JP3058579B2 - Method for producing filter media for anaerobic treatment - Google Patents

Method for producing filter media for anaerobic treatment

Info

Publication number
JP3058579B2
JP3058579B2 JP11955395A JP11955395A JP3058579B2 JP 3058579 B2 JP3058579 B2 JP 3058579B2 JP 11955395 A JP11955395 A JP 11955395A JP 11955395 A JP11955395 A JP 11955395A JP 3058579 B2 JP3058579 B2 JP 3058579B2
Authority
JP
Japan
Prior art keywords
filter medium
holder
filament
cooling water
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11955395A
Other languages
Japanese (ja)
Other versions
JPH08309387A (en
Inventor
富雄 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansaikako Co Ltd
Original Assignee
Kansaikako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansaikako Co Ltd filed Critical Kansaikako Co Ltd
Priority to JP11955395A priority Critical patent/JP3058579B2/en
Publication of JPH08309387A publication Critical patent/JPH08309387A/en
Application granted granted Critical
Publication of JP3058579B2 publication Critical patent/JP3058579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主として汚水浄化装置
の嫌気性処理部に於いて利用されるものであり、固形物
の捕捉性や作業性等に優れた嫌気処理用濾材の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used in an anaerobic treatment section of a sewage purifying apparatus, and a method for producing a filter material for anaerobic treatment excellent in solid substance trapping property and workability. br />.

【0002】[0002]

【従来の技術】所謂嫌気性微生物による汚水の浄化処理
は、従来から各種の浄化装置に於いて広く利用されてい
る。
2. Description of the Related Art Purification treatment of sewage by so-called anaerobic microorganisms has been widely used in various purification apparatuses.

【0003】図17は嫌気性微生物を利用した汚水処理
装置の一例を示すものであり、所謂嫌気濾床接触曝気型
合併処理浄化槽の概略断面図である。即ち、流入口20
から第1嫌気濾床槽21a内へ流入した汚水22(屎尿
や生活雑排水)は、移流管23を通って第2嫌気濾床槽
21b内へ入り、先ず両嫌気濾床槽21a,21b内に
於いて、嫌気性微生物による嫌気処理を受ける。嫌気濾
床槽21内で嫌気処理された汚水は、引き続き連通孔2
4を通って接触曝気槽25内へ入り、曝気処理によって
浄化された後、沈澱槽26及び消毒槽27を経て放流口
28から外部へ排出されて行く。
FIG. 17 shows an example of a sewage treatment apparatus using anaerobic microorganisms, and is a schematic sectional view of a so-called anaerobic filter bed contact aeration type combined treatment / purification tank. That is, the inlet 20
22 (human waste and household wastewater) flowing into the first anaerobic filter tank 21a through the convection pipe 23 and into the second anaerobic filter tank 21b, and firstly into the both anaerobic filter tanks 21a and 21b. Undergoes anaerobic treatment by anaerobic microorganisms. The sewage subjected to anaerobic treatment in the anaerobic filter tank 21 continues to be connected to the communication hole 2.
After passing through 4 and entering the contact aeration tank 25, which is purified by aeration treatment, it is discharged from the discharge port 28 to the outside through the precipitation tank 26 and the disinfection tank 27.

【0004】而して、前記嫌気濾床槽21の内部には、
汚水22内の固形物を捕捉して、接触曝気槽25内への
固形物の流入の防止や嫌気性微生物の繁殖を促進せしめ
て嫌気処理能力を高める為に、適宜の形状及び大きさの
嫌気処理用濾材29が充填されている。
[0004] In the anaerobic filter bed tank 21,
In order to capture the solid matter in the sewage 22, prevent the inflow of the solid matter into the contact aeration tank 25, and promote the growth of anaerobic microorganisms to enhance the anaerobic treatment capacity, the anaerobic of an appropriate shape and size is used. The processing filter medium 29 is filled.

【0005】ところで、この嫌気処理用濾材29には、
固形物の捕捉性に優れていること及び目詰まりを起こし
難いこと、と云う相反する性能を同時に充足しなければ
ならないと云う不可欠の要件があり、現在利用に供され
ている各種の嫌気処理用濾材には、夫々一長一短が存在
する。
[0005] By the way, this anaerobic treatment filter medium 29 includes:
There is an indispensable requirement that contradictory performances such as excellent solids trapping property and difficulty of clogging must be satisfied at the same time, and various anaerobic treatments currently used for Each filter medium has its advantages and disadvantages.

【0006】例えば、従来から使用されているこの種の
嫌気処理用濾材には、ポリ塩化ビニール等により、ピ
ッチ約80mm、高さ約60mmの波形に形成された薄
波板体のもの(比表面積約55m2 /m3 )、ポリプ
ロピレン等から形成した網状の厚さ約60mmの厚板を
ピッチ100〜300mm、高さ150〜350mmの
波形に折り曲げた網状厚波板体のもの(比表面積約45
2 /m3 )及びポリエチレン等により外径60m
m、長さ80mmのかご様の円筒体に成形されたもの
(比表面積40m2 /m3 )等が存在する。
For example, a conventionally used anaerobic treatment filter medium of this type is a thin corrugated sheet (having a specific surface area of about 80 mm and a height of about 60 mm) made of polyvinyl chloride or the like. 55 m 2 / m 3 ), a net-like thick corrugated plate (specific surface area of about 45 mm) formed by bending a net-like thick plate having a thickness of about 60 mm made of polypropylene or the like into a waveform having a pitch of 100 to 300 mm and a height of 150 to 350 mm.
m 2 / m 3 ) and polyethylene etc., outer diameter 60m
There are, for example, those molded into a cage-like cylindrical body having a length of 80 mm and a specific surface area of 40 m 2 / m 3 .

【0007】しかし、前記薄波板体や網状厚波板体、か
ご様円筒体の嫌気処理用濾材では、汚泥保持能力や汚泥
捕捉性、汚泥の分散性、ガス抜き性及び濾床内の圧密性
等の点に夫々一長一短があり、結果として嫌気濾床槽内
に於ける処理が不十分となり、嫌気濾床槽から接触曝気
槽へ流入する汚水内のBOD値を充分に低下させること
ができなかったり、浄化装置全体の槽容積を減少し得な
いと云う難点がある。又、これらの嫌気処理用濾材は、
通常これらを適用する嫌気濾床槽の容量等に応じて適宜
の外径寸法に切断加工して居り、二次加工に手数が掛か
ると云う難点がある。更に、これらの嫌気処理用濾材
は、汚水処理装置の嫌気処理部内に整列状態で充填しな
ければらず、充填にも手数が掛かると云う難点がある。
[0007] However, in the above-mentioned filter medium for anaerobic treatment of a thin corrugated sheet, a net-like thick corrugated sheet, or a cage-like cylinder, the sludge holding capacity, the sludge trapping property, the dispersibility of the sludge, the degassing property, and the consolidation property in the filter bed. Each has its own advantages and disadvantages, and as a result, the treatment in the anaerobic filter tank becomes insufficient, and the BOD value in the sewage flowing into the contact aeration tank from the anaerobic filter tank cannot be reduced sufficiently. And that the tank volume of the entire purification device cannot be reduced. These anaerobic filter media are
Usually, they are cut to an appropriate outer diameter according to the capacity of an anaerobic filter bed tank to which these are applied, and there is a problem that the secondary processing is troublesome. Furthermore, these anaerobic treatment filter media have to be filled in an anaerobic treatment section of a sewage treatment apparatus in an aligned state, and there is a drawback that the filling is troublesome.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従前の嫌気
処理用濾材に於ける上述の如き問題、即ち嫌気処理用濾
材の汚泥保持能力や汚泥捕捉性が比較的低く、十分な嫌
気処理が困難で処理装置の大幅な小型化が図れないこと
及び嫌気処理用濾材の二次加工や充填に手数が掛かると
云う問題を解決せんとするものであり、汚泥捕捉性や汚
泥保持能力が高く、しかも目詰まり等を生じることなし
に汚水を高度に嫌気処理できると共に、ガス抜きや清掃
等も容易に行え、更に比較的簡単に製造できて作業性に
も優れた嫌気処理用濾材の製造方法を提供するものであ
る。
The object of the present invention is to solve the above-mentioned problems in the conventional filter medium for anaerobic treatment, that is, the filter medium for anaerobic treatment has a relatively low sludge holding ability and sludge trapping property, and thus sufficient anaerobic treatment is not possible. It is difficult to solve the problem that it is difficult to reduce the size of the treatment device significantly and it takes time to perform secondary processing and filling of the anaerobic treatment filter medium, and the sludge trapping property and the sludge holding capacity are high, In addition, a method for producing anaerobic filter media that can perform anaerobic treatment of sewage without clogging and the like, can easily perform degassing and cleaning, and can be manufactured relatively easily and has excellent workability. To provide.

【0009】[0009]

【0010】[0010]

【課題を解決するための手段】 上記目的を達成する為
に、本発明の嫌気処理用濾材の製造方法は、 複数のノズ
ル孔から下方へ向けて加熱溶融した熱可塑性樹脂製の糸
状体を紡出させ、当該糸状体の先端を冷却水槽内の水面
近傍位置で鉛直回転している縮拡径自在な茶筅構造のほ
ぼ球状の保持体で受け止め、該糸状体の先端部を保持体
上でカール状に変形させると共に、カール状に変形せし
めた複数の糸状体を相互に接触融着させつつ保持体の外
周へ順次球状に巻き付けて行き、その後ノズル孔からの
糸状体の紡出を止めると共に、カール状の糸状体を保持
体に保持した状態で冷却水へ一定時間浸漬し、最後に完
全に冷却硬化したほぼ中空の球状体を保持体から抜き取
るようにしたことに特徴がある。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
In the method for producing a filter medium for anaerobic treatment of the present invention, a filament made of a thermoplastic resin that is heated and melted downward from a plurality of nozzle holes is spun, and the tip of the filament is placed near the water surface in a cooling water tank. A plurality of filaments that are received by a roughly spherical retainer with a shrinkable and diametrically adjustable chasen structure that rotates vertically at a position, and that the distal end of the filament is deformed into a curl shape on the retainer and curled. The bodies are sequentially wound in a spherical shape around the outer periphery of the holding body while being brought into contact and fusion with each other, and then the spinning of the filaments from the nozzle holes is stopped. For a certain period of time, and finally, a substantially hollow spherical body completely cooled and hardened is extracted from the holder.

【0011】[0011]

【作用】複数のノズル孔から紡出した溶融状態の熱可塑
性樹脂製の糸状体は、冷却水槽内の水面近傍位置で鉛直
回転している縮拡径自在な茶筅構造のほぼ球状の保持体
で受け止められると共に、冷却水に触れることにより急
冷される。この急冷により固化力が作用して糸状体の下
端部が所謂カール状に変形して行く。又、カール状に変
形した複数の糸状体は、相互に接触融着すると共に、保
持体の回転により相互に接触融着した状態で冷却水内へ
入り、接触部が硬化することによって相互に強固に固着
された状態となる。そして、保持体へは引き続き複数の
糸状体が連続的に供給され、保持体の外周にカール状の
糸状体がほぼ球状に巻き付け形成されて行く。保持体の
外周全域へカール状の糸状体が巻き付けられたら、ノズ
ル孔からの糸状体の紡出が停止せしめられると共に、保
持体がカール状の糸状体を保持した状態で冷却水へ一定
時間だけ浸漬される。これによって、糸状体は完全に冷
却硬化され、ほぼ中空の球状体が形成される。即ち、ほ
ぼ中空状の球形の濾材が形成される。その後、保持体か
ら球状体を抜き取ることにより、ほぼ中空の球形の嫌気
処理用濾材が得られる。
[Function] A molten thermoplastic resin thread spun from a plurality of nozzle holes is a substantially spherical holder of a shrinkable and expandable chasen structure which is vertically rotated near the water surface in a cooling water tank. It is received and cooled rapidly by touching the cooling water. Due to the rapid cooling, a solidifying force acts to deform the lower end of the filament into a so-called curl shape. In addition, the plurality of filaments that have been deformed into a curl form contact with each other, and enter into the cooling water in a state where they are mutually contacted and fused by the rotation of the holder, and the contact portions are hardened by being hardened. Is fixed. Then, the plurality of filaments are continuously supplied to the holder, and the curl-like filaments are wound around the outer periphery of the holder in a substantially spherical shape. When the curled filament is wound around the entire periphery of the holding body, the spinning of the filament from the nozzle hole is stopped, and the holding body holds the curled filament in the cooling water for a certain period of time. Dipped. Thereby, the filament is completely cooled and hardened, and a substantially hollow spherical body is formed. That is, a substantially hollow spherical filter medium is formed. Thereafter, the spherical body is extracted from the holding body to obtain a substantially hollow spherical filter medium for anaerobic treatment.

【0012】この嫌気処理用濾材は、汚水処理装置の嫌
気処理部の空間部へ充填され、所謂嫌気処理用濾床を形
成する。而して、嫌気処理部へ流入した汚水は、嫌気処
理用濾材から成る濾床を通過する間にその内部に含まれ
る固形物が濾材によって捕捉され、所謂濾過処理が行わ
れる。又、汚泥を含んだ固形物が嫌気処理用濾材に捕捉
・保持されることにより、汚泥内の嫌気性微生物が十分
に繁殖し、当該嫌気性微生物による汚水の分解処理が増
進される。
The anaerobic filter medium is filled into the space of the anaerobic treatment section of the sewage treatment apparatus to form a so-called anaerobic filter bed. Thus, while the sewage flowing into the anaerobic treatment section passes through the filter bed made of the anaerobic treatment filter medium, solid matter contained therein is captured by the filter medium, and so-called filtration processing is performed. In addition, the solid matter containing the sludge is captured and held by the filter medium for anaerobic treatment, whereby the anaerobic microorganisms in the sludge sufficiently propagate and the anaerobic microorganisms promote the decomposition treatment of the sewage.

【0013】上記嫌気処理用濾材は、カール状に彎曲せ
しめた合成樹脂製の多数の糸状体を寄せ集め、これらを
相互に固着せしめることにより、所定の厚さの網状球壁
を備えたほぼ中空の球形としている為、濾材の目詰まり
を生ずることなしに汚泥の捕捉率を大幅に向上させるこ
とができ、嫌気処理部に於ける処理能力が大幅に向上す
る。又、この嫌気処理用濾材は、ほぼ球状に形成されて
いる為、汚水処理装置の嫌気処理部に投入するだけで、
嫌気処理部に自然に整然と充填されることになる。その
結果、嫌気処理用濾床を簡単且つ迅速に形成することが
でき、作業性にも極めて優れている。更に、この嫌気処
理用濾材は、濾材の形成後に二次加工等を施す必要もな
く、比較的簡単に製造することができる。
The filter medium for anaerobic treatment collects a large number of filaments made of synthetic resin curled in a curl shape and fixes them together to form a substantially hollow body having a reticulated spherical wall of a predetermined thickness. Because of the spherical shape, the trapping rate of sludge can be greatly improved without clogging of the filter medium, and the processing capacity in the anaerobic treatment section is greatly improved. In addition, since the anaerobic treatment filter medium is formed in a substantially spherical shape, only the anaerobic treatment section of the sewage treatment apparatus is charged,
The anaerobic treatment part is naturally and orderly filled. As a result, the filter bed for anaerobic treatment can be formed easily and quickly, and the workability is extremely excellent. Further, the filter medium for anaerobic treatment does not need to be subjected to secondary processing or the like after the formation of the filter medium, and can be manufactured relatively easily.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1乃至図3は本発明に係る嫌気処理用濾
材Aを示し、当該嫌気処理用濾材Aは後述する如き方法
により、ポリプロピレンやポリエチレン等の熱可塑性樹
脂の糸状体から成る網状の球壁を備えたほぼ中空の球形
に形成されて居り、且つその形状寸法は、外径Dが約1
50mm、網状球壁の厚さtが約25mm程度に夫々選
定されている。又、前記網状の球壁を形成する熱可塑性
樹脂の糸状体は、その外径が0. 5〜3.0mmφ程度
に選定されて居り、且つ直径が10〜40mm程度の多
数のカール状体が相互に固着した状態となっている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIGS. 1 to 3 show a filter medium A for anaerobic treatment according to the present invention. The filter medium A for anaerobic treatment has a net-like spherical wall made of a thread-like material of a thermoplastic resin such as polypropylene or polyethylene by a method described later. And has an outer diameter D of about 1
50 mm, and the thickness t of the reticulated spherical wall is selected to be about 25 mm. The thermoplastic resin thread forming the net-like spherical wall has an outer diameter selected to be about 0.5 to 3.0 mmφ, and has a large number of curls having a diameter of about 10 to 40 mm. They are fixed to each other.

【0015】前記濾材Aの外形寸法は、主としてこれを
適用する嫌気濾床槽の容量、汚水の性質、嫌気処理性能
(汚泥捕捉性・汚泥保持率等)及び濾材Aの製造方法等
から決定されるものである。例えば、濾材Aの外径Dが
60mm以下及び400mm以上になると、その製造が
難かしくなり、この点から外径Dは60〜400mm程
度に限定される。更に、濾材Aの球壁の厚さtは、主と
して目詰まりや汚泥の捕捉性等の点から決定され、濾材
Aの外径Dが100mmの場合には、球壁の厚さが10
mm〜20mm位が、又、外径Dが200mmの場合に
は、球壁の厚さが20mm〜30mm位が最適であるこ
とが、実機試験により確認されている。
The external dimensions of the filter medium A are determined mainly from the capacity of the anaerobic filter tank to which the filter medium A is applied, the properties of sewage, anaerobic treatment performance (sludge trapping property, sludge retention rate, etc.), the method of manufacturing the filter medium A, and the like. Things. For example, if the outer diameter D of the filter medium A is 60 mm or less and 400 mm or more, it becomes difficult to manufacture the filter medium A. From this point, the outer diameter D is limited to about 60 to 400 mm. Further, the thickness t of the spherical wall of the filter medium A is determined mainly from the viewpoint of clogging and sludge trapping property, and when the outer diameter D of the filter medium A is 100 mm, the thickness of the spherical wall is 10 mm.
It has been confirmed by actual machine tests that when the outer diameter D is about 200 mm and the outer diameter D is about 200 mm, the thickness of the spherical wall is about 20 mm to about 30 mm.

【0016】図4乃至図7は本発明に係る嫌気処理用濾
材Aの製造に使用する濾材製造装置の一例を示すもので
あり、1は合成樹脂供給装置、2はノズル、3はカッタ
ー機構、4は冷却水槽、5は回転円板、6は円板用駆動
機構、7は保持体、8は保持体用駆動機構、9は押圧機
構、10は抜き取り機構、11はシュート、Pは熱可塑
性樹脂、P1 は糸状体、Wは冷却水、WLは冷却水面で
ある。
FIGS. 4 to 7 show an example of a filter material producing apparatus used for producing the filter medium A for anaerobic treatment according to the present invention, wherein 1 is a synthetic resin supply apparatus, 2 is a nozzle, 3 is a cutter mechanism, 4 is a cooling water tank, 5 is a rotating disk, 6 is a disk drive mechanism, 7 is a holder, 8 is a holder drive mechanism, 9 is a pressing mechanism, 10 is a withdrawal mechanism, 11 is a chute, and P is thermoplastic. resin, P 1 is the filament, W is the cooling water, WL is cooled water.

【0017】前記合成樹脂供給装置1には、従来公知の
スクリュー式押出し成形機が使用されて居り、ホッパー
1a内に投入した粒状の熱可塑性樹脂材(ポリプロピレ
ンやポリエチレン等の熱可塑性合成樹脂材)をスクリュ
ー(図示省略)の回転により押出機1b内を通過せしめ
ると共に、ヒーター(図示省略)からの加熱によって流
動状態に溶融せしめ、溶融した熱可塑性樹脂Pを前記ス
クリューにより適当な粘度に混練してノズル2内へ圧送
するものである。
The synthetic resin supply device 1 uses a conventionally known screw type extrusion molding machine, and is a granular thermoplastic resin material (thermoplastic synthetic resin material such as polypropylene or polyethylene) charged into the hopper 1a. Is passed through the extruder 1b by rotation of a screw (not shown), and is melted into a fluid state by heating from a heater (not shown), and the melted thermoplastic resin P is kneaded to an appropriate viscosity by the screw. The pressure is fed into the nozzle 2.

【0018】ノズル2は、図4及び図5に示す如く、押
出機1bの先端部に設けられて居り、冷却水槽4内の冷
却水面WLの上方位置に左右対称状に配設されている。
又、各ノズル2のノズル孔2aは、5mm〜10mmの
間隔で且つ100mm〜150mmの範囲に亘って直列
状に配列形成されて居り、ノズル孔2aの直径は約0.
5mm〜2.5mmに選定されている。尚、ノズル孔2
aから冷却水面WLまでの距離は、約400mm〜60
0mmに選定されている。
As shown in FIGS. 4 and 5, the nozzle 2 is provided at the tip of the extruder 1b, and is disposed symmetrically at a position above the cooling water surface WL in the cooling water tank 4.
The nozzle holes 2a of the nozzles 2 are arranged in series at intervals of 5 mm to 10 mm and in a range of 100 mm to 150 mm, and the diameter of the nozzle holes 2a is about 0.1 mm.
5 mm to 2.5 mm is selected. In addition, nozzle hole 2
The distance from a to the cooling water surface WL is approximately 400 mm to 60 mm.
0 mm is selected.

【0019】カッター機構3は、図4に示す如く、ノズ
ル2の近傍位置に水平姿勢で配設された流体圧シリンダ
3aと、流体圧シリンダ3aのロッドの先端部に取り付
けられ、ノズル孔2aから紡出する糸状体P1 を切断す
るカッター3b等から成り、ノズル孔2aから糸状体P
1 が一定時間だけ紡出されたら伸縮動作して糸状体P 1
を切断するものである。
The cutter mechanism 3, as shown in FIG.
Hydraulic cylinder arranged in a horizontal position in the vicinity of the nozzle 2
3a and attached to the tip of the rod of the hydraulic cylinder 3a
The filament P spun from the nozzle hole 2a1Disconnect
From the nozzle hole 2a.
1Is spun for a certain period of time and expands and contracts to form a filament P 1
Is to cut off.

【0020】回転円板5は、その中心部が冷却水槽4の
側壁4a間に回転自在に支持した回転軸12に取り付け
られて居り、回転軸12の回転に伴って冷却水槽4内で
鉛直回転するようになっている。尚、冷却水槽4へ貯留
される冷却水Wの量は、冷却水面WLが回転円板5の中
心に来るように選定されている。
The rotating disk 5 has a central portion attached to a rotating shaft 12 rotatably supported between side walls 4a of the cooling water tank 4, and rotates vertically in the cooling water tank 4 as the rotating shaft 12 rotates. It is supposed to. Note that the amount of the cooling water W stored in the cooling water tank 4 is selected so that the cooling water level WL comes to the center of the rotating disk 5.

【0021】円板用駆動機構6は、回転軸12を回転駆
動して回転円板5を図4の矢印イ方向へ鉛直回転させる
ものであり、モータ6a及び伝動機構6b(例えば歯車
式伝動機構)等から成る。又、円板用駆動機構6は、回
転円板5が一定時間毎に90°宛間欠的に回転するよう
に駆動制御されている。
The disk drive mechanism 6 drives the rotary shaft 12 to rotate the rotary disk 5 vertically in the direction of arrow a in FIG. 4, and includes a motor 6a and a transmission mechanism 6b (for example, a gear type transmission mechanism). ) Etc. The drive mechanism 6 for the disk is drive-controlled so that the rotary disk 5 rotates intermittently by 90 ° at regular intervals.

【0022】保持体7は、回転円板5の両側面外周縁部
に90°間隔毎に鉛直回転自在に配設されて居り、縮拡
径自在な茶筅構造に構成されている。即ち、各保持体7
は、図4乃至図6に示す如く、回転円板5の外周縁部へ
支軸7aを介して回転自在に取り付けた円盤7bに、複
数本(約8本〜12本程度)の弾性変形自在な彎曲状の
鋼線7cを環状に配設することにより形成されて居り、
各鋼線7cの先端部を後述する押圧機構9で回転円板5
側へ一定距離だけ押圧することにより、漸次拡径してほ
ぼ球状に変形せしめられ、又、押圧状態を解除すること
により、ほぼ太鼓形状に復元するようになっている。
尚、保持体7の回転円板5への取り付け位置は、間欠的
に回転している回転円板5が停止したときに保持体7の
中心部が冷却水面WLの位置へ来ると共に、保持体7の
複数本の鋼線7cの一部(冷却水面WLの近傍に位置す
る鋼線7c)がノズル2の真下に来るように設定されて
いる。
The holders 7 are arranged on the outer peripheral edges of both sides of the rotating disk 5 so as to be vertically rotatable at 90 ° intervals, and are configured in a chasen structure which can be reduced and expanded in diameter. That is, each holder 7
As shown in FIGS. 4 to 6, a plurality of (about 8 to 12) elastically deformable disks 7b are rotatably mounted on the outer peripheral edge of the rotating disk 5 via a support shaft 7a. Is formed by arranging a curved steel wire 7c in an annular shape,
The distal end of each steel wire 7c is rotated by a pressing mechanism 9 to be described later.
By pressing a certain distance to the side, the diameter gradually increases and is deformed into a substantially spherical shape. When the pressed state is released, the drum is restored to a substantially drum shape.
The position at which the holder 7 is attached to the rotating disk 5 is such that when the rotating disk 5 that is rotating intermittently stops, the center of the holder 7 comes to the position of the cooling water surface WL and the holder 7 Some of the steel wires 7c (the steel wires 7c located in the vicinity of the cooling water surface WL) are set to be directly below the nozzle 2.

【0023】保持体用駆動機構8は、図6に示す如く、
各保持体7の支軸7aに嵌着された従動歯車8aと、冷
却水面WLの近傍位置で冷却水槽4の側壁4a間に回転
自在に支持された駆動軸8bと、駆動軸8bに嵌着さ
れ、前記従動歯車8aに噛合自在な駆動歯車8cと、駆
動軸8bを回転駆動するモータ8d等から構成されて居
り、回転円板5が間欠的に回転して保持体7が冷却水面
WLの近傍位置に来たときに従動歯車8aと駆動歯車8
cとが噛み合うようになっている。従って、冷却水面W
Lの近傍位置に来た保持体7は、保持体用駆動機構8に
よって、図4の矢印ロ方向へ鉛直回転することになる。
As shown in FIG. 6, the driving mechanism 8 for the holder is
A driven gear 8a fitted to a support shaft 7a of each holding body 7, a drive shaft 8b rotatably supported between the side walls 4a of the cooling water tank 4 near the cooling water surface WL, and a drive shaft 8b fitted to the drive shaft 8b. The driving gear 8c is configured to be freely meshable with the driven gear 8a, a motor 8d for driving the driving shaft 8b to rotate, and the like. Driven gear 8a and drive gear 8
and c. Therefore, the cooling water level W
The holder 7 having reached the position near L is vertically rotated by the holder driving mechanism 8 in the direction of arrow B in FIG.

【0024】押圧機構9は、図5及び図6に示す如く、
冷却水槽4の側壁4aに水平姿勢で配設され、冷却水面
WLの近傍位置に来た保持体7に対向する流体圧シリン
ダ9aと、流体圧シリンダ9aのロッドに取り付けら
れ、保持体7の鋼線7cに当接自在な円盤状の押圧体9
bとから成り、流体圧シリンダ9aが伸長することによ
り、押圧体9bが鋼線7cに当接してこれをほぼ球状に
彎曲せしめ、又、流体圧シリンダ9aが短縮することに
より、押圧体9bが鋼線7cから離れるようになってい
る。
The pressing mechanism 9 is, as shown in FIGS.
The hydraulic cylinder 9a is disposed in a horizontal position on the side wall 4a of the cooling water tank 4 and faces the holder 7 near the cooling water surface WL. The hydraulic cylinder 9a is attached to a rod of the hydraulic cylinder 9a. Disc-shaped pressing body 9 that can freely contact line 7c
When the fluid pressure cylinder 9a extends, the pressing body 9b abuts on the steel wire 7c to bend the steel wire 7c into a substantially spherical shape, and when the fluid pressure cylinder 9a is shortened, the pressing body 9b The steel wire 7c is separated from the steel wire 7c.

【0025】抜き取り機構10は、図5に示す如く、冷
却水槽4の上方位置に左右対称状で且つ上下方向へ揺動
自在に配設された第1流体圧シリンダ10aと、第1流
体圧シリンダ10aを上下方向へ揺動させる第2流体圧
シリンダ10bと、第1流体圧シリンダ10aのロッド
に取り付けられ、最上方位置に来た保持体7に遊嵌可能
な二叉形状の抜き取り体10c等から成り、保持体7の
外周へ巻き付け形成された球状体(濾材A)を保持体7
から抜き取るものである。又、第1流体圧シリンダ10
aは、第2流体圧シリンダ10bによって、上方へ傾斜
した姿勢の待機位置(図5の実線位置)と待機位置から
下方へ下降して最上方位置の保持体7に対向する水平姿
勢の作動位置(図5の破線位置)とを取り得るようにな
っている。更に、第1流体圧シリンダ10aの伸長スト
ロークは、伸長状態で作動位置に下降したときに抜き取
り体10cが最上方位置の保持体7の鋼線7cの基端部
側に遊嵌され、且つ保持体7の鋼線7cから濾材Aを抜
き取れるように選定されている。
As shown in FIG. 5, the extracting mechanism 10 includes a first hydraulic cylinder 10a, which is symmetrically disposed at a position above the cooling water tank 4 and is swingable vertically. A second hydraulic cylinder 10b for vertically swinging the hydraulic cylinder 10a, a bifurcated extraction body 10c attached to the rod of the first hydraulic cylinder 10a, and capable of being loosely fitted to the holder 7 at the uppermost position, etc. And a spherical body (filter medium A) wound around the outer periphery of the holder 7
It is extracted from. Also, the first hydraulic cylinder 10
a is a standby position (solid line position in FIG. 5) in a posture inclined upward by the second fluid pressure cylinder 10b, and an actuated position in a horizontal posture, which is lowered from the standby position to face the holding member 7 at the uppermost position. (The position indicated by the broken line in FIG. 5). Further, when the first hydraulic cylinder 10a is extended to the operating position in the extended state, the extracted body 10c is loosely fitted to the base end side of the steel wire 7c of the holder 7 at the uppermost position. The filter medium A is selected so that the filter medium A can be removed from the steel wire 7c of the body 7.

【0026】次に、前記濾材製造装置を用いて嫌気処理
用濾材Aを製造する場合について説明する。合成樹脂供
給装置1のホッパー1a内に投入された粒状の熱可塑性
樹脂材(ポリプロピレンやポリエチレン等の熱可塑性合
成樹脂材)は、ヒーター(図示省略)からの加熱によっ
て流動状態に溶融せしめられ、スクリューにより適当な
粘度に混練されてノズル2内へ圧送される。
Next, the case where the filter medium A for anaerobic treatment is manufactured by using the filter medium manufacturing apparatus will be described. The granular thermoplastic resin material (a thermoplastic synthetic resin material such as polypropylene or polyethylene) charged into the hopper 1a of the synthetic resin supply device 1 is melted into a fluid state by heating from a heater (not shown), and is screwed. And the mixture is kneaded to an appropriate viscosity and fed into the nozzle 2.

【0027】ノズル2内へ圧送された溶融状態の熱可塑
性樹脂Pは、ノズル孔2aより紡出され、糸状体P1
なって冷却水槽4内へ下降する(図4及び図5参照)。
尚、冷却水面WLの近傍位置に来ている保持体7は、糸
状体P1 の下降前に押圧機構9によりほぼ球状に変形せ
しめられ、保持体用駆動機構8により矢印ロ方向へ一定
の周速度(保持体7が20秒〜30秒程度で一回転する
速度)で回転せしめられている(図8乃至図11参
照)。
[0027] Thermoplastic resin P pumping molten state into the nozzle 2 is spun from the nozzle holes 2a, it becomes the filament P 1 descends into the cooling water tank 4 (see FIGS. 4 and 5).
The holding member 7 located near the cooling water surface WL is deformed into a substantially spherical shape by the pressing mechanism 9 before the thread P 1 descends, and the holding member driving mechanism 8 rotates the holding member 7 in a certain direction in the direction of arrow B. It is rotated at a speed (the speed at which the holder 7 makes one rotation in about 20 to 30 seconds) (see FIGS. 8 to 11).

【0028】各ノズル孔2aから紡出された複数の糸状
体P1 は、冷却水面WL近傍位置で鉛直回転している球
状の保持体7の鋼線7cで受け止められると共に、冷却
水Wに触れることにより急冷される。この急冷により固
化力が作用して糸状体P1 の下端部が所謂カール状に変
形して行く。又、保持体7上に形成された複数のカール
状体は、相互に接触融着すると共に、保持体7の回転に
より相互に接触融着した状態で冷却水W内へ入り、接触
部が硬化することによって相互に強固に固着された状態
となる(図12乃至図13参照)。尚、前記糸状体P1
のカールの直径は、合成樹脂材の粘性やノズル2の径等
を調整することにより変えられ、通常は10〜40mm
φに選定されている。
The plurality of filaments P 1 spun from each nozzle hole 2 a are received by the steel wire 7 c of the spherical holder 7 rotating vertically near the cooling water surface WL and come into contact with the cooling water W. It is rapidly cooled. The lower end of the filament P 1 solidifying force acts rapidly cooled is gradually deformed into a so-called curled. Further, the plurality of curled bodies formed on the holding member 7 are contact-fused with each other, and enter the cooling water W in a state where they are contact-fused with each other by the rotation of the holding member 7, and the contact portion is hardened. By doing so, they are firmly fixed to each other (see FIGS. 12 and 13). The filament P 1
The diameter of the curl can be changed by adjusting the viscosity of the synthetic resin material, the diameter of the nozzle 2, and the like.
φ has been selected.

【0029】そして、保持体7へは引き続き複数の糸状
体P1 が連続的に供給され、保持体7の鋼線7cの外周
にはカール状の糸状体P1 が連続的に巻き付けられて行
く(図12乃至図13参照)。
Then, the plurality of filaments P 1 are continuously supplied to the holder 7, and the curl-like filaments P 1 are continuously wound around the outer periphery of the steel wire 7 c of the holder 7. (See FIGS. 12 and 13).

【0030】保持体7の外周全域へカール状の糸状体P
1 が巻き付けられたら、カッター機構3が作動してカッ
ター3bによりノズル孔2aから紡出している糸状体P
1 が切断されて該糸状体P1 の供給が停止せしめられる
(図14参照)。又、押圧機構9の流体圧シリンダ9a
が短縮して保持体7の押圧状態が解除されると共に、回
転円板5が円板用駆動機構6により矢印イ方向へ90°
だけ回転し、保持体7に巻き付けられたカール状の糸状
体P1 を冷却水Wへ一定時間だけ浸漬する。これによっ
て、糸状体P1 は完全に冷却硬化され、ほぼ中空状の球
状体(濾材A)が形成される。
The curled filament P is applied to the entire outer periphery of the holder 7.
1 is wound, the cutter mechanism 3 is operated, and the filament P is spun from the nozzle hole 2a by the cutter 3b.
1 is cut supply of the filamentous body P 1 is made to stop (see Figure 14). Also, the fluid pressure cylinder 9a of the pressing mechanism 9
And the pressed state of the holding member 7 is released, and the rotating disk 5 is turned 90 ° in the direction of arrow a by the disk driving mechanism 6.
Then, the curled filament P 1 wound around the holder 7 is immersed in the cooling water W for a certain time. Thus, filaments P 1 is completely cooled and hardened, substantially hollow spheres (filter material A) is formed.

【0031】尚、回転円板5が90°回転して最上方位
置に位置している保持体7が冷却水面WLの近傍位置ま
で下降すると、該保持体7は保持体用駆動機構8により
回転せしめられると共に、押圧機構9が作動して保持体
7がほぼ球状に変形せしめられる(図8乃至図11参
照)。
When the rotating disk 5 is rotated by 90 ° and the holder 7 positioned at the uppermost position is lowered to a position near the cooling water surface WL, the holder 7 is rotated by the holder driving mechanism 8. At the same time, the holding mechanism 7 is deformed into a substantially spherical shape by operating the pressing mechanism 9 (see FIGS. 8 to 11).

【0032】又、保持体7がほぼ球状に変形したら、引
き続きノズル孔2aから糸状体P1が紡出されると共
に、その先端部が球状の保持体7に受け止められ、上記
と同様にして保持体7の外周にカール状の糸状体P1
巻き付けられて行き、ほぼ中空状の球状体(濾材A)が
形成される。
[0032] Further, when the holding member 7 is deformed approximately spherical, continue with filament P 1 is spun from the nozzle holes 2a, the distal end is received by the holder 7 of the spherical holder in the same manner as described above 7 the outer peripheral filament P 1 curled can go wound in substantially hollow spheres (filter material a) is formed.

【0033】このようにして、ノズル2の下方位置に順
次来る各保持体7にカール状の糸状体P1 が中空状で且
つ球状に巻き付けられてれて行く。
[0033] In this way, the filament P 1 of each holding member 7 successively comes to the lower position curled nozzle 2 is gradually being wound around a and hollow spherical shape.

【0034】そして、保持体7に巻き付け形成されたほ
ぼ中空状の球状体(濾材A)が回転円板5の間欠回転に
より最上方位置へ来ると、抜き取り機構10が作動して
保持体7から濾材Aを抜き取る。即ち、待機位置にある
第1流体圧シリンダ10aが伸長して待機位置から作動
位置へ下降し、抜き取り体10cを保持体7の鋼線7c
の基端部側に遊嵌させる(図15参照)。その後第1流
体圧シリンダ10aが短縮して抜き取り体10cにより
球状体(濾材A)を保持体7からを抜き取る。抜き取ら
れた濾材Aは、冷却水面WLの上方位置に配置したシュ
ート11上に落下し、該シュート11により冷却水槽4
外へ取り出される(図16参照)。
When the substantially hollow spherical body (filter medium A) wound around the holding member 7 comes to the uppermost position due to the intermittent rotation of the rotating disk 5, the extracting mechanism 10 is operated to release the holding member 7 from the holding member 7. Remove the filter medium A. That is, the first hydraulic cylinder 10a in the standby position extends and descends from the standby position to the operating position, and the extracted body 10c is connected to the steel wire 7c of the holding body 7.
(See FIG. 15). Thereafter, the first fluid pressure cylinder 10a is shortened, and the spherical body (filter medium A) is extracted from the holder 7 by the extraction body 10c. The extracted filter medium A falls on a chute 11 arranged above the cooling water surface WL, and is moved by the chute 11 into the cooling water tank 4.
It is taken out (see FIG. 16).

【0035】このようにして、ほぼ中空の球形の嫌気処
理用濾材Aが連続的に形成されて行く。
In this way, a substantially hollow spherical anaerobic filter medium A is continuously formed.

【0036】上述の様にして製造された嫌気処理用濾材
Aは、嫌気処理部の内部に一定の間隔を置いて水平に配
設した濾材受けと濾材押えとの間の空間部へ充填され、
所謂嫌気処理用濾床が形成される。
The filter medium A for anaerobic treatment produced as described above is filled in the space between the filter medium receiver and the filter medium retainer, which is horizontally disposed at a fixed interval inside the anaerobic treatment section,
A so-called anaerobic filter bed is formed.

【0037】而して、嫌気処理部へ流入した汚水は、嫌
気処理用濾材Aから成る濾床を通過する間にその内部に
含まれる固形物が濾材Aによって捕捉され、所謂濾過処
理が行われる。又、汚泥を含んだ固形物が嫌気処理用濾
材Aに捕捉・保持されることにより、汚泥内の嫌気性微
生物が十分に繁殖し、当該嫌気性微生物による汚水の分
解処理が増進される。
The sewage that has flowed into the anaerobic treatment section passes through a filter bed made of the anaerobic treatment filter medium A, and solids contained therein are captured by the filter medium A, so-called filtration is performed. . Further, the solid matter containing the sludge is captured and held by the filter medium A for anaerobic treatment, whereby the anaerobic microorganisms in the sludge sufficiently propagate and the decomposition treatment of the sewage by the anaerobic microorganisms is enhanced.

【0038】上記嫌気処理用濾材Aの捕捉性と従前のこ
の種嫌気処理用濾材(薄波板形の濾材、網状厚波板形の
濾材、かご様の円筒体形の濾材)の捕捉性を模擬汚泥を
使用して実測した場合、前記濾材Aは従前の濾材に比較
して汚泥捕捉率が大幅に向上していることが判明した。
The simulated sludge simulates the trapping property of the anaerobic treatment filter medium A and the trapping property of the conventional anaerobic treatment filter medium (a thin-plate filter medium, a net-like thick corrugated sheet filter medium, and a basket-like cylindrical filter medium). , It was found that the filter medium A had a significantly improved sludge trapping rate as compared with the conventional filter medium.

【0039】即ち、容量約1. 3m3 を有する嫌気濾床
槽の内部に1m×1m×0. 5m(高さ)の嫌気濾床を
形成し、流入口から当該嫌気濾床槽内へSS濃度が32
00ppmの人工汚水を、流量が20l/minの割合
で連続的に供給すると共に、その放流口から排出される
流出水内のSS濃度を連続的に測定し、その平均値を算
定した。尚、当該試験に於いては、各嫌気濾床の全濾材
表面積がほぼ同一値に揃えられることは勿論である。そ
の結果、上記濾材Aでは流出水内のSS濃度が480p
pmとなり、約85%のSS(浮遊物質)が捕捉され
た。これに対して、薄波板形の濾材では流出水内のSS
濃度が3200ppm、網状厚波板形の濾材では流出水
内のSS濃度が1300ppm、かご様の円筒体形の濾
材では流出水内のSS濃度が2000ppmとなり、夫
々捕捉率が0%、約60%、約38%となった。
That is, an anaerobic filter bed of 1 mx 1 mx 0.5 m (height) is formed inside an anaerobic filter tank having a capacity of about 1.3 m 3 , and SS is introduced from the inlet into the anaerobic filter tank. Concentration 32
00 ppm artificial wastewater was continuously supplied at a flow rate of 20 l / min, and the SS concentration in the effluent discharged from the discharge port was continuously measured, and the average value was calculated. In this test, it is a matter of course that the total surface area of the filter media of each anaerobic filter bed is set to almost the same value. As a result, in the filter medium A , the SS concentration in the effluent was 480 p.
pm, and about 85% of SS (suspended matter) was captured. On the other hand, in the case of a thin-plate type filter medium,
The concentration is 3200 ppm, the SS concentration in the effluent is 1300 ppm for the net-like thick corrugated filter medium, and the SS concentration in the effluent is 2000 ppm for the basket-like cylindrical filter medium, and the trapping rate is 0% and about 60%, respectively. It was about 38%.

【0040】[0040]

【発明の効果】上述の通り、本発明の嫌気処理用濾材の
製造方法は、複数のノズル孔から加熱溶融した熱可塑性
樹脂を紡出させ、この糸状体を冷却水槽内の水面近傍位
置で鉛直回転している縮拡径自在な球状の保持体で受け
止めてカール状に変形させると共に、カール状に変形せ
しめた複数の糸状体相互を接触融着させつつ保持体の外
周にカール状の糸状体を順次巻き付けて行き、その後ノ
ズル孔からの糸状体の紡出を止めて冷却硬化したほぼ中
空の球状体を保持体から抜き取るようにしている。その
結果、所望の外径寸法の濾材を簡単に製造するとこがで
きると共に、濾材の形成後に二次加工等を施す必要もな
い。 又、本発明の製造方法により得られた嫌気処理用濾
材は、多数のカール状に彎曲せしめた合成樹脂製の糸状
体を寄せ集め、これを相互に固着せしめることにより、
所定の厚さの網状球壁を備えたほぼ中空の球形としてい
る。その結果、従前の嫌気処理用濾材に比較して、濾材
の目詰まりを生ずることなしに汚泥の捕捉率を大幅に向
上させることができ、嫌気処理部に於ける処理能力が大
幅に向上する。 更に、この嫌気処理用濾材は、ほぼ球状
に形成されている為、汚水処理装置の嫌気処理部に投入
するだけで、嫌気処理部に自然に整然と充填されること
になる。その結果、嫌気処理用濾床を簡単且つ迅速に形
成することができ、作業性にも極めて優れている。
As described above, the filter medium for anaerobic treatment of the present invention
The manufacturing method is made of thermoplastic resin heated and melted from multiple nozzle holes.
The resin is spun out and the filaments are placed near the water surface in the cooling water tank.
With a spherical holder that is vertically rotating
Stop and deform into a curl shape, and deform into a curl shape
The outside of the holding body is brought into contact with the
Circular filaments are sequentially wound around the circumference, and then
Approximately in the middle of cooling and hardening by stopping the spinning of the filament from the chisel hole
Empty spheres are removed from the holder. That
As a result, it is easy to manufacture a filter medium with the desired outer diameter.
It is not necessary to perform secondary processing after forming the filter media.
No. Further, the filter for anaerobic treatment obtained by the production method of the present invention.
The material is made of a number of curled synthetic resin threads.
By assembling the bodies and sticking them together,
A substantially hollow sphere with a reticulated sphere wall of predetermined thickness
You. As a result, compared to the conventional filter media for anaerobic treatment,
Greatly improves the sludge trapping rate without clogging
And the processing capacity in the anaerobic treatment section is large.
Improve in width. Furthermore, the filter medium for anaerobic treatment is almost spherical.
Into the anaerobic treatment section of the sewage treatment equipment
Simply fills the anaerobic treatment section naturally
become. As a result, the filter for anaerobic treatment can be formed easily and quickly.
And workability is extremely excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る嫌気処理用濾材の正面図
である。
FIG. 1 is a front view of a filter medium for anaerobic treatment according to an embodiment of the present invention.

【図2】嫌気処理用濾材の平面図である。FIG. 2 is a plan view of a filter medium for anaerobic treatment.

【図3】図2のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】嫌気処理用濾材の製造に使用する濾材製造装置
の一部分を破断した概略正面図である。
FIG. 4 is a schematic front view in which a part of a filter medium manufacturing apparatus used for manufacturing a filter medium for anaerobic treatment is broken.

【図5】図4のC−C線断面図である。FIG. 5 is a sectional view taken along line CC of FIG. 4;

【図6】図4のD−D線断面図である。FIG. 6 is a sectional view taken along line DD of FIG. 4;

【図7】ノズルの横断面図である。FIG. 7 is a cross-sectional view of the nozzle.

【図8】冷却水面近傍の保持体が保持体用駆動機構によ
り鉛直回転している状態を示す部分正面図である。
FIG. 8 is a partial front view showing a state in which a holder near a cooling water surface is vertically rotated by a holder driving mechanism.

【図9】同じく図8の平面図である。FIG. 9 is a plan view of FIG. 8;

【図10】冷却水面近傍の保持体が押圧機構により球形
に変形した状態を示す部分正面図である。
FIG. 10 is a partial front view showing a state where a holding body near a cooling water surface is deformed into a spherical shape by a pressing mechanism.

【図11】同じく図10の平面図である。FIG. 11 is a plan view of FIG. 10;

【図12】冷却水面近傍の保持体に合成樹脂製の糸状体
が巻き付けられて行く状態を示す部分正面図である。
FIG. 12 is a partial front view showing a state in which a thread made of a synthetic resin is wound around a holder near a cooling water surface.

【図13】同じく図12の側面図である。FIG. 13 is a side view of FIG.

【図14】冷却水面近傍の保持体の外周全域に合成樹脂
製の糸状体が巻き付けられた状態を示す部分正面図であ
る。
FIG. 14 is a partial front view showing a state in which a thread made of synthetic resin is wound around the entire outer periphery of the holder near the cooling water surface.

【図15】最上方位置の保持体から抜き取り機構により
濾材を抜き取る状態を示す部分側面図である。
FIG. 15 is a partial side view showing a state where a filter medium is extracted from a holder at an uppermost position by an extraction mechanism.

【図16】最上方位置の保持体から濾材を抜き取った状
態を示す部分側面図である。
FIG. 16 is a partial side view showing a state where a filter medium has been extracted from the holder at the uppermost position.

【図17】嫌気処理用濾材を利用する合併処理浄化槽の
一例を示す概略断面図である。
FIG. 17 is a schematic cross-sectional view showing one example of a merged treatment septic tank utilizing a filter medium for anaerobic treatment.

【符号の説明】[Explanation of symbols]

Aは濾材、Pは熱可塑性樹脂材、P1 は糸状体、Wは冷
却水、WLは冷却水面、2はノズル孔、4は冷却水槽、
7は保持体。
A is a filter medium, P is a thermoplastic resin material, P 1 is a filament, W is cooling water, WL is a cooling water surface, 2 is a nozzle hole, 4 is a cooling water tank,
7 is a holder.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のノズル孔(2a)から下方へ向け
て加熱溶融した熱可塑性樹脂(P)製の糸状体(P1
を紡出させ、当該糸状体(P1 )の先端を冷却水槽
(4)内の水面(WL)近傍位置で鉛直回転している縮
拡径自在な茶筅構造のほぼ球状の保持体(7)で受け止
め、該糸状体(P1 )の先端部を保持体(7)上でカー
ル状に変形させると共に、カール状に変形せしめた複数
の糸状体(P1 )を相互に接触融着させつつ保持体
(7)の外周へ順次球状に巻き付けて行き、その後ノズ
ル孔(2a)からの糸状体(P1 )の紡出を止めると共
に、カール状の糸状体(P1 )を保持体(7)に保持し
た状態で冷却水(W)へ一定時間浸漬し、最後に完全に
冷却硬化したほぼ中空の球状体を保持体(7)から抜き
取るようにしたことを特徴とする嫌気処理用濾材の製造
方法。
1. A plurality of nozzle holes (2a) heating and melting downwardly from thermoplastic resin (P) made of the filament (P 1)
And a substantially spherical holder (7) of a shrinkable and expandable chasen structure in which the tip of the filament (P 1 ) is vertically rotated near the water surface (WL) in the cooling water tank (4). in receiving, together with transform a curled tip portion of the thread-like member (P 1) on the holder (7), while contact fusing a plurality of filaments which deform the curled a (P 1) to each other The filament (P 1 ) is sequentially wound around the outer periphery of the holder (7) in a spherical shape, and then, the spinning of the filament (P 1 ) from the nozzle hole (2a) is stopped, and the curled filament (P 1 ) is wound on the holder (7) ) Is immersed in cooling water (W) for a certain period of time while holding the hollow material, and finally a substantially hollow spherical body completely cooled and hardened is extracted from the holding body (7). Production method.
JP11955395A 1995-05-18 1995-05-18 Method for producing filter media for anaerobic treatment Expired - Lifetime JP3058579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11955395A JP3058579B2 (en) 1995-05-18 1995-05-18 Method for producing filter media for anaerobic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11955395A JP3058579B2 (en) 1995-05-18 1995-05-18 Method for producing filter media for anaerobic treatment

Publications (2)

Publication Number Publication Date
JPH08309387A JPH08309387A (en) 1996-11-26
JP3058579B2 true JP3058579B2 (en) 2000-07-04

Family

ID=14764169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11955395A Expired - Lifetime JP3058579B2 (en) 1995-05-18 1995-05-18 Method for producing filter media for anaerobic treatment

Country Status (1)

Country Link
JP (1) JP3058579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026052A2 (en) * 2003-06-19 2005-03-24 University Of Hawaii Bionest reactor for the application of anaerobic wastewater treatment and bioenergy recovery
JP2011167584A (en) * 2010-02-16 2011-09-01 Kureha Engineering Co Ltd Contact filter medium molding, method for producing the same and filter

Also Published As

Publication number Publication date
JPH08309387A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP5190529B2 (en) Wastewater treatment equipment
JP2007307549A (en) Filtration device, and waste water treatment apparatus using this filtration device
JPH11503069A (en) Water filtration cartridge
US20160271521A1 (en) Filtering device
JP3058579B2 (en) Method for producing filter media for anaerobic treatment
GB1568264A (en) Filler for waste water treatment and process for production of same
CA2163203C (en) Method and apparatus for separating solids from a liquid
JP3360857B2 (en) Filtration device
JP2007245005A (en) Ion exchange resin unit
JP2974565B2 (en) Contact material for biological filter beds
JPH0711840Y2 (en) Anaerobic treatment filter material
JP4979946B2 (en) Method for producing biofilm-forming carrier and biofilm-forming carrier
GB2160856A (en) Component (and method of manufacture thereof) for use in treatment of domestic, industrial and other effluents
JP2001248054A (en) Method for producing three-dimensional net-like body
JPH08281021A (en) High speed filter and method of washing filter medium used therefor
JPH0570520B2 (en)
JP2004083899A (en) Removing method of finely divided particle from polyethylene terephthalate depolymerization solution and method for regenerating filter medium used for removing method
JPS6335315B2 (en)
JP6494244B2 (en) Holding material and waste water treatment device
JPH0550094A (en) Water treating medium and water treating device for denitrification
JP3278128B2 (en) Countercurrent ion exchanger
JP7481699B2 (en) Method for continuously producing biodegradable fiber material containing inorganic filler particles using wet spinning method, and cotton-shaped bone regeneration material produced by the method
JPH0725914U (en) Filtration media and filtration equipment
JP2002204907A (en) Filter medium
JP2002119804A (en) Turbid substance removing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term