
Te, and a wafer by slicing vertically monocrystalline ingot optical axis with respect to <001>, the cut to appear (110) plane vertically and horizontally perpendicular to the wafer cut surface
Many single-crystal chips were cut out from the wafer and cut out
Each single crystal chip is aligned with the (110) plane to be the optical surface.
The array is fixed on the platen and polished to a mirror surface at once.
A method for producing an optical component comprising a rutile single crystal, characterized in that :
【請求項3】 光学軸〈001〉を加工面に平行にとる
楔型のルチル単結晶光学部品の製造方法において、単結
晶インゴットを光学軸〈001〉に対して22.5°傾
けてスライスしてウエハとし、このウエハ切断面に対し
て垂直に(110)面が平行に現れるように切断すると
共にウエハ切断面と前記(110)切断面の両者に対し
て垂直に切断して前記ウエハから多数の単結晶チップを
切り出し、一方の(110)切断面を斜めに研削して楔
型に整形し、楔型に整形した各単結晶チップを、光学面
となる(110)面を揃えて貼り付け定盤上に配列固定
し一括して鏡面に研磨することを特徴とするルチル単結
晶からなる光学部品の製造方法。
3. The optical axis <001> is set parallel to the processing surface.
In a method for manufacturing a wedge-shaped rutile single crystal optical component, a single crystal ingot is sliced at 22.5 ° with respect to an optical axis <001> to form a wafer, and a (110) plane is perpendicular to the wafer cut surface. Are cut parallel to each other and cut perpendicular to both the wafer cut surface and the (110) cut surface to cut out a large number of single crystal chips from the wafer. After grinding and shaping into a wedge shape, each wedge-shaped single crystal chip is
(110) faces are aligned and fixed on the platen
Single rutile, characterized by being polished to a mirror surface all at once
For manufacturing optical components made of crystals .
JP7050650A 1995-02-15 1995-02-15 Method for producing optical component made of rutile single crystal Expired - Fee Related JP3062031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7050650A JP3062031B2 (en) 1995-02-15 1995-02-15 Method for producing optical component made of rutile single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7050650A JP3062031B2 (en) 1995-02-15 1995-02-15 Method for producing optical component made of rutile single crystal

Publications (2)

Publication Number Publication Date
JPH08220301A JPH08220301A (en) 1996-08-30
JP3062031B2 true JP3062031B2 (en) 2000-07-10

Family

ID=12864824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7050650A Expired - Fee Related JP3062031B2 (en) 1995-02-15 1995-02-15 Method for producing optical component made of rutile single crystal

Country Status (1)

Country Link
JP (1) JP3062031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009017A1 (en) * 2001-07-17 2003-01-30 Nikon Corporation Method for producing optical member

Also Published As

Publication number Publication date
JPH08220301A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
CA1084172A (en) Process for slicing boules of single crystal material
KR100206094B1 (en) A fabricating method of mirror-face wafer
JP4192482B2 (en) Silicon wafer manufacturing method
US6114245A (en) Method of processing semiconductor wafers
TW200422446A (en) Single crystal diamond
CN107407006B (en) Sapphire member and method for manufacturing sapphire member
KR101455482B1 (en) Single crystal diamond material
JPS6296400A (en) Production of wafer
TW201003743A (en) Silicon epitaxial wafer and method for production thereof
TWI291724B (en) Semiconductor wafer and method of manufacturing the same
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
JP6493253B2 (en) Silicon wafer manufacturing method and silicon wafer
JP3062031B2 (en) Method for producing optical component made of rutile single crystal
JP2024014982A (en) SiC crystal substrate with lattice plane orientation optimal for crack reduction and its manufacturing method
JPH0855825A (en) Formation of silicon wafer
WO2020158376A1 (en) Method for producing silicon wafer, and silicon wafer
JP2002075923A (en) Machining method of silicon single-crystal ingot
JP3866887B2 (en) Piezoelectric single crystal wafer
JP2002198762A (en) Single crystal wafer and its manufacturing method
JP5515253B2 (en) Manufacturing method of semiconductor wafer
JP4539053B2 (en) Single crystal substrate and manufacturing method thereof
KR100201705B1 (en) The process for producing a normal polished wafer
WO2017022647A1 (en) Diamond substrate and method for producing diamond substrate
US4154025A (en) Method for preparing oxide piezoelectric material wafers
JP7336961B2 (en) Single crystal ingot manufacturing method and single crystal wafer manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees