JP2011167584A - Contact filter medium molding, method for producing the same and filter - Google Patents

Contact filter medium molding, method for producing the same and filter Download PDF

Info

Publication number
JP2011167584A
JP2011167584A JP2010030886A JP2010030886A JP2011167584A JP 2011167584 A JP2011167584 A JP 2011167584A JP 2010030886 A JP2010030886 A JP 2010030886A JP 2010030886 A JP2010030886 A JP 2010030886A JP 2011167584 A JP2011167584 A JP 2011167584A
Authority
JP
Japan
Prior art keywords
contact filter
molded body
filter medium
density
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010030886A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuoka
毅 松岡
Akihiro Ito
彰洋 伊藤
Masahiro Akatsu
正浩 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Engineering Co Ltd
Original Assignee
Kureha Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Engineering Co Ltd filed Critical Kureha Engineering Co Ltd
Priority to JP2010030886A priority Critical patent/JP2011167584A/en
Priority to PCT/JP2011/052616 priority patent/WO2011102262A1/en
Publication of JP2011167584A publication Critical patent/JP2011167584A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact filter medium molding which attains further improvement of water quality improving effect while employing features of lightweight, good water passing property and water quality improving effect that conventional contact filter medium molding comprising a solidified accumulated material of a thermoplastic resin strand has. <P>SOLUTION: The contact filter medium molding comprises the solidified accumulated material of a molten thermoplastic resin strand as a whole and a plurality of high density filling accumulated lumps H1 to H9 and a low density filling region coexist. A thermoplastic resin in a thermally molten state is extruded to a strand form from a die opening to flow down into a frame body having a definite opening shape in its horizontal direction and to be accumulated in the frame body. At that time, the frame body is intermittently and repeatedly moved in a horizontal two-dimensional direction with respect to the flowing strand and the strand is cooled during flowing-down. Intermittent relative movement of the frame body in the horizontal two-dimensional direction respectively forms a plurality of high density filling accumulated lumps during a period of stopping or of deceleration moving and the low density filling region during a moving period. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、汚濁水の浄化に用いるに適した接触ろ材成形体、その効率的な製造方法および接触ろ材成形体を含むろ過装置に関する。   The present invention relates to a contact filter medium molded body suitable for use in purification of polluted water, an efficient manufacturing method thereof, and a filtration device including the contact filter medium molded body.

河川水、生活排水あるいは工場排水等を含む汚濁水の浄化のために、物理的な接触沈澱および/または付着微生物による生物化学的な接触反応(酸化および/または還元)を促進するために、多孔質の接触ろ材が使用されている。例えば、合成樹脂製の立体網状成形体の使用が知られており(非特許文献1)、そのうち、例えば不織マット状の成形物は、熱可塑性樹脂製繊条を紡出ノズルより下方に向って紡出し、その下方に配置したコンベアを間断なく上下動させて、複数の繊条をループ状に堆積させて冷却固化することにより得られるものとされている(特許文献1および2)。このようにして形成された不織マット状の接触ろ材は一般に90%を超える空隙率を有し、通水性は良好であるが、水質改善性が乏しい。圧縮すれば空隙率を低下できるが、一旦固化したろ材を強制的に圧縮するに際しては、圧縮率の偏り、従って空隙率の偏りを生じ、被処理水(汚濁水)の偏流が起りがちである。また大型の排水処理施設に対応可能な接触ろ材を形成し難いという問題点もある。他方、空隙率を低減することにより、水質改善効果、特にCOD低減効果を増大するものとして、平均直径1〜3cmの砕石の複数をセメントにより接合して平均直径約5〜20cmの集合体とした接触ろ材が提案されている(特許文献3)。しかしながら、この接触ろ材は、通水性と水質改善効果のバランスは良いが、比重が2.6以上と重く、輸送コストが上昇するほか、耐加重性のある水処理槽が必要となり、水処理装置の施工ならびに保守にかかるコストが上昇する等の難点がある上、水質改善効果の一層の改善も望まれる。   In order to purify polluted water including river water, domestic wastewater, industrial wastewater, etc., porous to promote physical contact precipitation and / or biochemical contact reaction (oxidation and / or reduction) by attached microorganisms Quality contact media is used. For example, it is known to use a three-dimensional net-shaped molded body made of a synthetic resin (Non-patent Document 1). Among them, for example, a non-woven mat-shaped molded article has a thermoplastic resin filament facing downward from a spinning nozzle. It is said that it is obtained by spinning up and moving the conveyor arranged below it without interruption, and depositing a plurality of filaments in a loop shape and cooling and solidifying (Patent Documents 1 and 2). Nonwoven mat-shaped contact filter media formed in this way generally have a porosity of over 90% and good water permeability, but poor water quality improvement. Although the porosity can be reduced by compressing, when the filter medium once solidified is forcibly compressed, a bias in the compressibility, and hence in the porosity, tends to occur, and the flow of the treated water (contaminated water) tends to occur. . There is also a problem that it is difficult to form a contact filter medium that can accommodate a large wastewater treatment facility. On the other hand, by reducing the porosity, the water quality improvement effect, particularly the COD reduction effect is increased, and a plurality of crushed stones having an average diameter of 1 to 3 cm are joined by cement to form an aggregate having an average diameter of about 5 to 20 cm. A contact filter medium has been proposed (Patent Document 3). However, this contact filter has a good balance between water permeability and water quality improvement effect, but it has a heavy specific gravity of 2.6 or more, which increases transportation costs and requires a water treatment tank with load resistance. In addition, there are problems such as an increase in costs for construction and maintenance, and further improvement of the water quality improvement effect is desired.

上述の事情に鑑み、本発明者らは、既に「溶融した熱可塑性樹脂ストランドの固化堆積物からなり、概ねX軸方向に延長するストランドからなる一水平ストランド堆積層と、概ねX軸方向と直交するY軸方向に延長するストランドからなる次の一水平ストランド堆積層とを、交互に上下方向に繰り返し積層してなる融着ストランド積層体からなることを特徴とする接触ろ材成形体」を提案している(特許文献4)。このようにして形成された接触ろ材成形体は、制御された空隙率50〜90%を有し、軽量であるとともに、通水性と水質改善効果も良好であるという特徴を有する。しかしながら、本発明者らの検討によれば、この接触ろ材成形体にも水質改善効果に更なる改善の余地があることが見出された。   In view of the circumstances described above, the present inventors have already stated that "one horizontal strand deposition layer consisting of a solidified deposit of molten thermoplastic resin strands and consisting of strands extending generally in the X-axis direction, and generally orthogonal to the X-axis direction. Proposed a contact filter medium molded body comprising a fused strand laminate in which the next horizontal strand deposited layer consisting of strands extending in the Y-axis direction is alternately laminated in the vertical direction. (Patent Document 4). The thus formed contact filter medium molded body has a controlled porosity of 50 to 90%, is lightweight, and has the characteristics of good water permeability and water quality improvement effect. However, according to the study by the present inventors, it has been found that there is room for further improvement in the water quality improvement effect in this contact filter material molded body.

特公昭63−32907号公報Japanese Examined Patent Publication No. 63-32907 特公昭63−32908号公報Japanese Examined Patent Publication No. 63-32908 特公平8−17901号公報Japanese Patent Publication No.8-17901 特開2009−226333号公報JP 2009-226333 A

佐藤健:立体網状接触材の性質とその応用、「用水と廃水」Vol.23,No.4.51〜61頁(1981)Ken Sato: Properties and application of solid reticulated contact material, “Water and wastewater” Vol. 23, no. 4.51-61 (1981)

本発明の主要な目的は、上述した特許文献4の接触ろ材成形体の長所を生かしつつ、更に水質改善効果を増大した接触ろ材成形体、該接触ろ材成形体の効率的な製造方法および該接触ろ材成形体を配列したろ過装置を提供することにある。   The main object of the present invention is to make use of the advantages of the above-mentioned contact filter material molded body of Patent Document 4, while further improving the water quality improvement effect, an efficient production method of the contact filter medium molded body, and the contact It is providing the filtration apparatus which arranged the filter-material molded object.

本発明者らの更なる研究によれば、全体としては特許文献4の接触ろ材成形体と同様に、溶融した熱可塑性樹脂ストランドの固化堆積物でありながら、これにマクロな疎密分布を与えることにより、水質改善効果の向上効果が得られることが見出された(後記実施例および比較例参照)。より詳しくは、本発明の接触ろ材成形体は、全体として溶融した熱可塑性樹脂ストランドの固化堆積物からなり、複数の高密度充填堆積塊と、低密度充填領域とが混在することを特徴とするものである。この接触ろ材成形体を用いることにより、水質改善効果の向上が得られる理由は必ずしも明らかではないが、ストランドのマクロな疎密分布により、汚濁水処理槽の底部に配置した散気管から排出される上昇空気流に対して、高密度領域が阻害部として働き、低密度領域に優先的な空気流が流れる結果、汚濁水の処理性能を支配する嫌気処理領域と好気処理領域の好ましい分配が形成されること;低密度領域の存在により、微生物を多く含む汚泥の保持領域が処理槽の上方にも拡がり、汚泥の保持量が増大すること、などの要因によるものと推定される。好ましい態様によれば、本発明の接触ろ材成形体は、複数の高密度充填堆積塊が、低密度充填領域を介して平面的に配列されてなる。   According to further studies by the present inventors, as a whole, like the contact filter medium molded body of Patent Document 4, it is a solidified deposit of molten thermoplastic resin strands, but gives a macro density distribution thereto. Thus, it has been found that an improvement effect of the water quality improvement effect can be obtained (see Examples and Comparative Examples below). More specifically, the contact filter medium molded body of the present invention is composed of a solidified deposit of molten thermoplastic resin strands as a whole, and a plurality of high-density packed deposits and low-density packed regions are mixed. Is. The reason why an improved water quality improvement effect can be obtained by using this contact filter medium molded body is not necessarily clear, but due to the macro dense distribution of strands, the discharge discharged from the diffuser pipe disposed at the bottom of the contaminated water treatment tank As a result of the high density area acting as a hindrance to the air flow and the preferential air flow flowing in the low density area, a favorable distribution of the anaerobic and aerobic areas that govern the treatment performance of the polluted water is formed. It is presumed that due to the existence of the low density region, the sludge holding region containing a large amount of microorganisms also extends above the treatment tank and the amount of sludge retained increases. According to a preferred embodiment, the contact filter medium molded body of the present invention is formed by arranging a plurality of high-density packed deposits in a planar manner via a low-density packed region.

本発明は、また上記好ましい態様の接触ろ材成形体の効率的な製造方法をも提供する。すなわち、本発明の接触ろ材成形体の製造方法は、加熱溶融状体にある熱可塑性樹脂を、ダイ開口よりストランド状に押出し、一定の水平方向開口形状を有する枠体中に流下・堆積させるに際して、枠体を流下するストランドに対して水平二次元方向に断続的に繰り返し相対移動させ、且つ流下中のストランドを冷却することからなり、前記水平二次元方向断続的相対移動が、停止または減速移動期間と、移動期間とからなり、停止または減速移動期間に複数の高密度充填堆積塊を、移動期間に低密度充填領域を、それぞれ形成することを特徴とするものである。   The present invention also provides an efficient method for producing the contact filter material molded body of the preferred embodiment. That is, in the method for producing a contact filter medium molded body of the present invention, a thermoplastic resin in a heated and melted body is extruded into a strand shape from a die opening, and is allowed to flow down and accumulate in a frame having a certain horizontal opening shape. , And intermittently repeatedly moving in the horizontal two-dimensional direction with respect to the strand flowing down the frame, and cooling the strand in the flowing direction, the horizontal two-dimensional intermittent relative movement is stopped or decelerated. It is characterized by comprising a period and a movement period, and forming a plurality of high-density packed deposits during the stop or deceleration movement period and a low-density packed region during the movement period.

前記水平二次元方向断続的相対移動は、典型的には、停止期間と、移動期間により形成されるが、停止期間の代りに、減速移動期間(移動期間における移動方向への移動速度が遅いことを意味し、短周期往復動の繰り返しにより同方向への移動速度が全体として遅くなる場合を含む)を採用すれば、ダイ面積よりも増大した平面寸法の高密度充填堆積塊を容易に形成することができる。   The horizontal two-dimensional direction intermittent relative movement is typically formed by a stop period and a movement period, but instead of the stop period, the deceleration movement period (the movement speed in the movement direction in the movement period is slow). And the case where the moving speed in the same direction becomes slower as a whole due to repeated short-period reciprocating movements) can be easily formed. be able to.

更に、本発明の汚濁水のろ過装置は、汚濁水処理槽中に、上記接触ろ材成形体の複数を配列してなることを特徴とするものである。   Furthermore, the polluted water filtering apparatus of the present invention is characterized in that a plurality of the contact filter medium molded bodies are arranged in a polluted water treatment tank.

本発明の好ましい態様に従う接触ろ材成形体の一実施例の模式斜視図。The schematic perspective view of one Example of the contact filter material molded object according to the preferable aspect of this invention. 図1の接触ろ材成形体の左方(X軸方向)より見た模式側面図(Y−Z側面図)。The schematic side view (YZ side view) seen from the left (X-axis direction) of the contact filter-material molded object of FIG. 本発明の接触ろ材成形体の製造方法の実施に適した装置系の模式配置図。The schematic arrangement drawing of the apparatus system suitable for implementation of the manufacturing method of the contact filter material molded object of this invention. 図3の装置に用いるダイ開口の配列の一例(千鳥格子配列)を示す平面図。FIG. 4 is a plan view showing an example of the arrangement of die openings (houndstooth arrangement) used in the apparatus of FIG. 枠体中へのストランドの水平二次元方向断続的落とし込み方向のシーケンスの一例を示す模式平面図。The schematic plan view which shows an example of the sequence of the horizontal two-dimensional direction intermittent drop direction of the strand in a frame.

図1は、本発明の接触ろ材成形体の一実施例の模式斜視図である。この接触ろ材成形体は、それぞれ熱可塑性樹脂ストランドの固化堆積物からなる複数(この例では9)の高密度充填堆積塊H1〜H9が、X軸およびこれと直交するY軸方向に行・列状に配列されてなるものであり、隣接する高密度充填堆積塊の間にはくぼみ状に低密度充填領域が介在する。図2は、図1の左方(X軸方向)から見た更に模式化した接触ろ材成形体の側面図(Y−Z側面図)であり、高密度充填堆積塊H1〜H3(更にはH4〜H9も)の各々は、頂部が概ね球体の一部の形状をなす円柱状をなし、それらの間には低密度充填領域Lが介在する。高密度充填堆積塊H1〜H3の各々は、更に、高密度充填である3つの芯部Hと、これを覆う中密度充填である表層部Mからなる。   FIG. 1 is a schematic perspective view of an embodiment of a contact filter material molded body of the present invention. In this contact filter medium molded body, a plurality (9 in this example) of high-density packed deposits H1 to H9 each consisting of solidified deposits of thermoplastic resin strands are arranged in rows and columns in the X-axis direction and the Y-axis direction perpendicular thereto. A low-density packed region is interposed in a hollow shape between adjacent high-density packed piles. FIG. 2 is a side view (YZ side view) of a further simplified contact filter material molded body viewed from the left side (X-axis direction) of FIG. 1, and is a high-density packed deposit H1 to H3 (further, H4). -H9) each has a cylindrical shape whose top portion is approximately the shape of a part of a sphere, and a low-density filling region L is interposed therebetween. Each of the high-density filled deposits H1 to H3 further includes three core portions H that are high-density filling and a surface layer portion M that is medium-density filling that covers the core portions H.

(熱可塑性樹脂)
本発明の接触ろ材成形体の主要原料として用いられる熱可塑性樹脂としては、比重が約0.9以上の好ましくは疎水性の熱可塑性樹脂が一般に用いられる。比重が小さ過ぎると、水処理中のろ材の浮上防止に特別の配慮が必要となり好ましくない。ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂等の汎用樹脂が経済性の観点で好ましく、また製品ろ材が一般的に、河川水、生活排水、工場廃水等の汚濁水の一次処理に用いられることも考慮し、廃プラスチック材料も好適に用いられる。但し過剰な可塑剤は含まないことが好ましい。さらに、比重の異なる二種以上の樹脂、例えばポリエチレンとポリ塩化ビニリデン、ポリ塩化ビニル、ポリフッ化ビニリデン等の樹脂同士の混合系、各種樹脂と炭酸カルシウム等の無機物との混合系も比重を1前後に調整するのに好ましく用いられる。
(Thermoplastic resin)
As the thermoplastic resin used as the main raw material of the contact filter material molded body of the present invention, a hydrophobic thermoplastic resin having a specific gravity of about 0.9 or more and preferably hydrophobic is generally used. If the specific gravity is too small, special consideration is required for preventing the filter medium from floating during water treatment, which is not preferable. Polyolefin resins such as polyethylene and polypropylene, and general-purpose resins such as polystyrene resin are preferable from the viewpoint of economy, and product filter media are generally used for primary treatment of polluted water such as river water, domestic wastewater, and factory wastewater. In view of this, waste plastic materials are also preferably used. However, it is preferable not to contain an excess plasticizer. In addition, two or more types of resins with different specific gravities, for example, a mixed system of resins such as polyethylene and polyvinylidene chloride, polyvinyl chloride, and polyvinylidene fluoride, and a mixed system of various resins and inorganic substances such as calcium carbonate have a specific gravity of around 1. It is preferably used to adjust to.

上記のような熱可塑性樹脂を用いて、本発明の方法により接触ろ材成形体を製造するための装置系としては、特許文献4で用いたものと類似のものが用いられる。図3は、そのような装置系の簡便な一例の模式図である。図3を参照して、押出機1の先端のダイ2の開口(オリフィス)2a(図4に一例を示すように通常複数であるが、図3には一のみ図示)から押出された加熱溶融状態の熱可塑性樹脂ストランド3は、非接触型温度計(サーモグラフィー)4で表面温度を検出され、その出力に応じて、水噴霧冷却器5から噴出制御されるミスト状の水5aの作用下に冷却される。冷却されたストランドは、移動装置6上に載置され水平方向に二次元移動する成型枠体7中に流下・堆積され、最終的に固化して、本発明の接触ろ材を形成する。これら工程のより詳細を順次説明する。   An apparatus system similar to that used in Patent Document 4 is used as an apparatus system for producing a contact filter material molded body by the method of the present invention using the thermoplastic resin as described above. FIG. 3 is a schematic diagram of a simple example of such an apparatus system. Referring to FIG. 3, heating and melting extruded from an opening (orifice) 2 a (normally a plurality as shown in FIG. 4, but only one is shown in FIG. 3) of die 2 at the tip of extruder 1. The surface temperature of the thermoplastic resin strand 3 in the state is detected by a non-contact type thermometer (thermography) 4, and under the action of mist-like water 5 a controlled to be ejected from the water spray cooler 5 according to the output. To be cooled. The cooled strand is flowed down and deposited in a molding frame 7 that is placed on the moving device 6 and moves two-dimensionally in the horizontal direction, and finally solidifies to form the contact filter medium of the present invention. The details of these steps will be described sequentially.

(熱可塑性樹脂ストランドの形成)
上述の熱可塑性樹脂を押出機1等により溶融混練し、ダイ開口2aよりストランド3状に押出して流下させる。ダイ2からの押出温度は、使用する熱可塑性樹脂の融点および結晶化温度(ここでは、それぞれに示差走査熱量計(DSC)により昇温および降温する過程での吸熱および発熱ピーク温度をいうものとする)を考慮して、一般に、融点+30〜+150℃の範囲が好適に用いられる。
(Formation of thermoplastic resin strands)
The above-mentioned thermoplastic resin is melted and kneaded by an extruder 1 or the like, and extruded from the die opening 2a into a strand 3 shape to flow down. The extrusion temperature from the die 2 refers to the melting point and crystallization temperature of the thermoplastic resin used (here, the endothermic and exothermic peak temperatures in the process of raising and lowering the temperature with a differential scanning calorimeter (DSC), respectively). In general, a range of melting point +30 to + 150 ° C. is preferably used.

一般に形成されるろ材成形体中におけるストランド径が、通水性および水質改善効果を支配する空隙率に重要な影響を及ぼすとの知見が得られており、本発明法においては、ダイ開口から押出後のストランド3の流下中の径の減少は本質的に予定しておらず(但し5〜10%程度は起り得る)、ダイ開口径として0.5〜10mm、更に好ましくは1〜8mm、特に好ましくは1.5〜6mmの範囲が好ましく用いられる。なお、高粘度で押出すとダイスウェル現象によりダイ開口よりも太い径を有するストランドを得ることも可能である。   In general, it has been found that the strand diameter in the formed filter medium molded body has an important influence on the porosity that governs the water permeability and water quality improvement effect. The decrease in the diameter of the strand 3 during the flow is essentially unscheduled (however, about 5 to 10% can occur), and the die opening diameter is 0.5 to 10 mm, more preferably 1 to 8 mm, particularly preferably. Is preferably in the range of 1.5 to 6 mm. When extruded with high viscosity, it is possible to obtain a strand having a diameter larger than that of the die opening due to a die swell phenomenon.

(冷却)
ダイ開口から押出された熱可塑性樹脂ストランドを冷却しつつ枠体中に流下・堆積させる、実験を通じて枠体中に流下させる(落し込む)ストランドの表面温度も、得られる成形体の空隙率およびストランド相互の融着程度に重要な影響を及ぼし、本発明の目的のためには、ストランドを形成する熱可塑性樹脂の結晶化温度−20℃〜室温の範囲が好ましく用いられる。
(cooling)
The thermoplastic resin strand extruded from the die opening is allowed to flow down and accumulate in the frame while being cooled, and the surface temperature of the strand that flows down (drops) into the frame through the experiment is also determined. For the purpose of the present invention, which influences the degree of mutual fusion, the crystallization temperature of the thermoplastic resin forming the strand is preferably in the range of -20 ° C to room temperature.

このようなストランド3の表面温度の制御のためには、表面温度を非接触温度計(サーモスタット)4によって測定しつつ、冷媒供給量(必要に応じて更に冷媒供給温度)を制御することが好ましい。冷媒としては、ミスト状の水(水と空気の混合物)5aを用いることが好ましい。熱容量の小さい空気(気体)によっては、所望の冷却表面温度が得られず、枠体中に流下したストランド相互の過剰な融着が起り、また太いストランドの場合は、自重による変形が固化の完了前に発生し、成形体の空隙率が過剰に低下してしまう。また熱容量の大なる水のみを用いるとストランドの表面と内部の温度差が小さくなるため、ストランド相互の適度の融着を伴なう成形体中のストランドの整形が困難となるとともに、空隙率が過大となって水質改善効果の低下が起こりがちとなる。   In order to control the surface temperature of the strand 3, it is preferable to control the refrigerant supply amount (further refrigerant supply temperature if necessary) while measuring the surface temperature with a non-contact thermometer (thermostat) 4. . It is preferable to use mist-like water (a mixture of water and air) 5a as the refrigerant. Depending on the air (gas) with a small heat capacity, the desired cooling surface temperature cannot be obtained, causing excessive fusion of the strands flowing down into the frame, and in the case of a thick strand, the deformation due to its own weight completes solidification. It occurs before and the porosity of the molded body is excessively lowered. In addition, when only water with a large heat capacity is used, the temperature difference between the surface and the inside of the strand becomes small, so that it becomes difficult to shape the strand in the molded body with appropriate fusion between the strands, and the porosity is low. It becomes excessive and the water quality improvement effect tends to decrease.

(ストランドと枠体の断続的相対移動)
中間冷却された熱可塑性樹脂ストランド3を枠体7中に流下・堆積するに際しては、枠体を流下中のストランドに対し相対的に水平方向に繰り返し移動させる。相対移動であるから、枠体を固定し、流下中のストランドを移動することでもよいし、流下中のストランドと枠体をそれぞれ一ないし二次元に移動させることでもよい。流下中のストランドの水平方向移動は、固定したダイを有する押出機をその架台ごと移動すること、あるいは押出機の移動に代えてまたはこれに加えて押出機本体に対するダイの回転を伴う首振り運動を行うことにより達成可能である。但し、ストランドの流下中の冷却を行う本発明法においては、流下中のストランドを水平方向に移動させるに際しては、冷却手段の連動も必要となるので、流下するストランドの水平位置を固定し、枠体を二次元方向に移動させることが、小規模なろ材成形体の製造には簡便である。他方、大型の排水処理施設への適用を考慮した場合、あるいは大規模なろ材成形体の製造を考慮した場合には、必要に応じて(少なくとも一方向に)大寸法化したろ材成形体の(半)連続的製造が望ましい。このためには、枠体の移動と、流下中のストランドの移動とを併用することが好ましく、例えば一方向(例えばX軸方向)のみに移動(往復動)するコンベア上に枠体を載せ、これと直交するY軸方向へのノズルの移動または/および首振りによる流下中のストランドの移動により、二次元相対移動を実現し、また必要に応じて複数のコンベアを並列または直列に配置して、1つの枠体へのストランドの堆積が終了した時点で、隣接するコンベア上の枠体へ切換えて、引き続き流下するストランドの堆積を継続することにより、半連続的製造を行うことができる。
(Intermittent relative movement of strand and frame)
When the intermediate-cooled thermoplastic resin strand 3 flows down and is deposited in the frame body 7, the frame body is repeatedly moved in the horizontal direction relative to the flowing-down strands. Since it is a relative movement, the frame body may be fixed and the flowing strand may be moved, or the flowing strand and the frame body may be moved in one or two dimensions, respectively. The horizontal movement of the strand in the flow can be achieved by moving an extruder with a fixed die along with its base, or by swinging the die with respect to the extruder body instead of or in addition to the movement of the extruder. Can be achieved. However, in the method of the present invention in which cooling is performed while the strands are flowing, the horizontal position of the strands that flow down is fixed by moving the cooling strands in the horizontal direction. Moving the body in a two-dimensional direction is convenient for producing a small-scale filter medium molded body. On the other hand, when considering application to a large wastewater treatment facility, or when considering the production of a large-scale filter medium molded body, the filter medium molded body having a large size (at least in one direction) as required ( Semi-continuous production is desirable. For this purpose, it is preferable to use both the movement of the frame and the movement of the strand in the flow, for example, the frame is placed on a conveyor that moves (reciprocates) only in one direction (for example, the X-axis direction), Two-dimensional relative movement is realized by moving the nozzle in the Y-axis direction orthogonal to this and / or moving the strand during the flow by swinging, and arranging a plurality of conveyors in parallel or in series as necessary. Semi-continuous manufacturing can be performed by switching to the frame on the adjacent conveyor when the deposition of the strands on one frame is completed and continuing the deposition of the strands that subsequently flow down.

本発明の接触ろ材成形体の製造方法に従い、上記した枠体7と流下するストランド3の水平二次元方向相対移動を断続的に行うことにより、複数の高密度充填堆積塊と中間低密度充填領域とが平面的に配列した本発明の好ましい接触ろ材成形体が形成される。より詳しくは、前記水平二次元方向断続的相対移動を、停止または減速移動期間と、移動期間との交互繰返しにより行い、停止または減速移動期間に複数の高密度充填堆積塊を順次形成し、その間の移動期間に低密度充填領域を形成する。   In accordance with the method for manufacturing a contact filter material molded body of the present invention, a plurality of high-density packed deposits and intermediate low-density packed regions are obtained by intermittently moving the frame 7 and the strand 3 flowing down in the horizontal two-dimensional direction. And a preferred contact filter medium molded body of the present invention in which the and are arranged in a plane. More specifically, the horizontal two-dimensional intermittent intermittent movement is performed by alternately repeating a stop or deceleration movement period and a movement period, and a plurality of high-density packed deposits are sequentially formed during the stop or deceleration movement period. A low-density filling region is formed during the movement period.

上記断続的移動条件が満足されれば、二次元方向相対移動の態様には、最終的に、枠体中に流下・堆積したストランドの完全固化前の荷重印加による融着度の向上および空隙率の低減の為の、必要に応じて採用される任意工程としての、整形工程をも考慮すれば、比較的任意性がある。しかし、この場合、二次元移動の任意度が高いと、荷重印加による成形に際して、中央でのストランドの過大な変形と、周辺部での過剰な空隙率の低下が起りがちである。従って、枠体のノズルに対する相対二次元相対移動方向にある程度の規則性を持たせ、成形体中での空隙率の一様な分布を通じて、ろ材を通る被処理水流の整流を図るのが好ましい。   If the above-mentioned intermittent movement condition is satisfied, the two-dimensional relative movement mode is finally improved in the degree of fusion by applying a load before completely solidifying the strand flowing down and deposited in the frame and the porosity. In view of the shaping process as an optional process adopted as necessary for reducing the above, there is relatively arbitrary. However, in this case, if the degree of arbitrary two-dimensional movement is high, excessive deformation of the strand at the center and excessive reduction of the porosity at the peripheral portion tend to occur during molding by applying a load. Therefore, it is preferable to provide a certain degree of regularity in the relative two-dimensional relative movement direction of the frame body with respect to the nozzle, and to rectify the water flow to be treated through the filter medium through a uniform distribution of the porosity in the molded body.

他方、本発明法により得られるろ材成形体の全体形状は、基本的には使用される枠体の形状により支配されるが、水処理装置内に積み重ね配置されるろ材単位としての使用を考慮すると、概ね直方体(立方体を含む趣旨とする)形状であることが好ましい。従って使用される枠体の水平方向開口形状としては矩形(正方形を含む)が好ましい。   On the other hand, the overall shape of the filter medium molded body obtained by the method of the present invention is basically governed by the shape of the frame used, but considering the use as a filter medium unit stacked in the water treatment apparatus. In general, the shape is preferably a rectangular parallelepiped (intended to include a cube). Accordingly, the horizontal opening shape of the frame used is preferably rectangular (including a square).

このような枠体の水平二次元移動、換言すれば枠体中への冷却ストランドの流下(落し込み)の方向順序の好ましい態様の例としては、水平方向開口形状が矩形である枠体7を用いて、図1および図2に概要を示した接触ろ材成形体を形成する例(後記実施例1)について説明すると、矩形両辺の延長方向をそれぞれX軸、Y軸、垂直方向をZ軸とした場合、枠体7の開口(50cm×50cm)の上方からの平面図である図5に示すように、第1のサイクルでは実線矢印に示すように、点P1からP9まで順次落し込み位置を移動させ、第2サイクルではダッシュ(−)線矢印に示すようP9→P4→P3→P2→P5→P8→P7→P6→P1のように移動させ、第3サイクルでは点線矢印に示すようにP1からP9まで再度落し込み位置を移動させ、途中、各地点間移動速度はX軸およびY軸方向いずれも30mm/秒、移動距離はX軸方向178mm、Y軸方向182mmとし、且つ第1サイクルのP1での停止期間を約20秒、第1サイクルから第2サイクルへの移行地点P9での停止期間、第2サイクルから第3サイクルへの移行地点P1での停止期間および第3サイクルの最終地点P9での停止期間をいずれも約30秒、それ以外の地点での停止期間はいずれも約15秒、として水平方向二次元断続移動を行うことにより、図1および図2に示すように、枠体7中の停止地点P1〜P9に対応して、高密度充填堆積塊H1〜H9がそれぞれ形成された本発明の好ましい態様による接触ろ材成形体が形成される。また図2に示すように、各高密度充填堆積塊間には、移動期間に対応してくぼみ状の低密度充填領域Lが形成され、高密度充填堆積塊H1〜H3(およびH4〜H9)の各々の内部には、各サイクルの停止期間に対応して、3段の高密度充填である芯部Hと、その周辺に中密度充填での表層部Mとが形成される。これは、停止位置においてダイ2の中央からの流下部と周縁部からの流下部では、堆積するストランド密度の変化が生ずるためであるが、芯部Hと表層部Mとの境界は明瞭ではない。また接触ろ材を水処理槽内に均等に積み上げるには、Z軸方向、すなわち高密度充填堆積塊H1〜H9の高さが略等しいことが望ましいので、特定箇所での合計の停止時間は略一定であることが望ましい。   As an example of a preferable aspect of the direction order of the horizontal two-dimensional movement of the frame body, in other words, the flow (down) of the cooling strand into the frame body, a frame body 7 having a rectangular horizontal opening shape is used. 1 and FIG. 2, the example of forming the contact filter medium molded body (Example 1 described later) will be described. The extending direction of both sides of the rectangle is the X axis, the Y axis, and the vertical direction is the Z axis. In this case, as shown in FIG. 5 which is a plan view from above the opening (50 cm × 50 cm) of the frame body 7, in the first cycle, as shown by the solid line arrows, the dropping positions are sequentially lowered from the points P1 to P9. In the second cycle, as shown by the dash (-) line arrow, P9.fwdarw.P4.fwdarw.P3.fwdarw.P2.fwdarw.P5.fwdarw.P8.fwdarw.P7.fwdarw.P6.fwdarw.P1, and in the third cycle P1 as shown by the dotted arrow. Again from P9 to P9 In the middle, the moving speed between each point is 30 mm / second in both the X-axis and Y-axis directions, the moving distance is 178 mm in the X-axis direction, 182 mm in the Y-axis direction, and the stop period at P1 of the first cycle is about 20 seconds, the stop period at the transition point P9 from the first cycle to the second cycle, the stop period at the transition point P1 from the second cycle to the third cycle, and the stop period at the final point P9 of the third cycle Is about 30 seconds, and the stop period at other points is about 15 seconds. By performing horizontal two-dimensional intermittent movement, as shown in FIG. 1 and FIG. 2, the stop point P1 in the frame 7 is obtained. Corresponding to ~ P9, a contact filter medium molded body according to a preferred embodiment of the present invention in which the high-density packed deposits H1 to H9 are respectively formed is formed. Further, as shown in FIG. 2, a hollow low-density packed region L corresponding to the moving period is formed between the high-density packed deposits, and the high-density packed deposits H1 to H3 (and H4 to H9) are formed. In each of these, a core portion H that is three-stage high-density filling and a surface layer portion M that is medium-density filling are formed around the core H corresponding to the stop period of each cycle. This is because, at the stop position, the density of the strand that accumulates changes in the lower part from the center of the die 2 and the lower part from the peripheral part, but the boundary between the core part H and the surface layer part M is not clear. . Further, in order to evenly accumulate the contact filter medium in the water treatment tank, it is desirable that the height of the high-density packed deposits H1 to H9 is substantially equal in the Z-axis direction, so the total stop time at a specific location is substantially constant. It is desirable that

上記水平二次元方向断続的相対移動において、停止期間の代りに、減速移動期間(短周期往復動の繰返しによる場合を含む)を置けば、ダイ2の面積よりも増大した平面寸法の高密度充填堆積塊が形成される。   In the above horizontal two-dimensional intermittent relative movement, if a deceleration movement period (including the case of repeated short-period reciprocation) is used instead of a stop period, high-density filling with a planar dimension that is larger than the area of the die 2 A sediment mass is formed.

(整形工程)
上述のようにして枠体中に流下したストランドの堆積物を、固化後に枠体から取り出せば、本発明によるろ材成形体が得られる。しかし、低密度充填領域の充填率を含むと全体の充填率の調整のために、枠体中のストランド堆積物が完全に固化する前に、枠体開口に嵌挿する形状の上蓋体を介してストランド堆積物に10〜80kg/m程度の荷重を印加してストランド間の密着を強化し、空隙率を低減する方向で調整することも可能である。
(Shaping process)
If the strand deposit flowing down into the frame as described above is taken out of the frame after solidification, the filter medium molded body according to the present invention can be obtained. However, in order to adjust the overall filling rate, including the filling rate of the low-density filling region, before the strand deposits in the frame are completely solidified, the upper lid body is inserted into the frame opening. It is also possible to apply a load of about 10 to 80 kg / m 2 to the strand deposit to reinforce the adhesion between the strands and to adjust the direction in which the porosity is reduced.

(接触ろ材)
上述の工程を経た枠体中のストランド積層体を固化後に枠体から取出すことにより本発明によるろ材成形体が得られる。図3に示す例においては、枠体7は底板を有さず、上面が樹脂からの離型性の良い(例えばステンレス・スチール)からなる移動装置6の上面板上に載置されているため、枠体7からのろ材成形体の取出しは容易である。
(Contact media)
The filter medium molded body according to the present invention can be obtained by taking out the strand laminated body in the frame subjected to the above-described steps from the frame after solidification. In the example shown in FIG. 3, the frame body 7 does not have a bottom plate, and the top surface is placed on the top plate of the moving device 6 made of a resin having good releasability (for example, stainless steel). The filter medium molded body can be easily taken out from the frame body 7.

高密度充填堆積塊の間の低密度充填領域Lには、移動期間に流下するストランドの固化物である橋渡しストランドが存在することになるが、この橋渡しストランドが不足している場合、ダイから押し出された熱可塑性樹脂ストランドの一部を他のストランドと独立に移動させることによって、橋渡しストランドの本数を増加させることが可能である。接触ろ材の強度向上、低充填率領域部の充填率向上、排水流路の複雑化に好ましく用いられる。   In the low-density packed region L between the high-density packed piles, bridging strands that are solidified strands flowing down during the moving period will be present. If this bridging strand is insufficient, it will be extruded from the die. It is possible to increase the number of bridging strands by moving part of the thermoplastic resin strands independently of other strands. It is preferably used for improving the strength of the contact filter medium, improving the filling rate of the low filling rate region, and complicating the drainage flow path.

(変形例)
上記において、本発明の好ましい態様に従う、複数の高密度充填堆積塊が、低密度充填領域を介して平面的に配列されてなる本発明の接触ろ材成形体およびその製造方法について述べた。しかし、本発明の接触ろ材成形体は、上記好ましい態様に比べて、高密度充填堆積塊の分布の規則性を若干緩和して、一般に、複数の高密度充填堆積塊と、低密度充填領域とが混在するマクロな疎密分布を特徴とするものである。このような高密度充填堆積塊がより不規則な分布で存在する接触ろ材成形体は、別途、高密度充填堆積塊(あるいはその高密度充填芯部相当の塊)を形成しておき、例えば特許文献4の方法に従う従来の一様低密度充填ろ材の成形の途中段階に、適宜、成形枠体中に投入して、全体として結合固化させることにより形成可能である。
(Modification)
In the above, the contact filter medium molded body of the present invention in which a plurality of high-density packed deposits according to a preferred embodiment of the present invention are arranged in a plane via a low-density packed region and a method for manufacturing the same are described. However, the contact filter medium molded body of the present invention is somewhat relaxed in the regularity of the distribution of the high-density packed deposit mass as compared with the preferred embodiment, and generally has a plurality of high-density packed deposit mass, a low-density packed region, It is characterized by a macro sparse / dense distribution. A contact filter medium molded body in which such high-density packed deposits are present in a more irregular distribution separately forms a high-density packed deposit (or a block corresponding to the high-density packed core). It can be formed by appropriately putting it into a forming frame in the middle of forming the conventional uniform low density packed filter medium according to the method of Document 4 and solidifying it as a whole.

(疎密分布)
本発明の接触ろ材成形体の好ましい態様によれば、上述のようにして形成された接触ろ材成形体の全体容積を枠体7の充填部内容積とほぼ同容積(直方体状)とした場合、高密度充填堆積塊の合計容積はその約20〜70%、そのストランド充填率は、約15〜60%、その芯部Hの容積割合は約5〜60%(個々の芯部Hの容積は10〜10cm)、充填率は約25〜60%、残る表層部Mの充填率は10〜50%(芯部充填率の15〜75%)、接触ろ材成形体の全体容積に対する高密度充填堆積塊以外の領域、すなわち低密度充填領域Lのストランド充填率は約1〜20%(高密度充填堆積塊充填率の2〜60%)となる。各領域間の境界の取り方について若干任意性は残るが、本発明の接触ろ材成形体内における疎密分布の概容は理解可能と思われる。
(Dense distribution)
According to a preferred aspect of the contact filter medium molded body of the present invention, when the total volume of the contact filter medium molded body formed as described above is substantially the same volume (rectangular shape) as the filling portion internal volume of the frame body 7, The total volume of the densely packed pile is about 20 to 70%, the strand filling ratio is about 15 to 60%, the volume ratio of the core H is about 5 to 60% (the volume of each core H is 10 2 to 10 4 cm 3 ), the filling rate is about 25 to 60%, the filling rate of the remaining surface layer portion M is 10 to 50% (15 to 75% of the core portion filling rate), and the total volume of the contact filter medium molded body The region other than the high-density packed lump, that is, the strand filling rate in the low-density packed region L is approximately 1 to 20% (2 to 60% of the high-density packed lump filling rate). Although somewhat arbitrary remains about the method of making the boundary between each area | region, it seems that the outline of the density distribution in the contact filter material molded body of this invention is understandable.

(ろ過装置)
本発明の汚濁水のろ過装置は、汚濁水処理槽中に上記した本発明の接触ろ材成形体を複数配列してなるものであるが、本発明の接触ろ材成形体は、上記のように形成された単位接触ろ材成形体の複数層をZ軸方向に積層して使用することが好ましい。このようにして積層された接触ろ材成形体中の低密度充填領域Lは、汚濁水処理槽上部においても微生物を多く含む汚濁水の処理効果の高い汚泥の保持部として機能する。このようにして積層した接触ろ材成形体を汚濁水処理槽中に配列するに際しては、単位接触ろ材成形体の層を汚濁水処理槽中を流れる汚濁水の流路に平行となるように、あるいは垂直となるように、配列することができる。平行配列の場合には、流路方向に対し、低密度充填領域部がほぼ連通するので、SS(浮遊物)の目詰まりが軽減され、特にSS濃度が高い排水処理に有利である。他方、垂直配列の場合には、橋渡しストランド部が形成する面が排水流路方向と直交するので、この面がフィルタリングの役割を果たし、SSの長期滞留を促し、BOD(生物化学的酸素要求量)およびSSの除去率の向上に寄与する。
(Filtration device)
The polluted water filtration device of the present invention is formed by arranging a plurality of the above-described contact filter medium molded bodies of the present invention in a polluted water treatment tank, but the contact filter medium molded body of the present invention is formed as described above. It is preferable that a plurality of layers of the unit contact filter medium formed are laminated and used in the Z-axis direction. The low-density packed region L in the contact medium molded body laminated in this way functions as a sludge holding portion having a high treatment effect of contaminated water containing a large amount of microorganisms even in the upper portion of the contaminated water treatment tank. When arranging the contact filter media molded bodies thus laminated in the polluted water treatment tank, the layer of the unit contact filter media molded bodies is parallel to the flow path of the polluted water flowing in the polluted water treatment tank, or They can be arranged to be vertical. In the case of the parallel arrangement, since the low density filling region portion is almost in communication with the flow path direction, clogging of SS (floating matter) is reduced, which is particularly advantageous for wastewater treatment with a high SS concentration. On the other hand, in the case of the vertical arrangement, the surface formed by the bridging strand portion is orthogonal to the direction of the drainage flow path, so this surface plays a role of filtering, promotes long-term residence of SS, and BOD (biochemical oxygen demand) ) And SS are improved.

また、本発明のろ過装置においては、汚濁水処理槽中を流れる汚濁水の流路に沿って、本発明の接触ろ材成形体(疎密充填接触ろ材成形体)の配列部の前または/および後に、特許文献4に開示されるような概ね一様な充填密度を有する熱可塑性樹脂ストランドの固化堆積物からなる接触ろ材成形体(一様密度接触ろ材成形体)を配列することも好ましい。   Further, in the filtration device of the present invention, along the flow path of the polluted water flowing in the polluted water treatment tank, before and / or after the arrangement portion of the contact filter material molded body (densely packed contact filter medium molded body) of the present invention. It is also preferable to arrange a contact filter medium molded body (uniform density contact filter medium molded body) made of a solidified deposit of thermoplastic resin strands having a substantially uniform packing density as disclosed in Patent Document 4.

特に、流路の前半部に比較的太いストランドの一様密度接触ろ材成形体を配置し、後半部に汚泥保持機能の高い本発明の疎密充填接触ろ材成形体を配置することは、汚泥中の微生物による汚濁水処理機能を有効に利用するために好ましい。他方、下水あるいは高濃度SS工場排水を沈殿池を経ないで直接汚濁水処理槽中に導入する場合には、単位接触ろ材成形体層を流路に配置した比較的大なるストランド径の本発明の接触ろ材成形体の積層体を前半部に配置して目詰まりを防止し、後半に比較的ストランド径の小さいあるいは漸減する一様密度接触ろ材成形体を配置して、排水処理機能の向上を用いることも好ましい。   In particular, the uniform density contact filter medium molded body of relatively thick strands is disposed in the first half of the flow path, and the densely packed contact filter medium molded body of the present invention having a high sludge retention function is disposed in the latter half of the sludge. It is preferable for effectively utilizing the function of treating contaminated water with microorganisms. On the other hand, when sewage or high-concentration SS factory effluent is introduced directly into a polluted water treatment tank without passing through a settling basin, the present invention having a relatively large strand diameter in which the unit contact filter medium molded body layer is disposed in the flow path. In order to improve the drainage treatment function, a layered product of the contact filter media molded body is arranged in the first half to prevent clogging, and a uniform density contact filter media molded body with a relatively small strand diameter or gradually decreasing is arranged in the second half. It is also preferable to use it.

汚濁水処理槽中の接触ろ材成形体の配置態様に拘らず、汚濁水処理槽の底部に適宜の間隔で散気管を配置して、好気処理機能を強化することが好ましい。この際、本発明の接触ろ材成形体における低密度充填領域は主として好気処理部として機能し、高密度充填堆積塊は相対的に嫌気処理部として機能する。   Regardless of the arrangement mode of the contact filter medium molded body in the polluted water treatment tank, it is preferable to enhance the aerobic treatment function by arranging a diffuser tube at an appropriate interval at the bottom of the polluted water treatment tank. At this time, the low-density packed region in the contact filter medium molded body of the present invention mainly functions as an aerobic processing part, and the high-density packed deposit functions as a relatively anaerobic processing part.

以下、実施例および比較例により、本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

(製造例1)
下記性状を示す電線被覆用廃材ポリエチレンを熱可塑性樹脂として、図3に示す様な装置系を用いてろ材成形体を製造した。
(Production Example 1)
A filter medium molded body was manufactured using an apparatus system as shown in FIG. 3 using the waste polyethylene for wire coating having the following properties as a thermoplastic resin.

・MFR値(JIS−K7210に準拠):5.8g/分(測定温度:190℃、荷重:10kg・f)、
・融点:110℃、結晶化温度:97℃(昇温および降温速度:10℃/分)、
・密度:0.92g/cm
MFR value (based on JIS-K7210): 5.8 g / min (measurement temperature: 190 ° C., load: 10 kg · f),
Melting point: 110 ° C., crystallization temperature: 97 ° C. (temperature increase / decrease rate: 10 ° C./min),
Density: 0.92 g / cm 3 .

シリンダー温度:150℃の単軸押出機1で上記ポリエチレンを溶融混練し、固定ダイ2(温度:125℃)中に設けた図2に示す千鳥格子状配列で計21の開口2a(径3.3mmφ、隣接する開口間の距離は縦、横とも約15mm)から押出されたストランド3を流下させながら、非接触型表面温度計4(NEC三栄(株)製「TH6200」)により表面温度を計測しながら水噴霧冷却器5より噴霧量0.64リットル/分に調節した水を噴霧して冷却して、サーボモータを備えた水平二軸方向移動装置6上、且つ枠体の上端までの距離がノズル下120cmの位置になるように載置した寸法50×50/25cm(X/Y/Z)の成型枠体7をX軸およびY軸方向に継続的に移動させつつ、ストランドを流下させた。この際の枠体7の水平二次元方向断続移動の詳細は、枠体7の開口の上方から見た平面図である図5を参照して、上記本文中に例示説明した通りであり、3サイクルの流下・堆積により、ストランドを25cmの高さまで堆積させた。その後、ストランド堆積物を9.7kg(/50×50cm)の荷重がかかる上蓋を載せた状態で固化させた。その後枠体7から取り出すことにより、地点P1〜P9に対応して、図1および図2に示すように9つの高密度充填堆積塊H1〜H9が低密度充填領域Lを介して3行、3列に配列された、全体の外側輪郭が50cm×50cm×高さ25cmの接触ろ材成形体が得られた。   The polyethylene is melt-kneaded with a single screw extruder 1 having a cylinder temperature of 150 ° C., and a total of 21 openings 2a (diameter 3) in a staggered lattice arrangement shown in FIG. 2 provided in a fixed die 2 (temperature: 125 ° C.). The surface temperature was adjusted by a non-contact type surface thermometer 4 (“TH6200” manufactured by NEC Sanei Co., Ltd.) while the strand 3 extruded from the adjacent openings was about 15 mm in both length and width. The water spray cooler 5 is sprayed and cooled with water adjusted to a spray rate of 0.64 liters / minute while measuring, and the horizontal biaxial moving device 6 equipped with the servo motor is moved to the upper end of the frame. The strands flowed down while continuously moving the molding frame 7 having a size of 50 × 50/25 cm (X / Y / Z) placed so that the distance is 120 cm below the nozzle in the X-axis and Y-axis directions. I let you. Details of the intermittent movement of the frame 7 in the horizontal two-dimensional direction at this time are as illustrated and described in the above text with reference to FIG. 5 which is a plan view seen from above the opening of the frame 7. Strands were deposited to a height of 25 cm by cycling down and depositing. Thereafter, the strand deposit was solidified in a state where an upper lid on which a load of 9.7 kg (/ 50 × 50 cm) was applied was placed. Thereafter, by taking out from the frame body 7, nine high-density packed deposits H1 to H9 are arranged in three rows and three through the low-density packed region L as shown in FIGS. 1 and 2 corresponding to the points P1 to P9. A contact filter medium molded body having an overall outer contour of 50 cm × 50 cm × height 25 cm arranged in a row was obtained.

上記接触ろ材成形体の高密度充填堆積塊H1〜H9の各々は、大略13cmφ×250mm(容積3300cm)の円柱と擬すると、ストランドの平均充填率は30%であった。接触ろ材成形体の全体輪郭で定まる全体容積62500cm(=50×50×25)の平均充填率が18%であったので、高密度充填堆積塊周囲の低密度充填領域Lの平均充填率は、
(18×62500−30×3300×9)/(62500−3300×9)
=7.1%となる。
Assuming that each of the high-density packed piles H1 to H9 of the above-mentioned contact filter medium molded body is roughly a cylinder of 13 cmφ × 250 mm (volume 3300 cm 3 ), the average filling rate of the strands was 30%. Since the average filling rate of the entire volume 62500 cm 3 (= 50 × 50 × 25) determined by the entire contour of the contact filter medium molded body was 18%, the average filling rate of the low-density packed region L around the high-density packed deposited mass is ,
(18x62500-30x3300x9) / (62500-3300x9)
= 7.1%.

また、2個の高密度充填堆積塊の表層部Mを削り取って、約11cmφ×7.5cm(容積712cm相当)の芯部Hの6個を取り出し、その平均充填率を測定したところ36%であった。従って表層部Mの平均充填率は、
(30×3300−36×712×3)/(3300−712×3)
=19.0%となる。
Further, the surface layer portion M of the two high-density packed deposits was scraped, and six core portions H of about 11 cmφ × 7.5 cm (volume equivalent to 712 cm 3 ) were taken out and the average filling rate was measured to be 36%. Met. Therefore, the average filling rate of the surface layer part M is
(30x3300-36x712x3) / (3300-712x3)
= 19.0%.

(通水実施例1)
透明塩化ビニル樹脂製で内部を可視化した試験槽(長100cm×幅25cm×深100cm)に、上記製造実施例1で製造したストランド径3.3mmφ、寸法50cm×50cm×25cmの接触ろ材成形体を2分割して、長50cm×幅25cm×深25cmとしたろ材を、4段積層して深さ100cmに適合させ、且つこの4段積層体を流路に沿って2列配置した。
(Water flow example 1)
In a test tank (length 100 cm × width 25 cm × depth 100 cm) made of a transparent vinyl chloride resin, the contact filter medium molded body having a strand diameter of 3.3 mmφ and dimensions of 50 cm × 50 cm × 25 cm produced in Production Example 1 is used. The filter medium divided into two parts, 50 cm long × 25 cm wide × 25 cm deep, was laminated in four stages to fit a depth of 100 cm, and this four-stage laminate was arranged in two rows along the flow path.

更に、試験槽には、入口から10cm,50cm,90cmの位置の底部に流路と直交する幅方向に延長する3本の散気管を配置し、その幅方向中央に設けた径1.0mmの各1の散気孔から、空気を6.3L/分で吹き出させることとした。   Furthermore, in the test tank, three diffuser tubes extending in the width direction orthogonal to the flow path are arranged at the bottom at positions 10 cm, 50 cm, and 90 cm from the inlet, and a diameter of 1.0 mm provided at the center in the width direction. Air was blown out from each one air diffuser at 6.3 L / min.

この条件で試験槽入口より活性汚泥槽汚泥水(SS:1200mg/L)を320L/Hの送水量で2時間通水し、ろ材に汚泥(SS)を捕捉させた。   Under these conditions, activated sludge tank sludge water (SS: 1200 mg / L) was passed through the test tank at a feed rate of 320 L / H for 2 hours, and sludge (SS) was captured by the filter medium.

次いで、試験槽に清水(中水:下水処理槽からの処理水をろ過した水)を、汚泥水と同じ送水量320L/Hで、試験槽内の濁度が清水と同じになるまで通水した。その後、ろ材を試験槽内で充分に濯いで、付着したSSを強制的に洗い落とした後、ろ材を試験槽から抜き出し、試験槽の残留液の量および充分に撹拌した状態におけるSS濃度を測定し、ろ材に保持されたSS量を求めたところ、597gであった。   Next, clean water (medium water: water obtained by filtering the treated water from the sewage treatment tank) was passed through the test tank at a water feed rate of 320 L / H, which was the same as sludge water, until the turbidity in the test tank became the same as that of the clear water. did. Then, after thoroughly rinsing the filter medium in the test tank and forcibly washing off the attached SS, the filter medium is withdrawn from the test tank and the amount of residual liquid in the test tank and the SS concentration in a sufficiently stirred state are measured. The amount of SS retained on the filter medium was determined to be 597 g.

(通水比較例1)
製造実施例1で得た、接触ろ材成形体の2分割ろ材の代りに、特許文献4の実施例1で得られたストランド径3.3mm、寸法50cm×50cm×25cmを2分割して得た長50cm×幅25cm×深25cmの一様密度(平均充填率:18%)ろ材を用いる以外は、通水実施例1と同様に通水試験を行い、SS保持量を測定したところ、536gであった。
(Water flow comparison example 1)
In place of the two-part filter medium of the contact filter medium molded body obtained in Production Example 1, the strand diameter 3.3 mm obtained in Example 1 of Patent Document 4 was obtained by dividing the dimension 50 cm × 50 cm × 25 cm into two. A water flow test was conducted in the same manner as in the water flow Example 1 except that a filter medium having a length of 50 cm, a width of 25 cm, and a depth of 25 cm was used (average filling rate: 18%). there were.

上記通水実施例1と比較例1との比較から、本発明の疎密接触ろ材成形体は、特許文献4の一様密度接触ろ材成形体に比べて、汚泥保持量が1.1倍大であり、汚泥中に多く含まれる微生物の増大を通じ、処理水質改善効果の向上が期待できることが分る。   From the comparison of the water flow example 1 and the comparative example 1, the dense contact filter medium molded body of the present invention has a sludge retention amount 1.1 times larger than the uniform density contact filter medium molded body of Patent Document 4. It can be seen that the effect of improving the quality of treated water can be expected through the increase of microorganisms contained in the sludge.

また可視化試験槽外壁を通じての観察結果として、実施例1では、高充填率領域部で気泡が細分化されるとともに、高充填率領域部が邪魔板としての作用があり、低充填率領域部に気泡が流れた。したがって、排水処理性能を支配する嫌気処理/好気処理の繰返しに関して、排水処理槽内が嫌気領域と好気領域に細分化されると共に、その差異が明確になることによって、効果がより顕在化することが期待される。   Further, as an observation result through the outer wall of the visualization test tank, in Example 1, the bubbles are subdivided in the high filling rate region portion, and the high filling rate region portion acts as a baffle plate. Bubbles flowed. Therefore, regarding the repetition of anaerobic treatment / aerobic treatment that governs wastewater treatment performance, the effect of the wastewater treatment tank is subdivided into anaerobic and aerobic areas, and the difference becomes clear, making the effect more obvious Is expected to do.

更に、比較例1では、汚泥の堆積の大半が底部に偏在しているのに対し、実施例1では、全層に亘って汚泥の堆積が見られた。すなわち、接触ろ材を構成するストランド近傍に汚泥が分散堆積しているので、汚泥減溶化に効果が期待できる。   Furthermore, in Comparative Example 1, most of the sludge accumulation was unevenly distributed at the bottom, whereas in Example 1, sludge accumulation was observed over the entire layer. That is, since sludge is dispersed and accumulated in the vicinity of the strands constituting the contact filter medium, an effect can be expected for sludge reduction.

また、実施例1では、比較例1に比べ上層部の汚泥堆積が多いため、排水処理槽の深さが増すほど汚泥保持率の差が大きくなり、処理性能の向上が顕著になると期待される。   Moreover, in Example 1, since there is much sludge accumulation of the upper layer part compared with the comparative example 1, the difference of a sludge retention rate becomes large and the improvement of processing performance will be remarkable, so that the depth of a waste water treatment tank increases. .

(通水実施例2)
上記製造実施例1で得られたストランド径3.3mmφ、50cm×50cm×25cmの疎密接触ろ材成形体に加えて、特許文献4の実施例5で得られたストランド径5.5mmφ(平均充填率:18%)の一様密度接触ろ材成形体を用意した。
(Water flow example 2)
In addition to the formed compact contact filter material having a strand diameter of 3.3 mmφ and 50 cm × 50 cm × 25 cm obtained in Production Example 1, a strand diameter of 5.5 mmφ (average filling rate) obtained in Example 5 of Patent Document 4 : 18%) uniform density contact filter medium compact.

長2m×幅0.5m×深0.5mの試験槽の、上流1mの長さに一様密度接触ろ材成形体を、そのX−Y面が流路に平行となるように配置し、下流1mの長さには疎密接触ろ材成形体をそのX−Y面(単位接触ろ材成形体層)が流路と平行するように配置して、充填した。   A uniform density contact filter material molded body is arranged in a length of 1 m upstream of a test tank of length 2 m × width 0.5 m × depth 0.5 m, with its XY plane parallel to the flow path, and downstream In the 1 m length, the sparse contact filter medium molded body was arranged and filled so that its XY plane (unit contact filter medium molded body layer) was parallel to the flow path.

試験槽の底部には、長さ方向に等間隔で長さ(流路)方向と直交するように配置した散気管8本(それぞれ孔径1mmφの散気孔を7個/本の割合で設けてある)から55L/分の割合で空気を送ることとした。   At the bottom of the test tank, eight diffuser tubes (each with a diameter of 7 mm / hole each having a hole diameter of 1 mmφ) are provided at equal intervals in the length direction so as to be orthogonal to the length (flow path) direction. ) To 55 at a rate of 55 L / min.

上記条件で、試験槽に食品工場からの排水を流入原水として、長さ方向に130mL/分(滞留時間:64時間)で流入させ、計12週間の処理試験を行い、処理水を評価した。   Under the above conditions, wastewater from the food factory was fed into the test tank as inflow raw water at a flow rate of 130 mL / min (residence time: 64 hours), and a treatment test for a total of 12 weeks was conducted to evaluate the treated water.

(通水比較例2)
上記通水実施例2で求めたストランド径5.5mmφ(平均充填率:18%)のみを、上記通水実施例2で用いたものと同寸法で、並列配置された長2m×幅0.5m×深0.5mの試験槽の全長に亘って充填する以外は、通水実施例2と同様の並列処理試験を行い、処理水を評価した。
(Water flow comparison example 2)
Only the strand diameter 5.5 mmφ (average filling rate: 18%) obtained in the water flow example 2 is the same size as that used in the water flow example 2 and is 2 m long and 0.3 mm wide arranged in parallel. Except for filling the entire length of a 5 m × 0.5 m deep test tank, a parallel treatment test was conducted in the same manner as in Example 2 to evaluate the treated water.

1回/週の割合で実験槽への流入原水と処理水のBODとSSを測定し、それらの平均値と、下式に従うBOD除去率、SS除去率および汚泥転換率とを、求めた。   BOD and SS of the raw water and treated water flowing into the experimental tank were measured at a rate of once / week, and the average values thereof and the BOD removal rate, SS removal rate, and sludge conversion rate according to the following formulas were obtained.

BOD除去率(%)=(原水BOD−処理水BOD)/原水BOD×100
SS除去率(%)=(原水SS−処理水SS)/原水SS×100
汚泥転換率(%)=処理水SS量/処理されたBOD量×100
流入原水の平均水質は、BOD:617mg/L, SS:315mg/Lであった。
BOD removal rate (%) = (raw water BOD−treated water BOD) / raw water BOD × 100
SS removal rate (%) = (raw water SS−treated water SS) / raw water SS × 100
Sludge conversion rate (%) = treated water SS amount / treated BOD amount × 100
The average water quality of the influent raw water was BOD: 617 mg / L, SS: 315 mg / L.

上記実施例、比較例における水質浄化と汚泥転換率に関する評価結果をまとめて次表1に示す。
The evaluation results regarding water purification and sludge conversion rate in the above Examples and Comparative Examples are summarized in Table 1 below.

上記実施例2と比較例2の結果を比較すると、本発明の疎密接触ろ材成形体を用いた実施例2においては、BOD除去率、SS除去率の著しい向上および汚泥転換率の著しい減少を通じて、水質改善効果の著しい向上が認められる。   Comparing the results of Example 2 and Comparative Example 2 above, in Example 2 using the compact contact filter molded body of the present invention, through BOD removal rate, significant improvement in SS removal rate and significant reduction in sludge conversion rate, Significant improvement in water quality improvement effect is observed.

上述したように本発明によれば、上述した特許文献4の一様密度接触ろ材成形体の持つ、軽量ならびに良好な通水性および水質改善効果の特徴を生かしつつ、その水質改善効果の更なる向上を達成した疎密分布を有する接触ろ材成形体、ならびにこの接触ろ材成形体の効率的な製造方法およびこの接触ろ材成形体を含むろ過装置が提供される。   As described above, according to the present invention, the water density improvement effect is further improved while taking advantage of the light weight and good water permeability and water quality improvement effect of the uniform density contact filter material molded body of Patent Document 4 described above. There are provided a contact filter medium molded body having a dense distribution that achieves the above, an efficient method for producing the contact filter medium molded body, and a filtration device including the contact filter medium molded body.

H1〜H9:高密度充填堆積塊、 L:低密度充填領域
H:高密度充填芯部、 M:中密度充填表層部
P1〜P9:停止期間における枠体中のストランド落としこみ地点
1:押出機、 2:ダイ (2a:ダイ開口)、 3:ストランド
6:水平二次元移動装置、 7:成型枠体。
H1 to H9: High density packed sediment L: Low density packed region H: High density packed core part M: Medium density packed surface layer part P1 to P9: Strand dropping point in frame during stop period 1: Extruder , 2: Die (2a: Die opening), 3: Strand 6: Horizontal two-dimensional moving device, 7: Molded frame.

Claims (15)

全体として溶融した熱可塑性樹脂ストランドの固化堆積物からなり、複数の高密度充填堆積塊と、低密度充填領域とが混在することを特徴とする接触ろ材成形体。 A contact filter material molded body comprising a solidified deposit of molten thermoplastic resin strands as a whole, wherein a plurality of high-density packed deposits and a low-density packed region coexist. 複数の高密度充填堆積塊が、低密度充填領域を介して平面的に配列されてなる請求項1に記載の接触ろ材成形体。 The contact filter material molded body according to claim 1, wherein the plurality of high-density packed piles are arranged in a plane via low-density packed regions. 高密度充填堆積塊が高密度充填である芯部とこれを覆う中密度充填の表層部とからなる請求項1または2に記載の接触ろ材成形体。 3. The contact filter medium molded body according to claim 1, wherein the high-density packed deposit includes a core portion having high-density filling and a medium-density-filling surface layer portion covering the core portion. 隣接する高密度充填堆積塊が低密度充填領域において熱可塑性樹脂ストランド固化物により連結されている請求項1〜3のいずれかに記載の接触ろ材成形体。 The contact filter-material molded object in any one of Claims 1-3 with which the adjacent high-density filling deposit lump is connected by the thermoplastic resin strand solidified material in the low-density filling area | region. 複数の高密度充填堆積塊が複数の行および複数の列をなして平面的に配列されている請求項2〜4のいずれかに記載の接触ろ材成形体。 The contact filter material molded body according to any one of claims 2 to 4, wherein the plurality of high-density packed piles are arranged in a plane in a plurality of rows and a plurality of columns. 高密度充填堆積塊の頂部が概ね球体の一部の形状をなす請求項2〜5のいずれかに記載の接触ろ材成形体。 The contact filter material molded body according to any one of claims 2 to 5, wherein a top portion of the high-density packed pile has a shape of a part of a sphere. 請求項1〜6のいずれかに記載の接触ろ材成形体の複数層を積層してなる積層の接触ろ材成形体。 A laminated contact filter medium molded body obtained by laminating a plurality of layers of the contact filter medium molded body according to claim 1. 加熱溶融状体にある熱可塑性樹脂を、ダイ開口よりストランド状に押出し、一定の水平方向開口形状を有する枠体中に流下・堆積させるに際して、枠体を流下するストランドに対して水平二次元方向に断続的に繰り返し相対移動させ、且つ流下中のストランドを冷却することからなり、前記水平二次元方向断続的相対移動が、停止または減速移動期間と、移動期間とからなり、停止または減速移動期間に複数の高密度充填堆積塊を、移動期間に低密度充填領域を、それぞれ形成することを特徴とする請求項2〜6のいずれかに記載の接触ろ材成形体の製造方法。 When the thermoplastic resin in the heated melt is extruded in a strand form from the die opening, and flows and deposits in a frame having a certain horizontal opening shape, the horizontal two-dimensional direction with respect to the strand flowing down the frame The horizontal two-dimensional direction intermittent relative movement consists of a stop or deceleration movement period and a movement period, and the stop or deceleration movement period. 7. The method for producing a contact filter material molded body according to claim 2, wherein a plurality of high-density packed deposits are formed and a low-density packed region is formed during the movement period. 前記水平二次元方向断続的相対移動が、停止期間と、移動期間とからなり、停止期間に複数の高密度充填堆積塊を、移動期間に低密度充填領域を、それぞれ形成することを特徴とする請求項8に記載の製造方法。 The horizontal two-dimensional direction intermittent relative movement includes a stop period and a movement period, and a plurality of high-density packed deposits are formed in the stop period, and a low-density packed region is formed in the movement period, respectively. The manufacturing method according to claim 8. 汚濁水処理槽中に、請求項1〜6のいずれかに記載の接触ろ材成形体の複数を配列してなる汚濁水のろ過装置。 An apparatus for filtering polluted water in which a plurality of the contact filter medium molded bodies according to claim 1 are arranged in a polluted water treatment tank. 接触ろ材成形体の複数層が積層状態で汚濁水処理槽中に配列される請求項10に記載のろ過装置。 The filtration device according to claim 10, wherein a plurality of layers of the contact filter medium molded body are arranged in a polluted water treatment tank in a laminated state. 接触ろ材成形体層が、汚濁水処理槽中を流れる汚濁水の流路に平行となるように積層配列される請求項11に記載のろ過装置。 The filtration device according to claim 11, wherein the contact filter material molded body layer is laminated and arranged so as to be parallel to a flow path of the polluted water flowing in the polluted water treatment tank. 接触ろ材成形体層が、汚濁水処理層中を流れる汚濁水の流路に直交するように積層配列される請求項11に記載のろ過装置。 The filtration device according to claim 11, wherein the contact filter medium molded body layer is laminated and arranged so as to be orthogonal to the flow path of the polluted water flowing in the polluted water treatment layer. 汚濁水処理槽中を流れる汚濁水の流路に沿って、請求項1〜6のいずれかに記載の接触ろ材成形体の配列物の、前または/および後に、概ね一様な充填密度を有する熱可塑性樹脂ストランドの固化堆積物からなる接触ろ材成形体が配列される請求項10〜13のいずれかに記載のろ過装置。 A substantially uniform packing density before and / or after the arrangement of the contact filter medium molded bodies according to any one of claims 1 to 6, along the flow path of the polluted water flowing in the polluted water treatment tank. The filtration device according to any one of claims 10 to 13, wherein a contact filter medium molded body made of a solidified deposit of thermoplastic resin strands is arranged. 汚濁水処理槽の底部に、汚濁水処理槽中を流れる汚濁水の流路に直交する方向に延長する散気管を設けてなる請求項10〜14のいずれかに記載のろ過装置。 The filtration apparatus according to any one of claims 10 to 14, wherein a diffuser pipe extending in a direction orthogonal to the flow path of the polluted water flowing in the polluted water treatment tank is provided at the bottom of the polluted water treatment tank.
JP2010030886A 2010-02-16 2010-02-16 Contact filter medium molding, method for producing the same and filter Pending JP2011167584A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010030886A JP2011167584A (en) 2010-02-16 2010-02-16 Contact filter medium molding, method for producing the same and filter
PCT/JP2011/052616 WO2011102262A1 (en) 2010-02-16 2011-02-08 Contact filter medium compact, production method therefor, and filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030886A JP2011167584A (en) 2010-02-16 2010-02-16 Contact filter medium molding, method for producing the same and filter

Publications (1)

Publication Number Publication Date
JP2011167584A true JP2011167584A (en) 2011-09-01

Family

ID=44482849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030886A Pending JP2011167584A (en) 2010-02-16 2010-02-16 Contact filter medium molding, method for producing the same and filter

Country Status (2)

Country Link
JP (1) JP2011167584A (en)
WO (1) WO2011102262A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065989A (en) * 2018-10-26 2020-04-30 株式会社アクト Carrier for wastewater treatment, its manufacturing method, and sewage treatment device with carrier for wastewater treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016461A (en) * 2015-07-31 2015-11-04 江苏源能环境工程有限公司 Suspended biological filler used for ecological control of rivers and ecological control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124370A (en) * 1978-03-22 1979-09-27 Toray Ind Inc High-strength unwoven filter cloth and its manufacturing method
JPH0523686A (en) * 1991-02-25 1993-02-02 Yasuyuki Hayano Packing for treating waste water and treatment of waste water utilizing the packing
JP2704827B2 (en) * 1993-06-29 1998-01-26 呉羽合繊株式会社 Ball-shaped structure and contact material for sewage treatment
JP3446276B2 (en) * 1993-12-10 2003-09-16 チッソ株式会社 Fiber molded product and method for producing the same
JP3058579B2 (en) * 1995-05-18 2000-07-04 関西化工株式会社 Method for producing filter media for anaerobic treatment
JP4794161B2 (en) * 2004-11-30 2011-10-19 ダイワボウホールディングス株式会社 Reticulated body and manufacturing method thereof
JP2009255012A (en) * 2008-04-21 2009-11-05 Kureha Engineering Co Ltd Filter device of polluted water and treatment method of polluted water using it
JP2009226333A (en) * 2008-03-24 2009-10-08 Kureha Engineering Co Ltd Method for manufacturing contact filter medium molded object, and contact filter medium molded object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065989A (en) * 2018-10-26 2020-04-30 株式会社アクト Carrier for wastewater treatment, its manufacturing method, and sewage treatment device with carrier for wastewater treatment
JP7182258B2 (en) 2018-10-26 2022-12-02 株式会社アクト Carrier for supporting microorganisms for wastewater treatment, method for producing the same, and sewage treatment apparatus provided with carrier for supporting microorganisms for wastewater treatment

Also Published As

Publication number Publication date
WO2011102262A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
CN103842046B (en) Unsetting filtering medium layer and possess its filter plant
KR100432294B1 (en) Simultaneous extrusion blocks and uses thereof
RU2144004C1 (en) Bioreactor with fixed bed, carrier elements for such bioreactor and methods of their manufacture
CN105050682A (en) Filtering device
WO2011102262A1 (en) Contact filter medium compact, production method therefor, and filtration device
RU2429897C1 (en) Fine filtration element for raw milk
US10751671B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
KR20100126755A (en) Process for producing shaped contact-filtration member, shaped contact-filtration member, filtration apparatus, and method of processing soiled water
RU88575U1 (en) FILTER ELEMENT FOR CLEANING LIQUIDS, PREVIOUSLY MILK
JP2009255012A (en) Filter device of polluted water and treatment method of polluted water using it
JP2009226333A (en) Method for manufacturing contact filter medium molded object, and contact filter medium molded object
RU97057U1 (en) FILTER ELEMENT FOR THIN CLEANING OF RAW MILK
KR101433450B1 (en) Standing water apparatus adopting standing water member for inducing eddy
JP7182258B2 (en) Carrier for supporting microorganisms for wastewater treatment, method for producing the same, and sewage treatment apparatus provided with carrier for supporting microorganisms for wastewater treatment
RU67571U1 (en) POLYMER LOADING ELEMENT
JP2011148269A (en) Sintered body and method for manufacturing the same
KR101254101B1 (en) Precipitated fiber media
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby
CN208339319U (en) Filter core and water purifying cup for water purifying cup
ES2831082T3 (en) Method for forming porous polymeric particles
KR101456016B1 (en) Fibrous filter and manufacturing method thhreof
CN212888811U (en) Iridescent film extrusion equipment
JP5026979B2 (en) Structured plates containing waste polymer and methods for producing such plates
JP3055086B2 (en) Method for producing filler for wastewater treatment such as septic tanks
JP5302743B2 (en) Water collecting device, perforated block used in water collecting device