JP3058157B1 - Method for producing electrode for battery, electrode for battery and secondary battery - Google Patents
Method for producing electrode for battery, electrode for battery and secondary batteryInfo
- Publication number
- JP3058157B1 JP3058157B1 JP11006382A JP638299A JP3058157B1 JP 3058157 B1 JP3058157 B1 JP 3058157B1 JP 11006382 A JP11006382 A JP 11006382A JP 638299 A JP638299 A JP 638299A JP 3058157 B1 JP3058157 B1 JP 3058157B1
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- battery
- polymer
- current collector
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【要約】
【課題】 本発明は、単位面積あたりの容量の増加及び
電池全体に占める電極の割合の増加を図り、電池の大型
化を容易にする電池用電極製造方法、及び電池用電極並
びに二次電池を提供することを課題とする。
【解決手段】 活物質としてポリマーを含む電極合剤を
集電体上に成膜して電極を形成する成膜工程と、成膜さ
れた後の電極を所定の複数部分に分割する分割工程と、
複数部分に分割された電極を所定温度雰囲気内で乾燥さ
せる乾燥工程とを実行して、単位面積あたりの容量の増
加及び電池全体に占める電極の割合の増加を図り、電池
の大型化を容易にする電池用電極を形成する。The present invention aims to increase the capacity per unit area and increase the ratio of the electrode to the entire battery, and to facilitate the increase in the size of the battery. It is an object to provide a secondary battery. A film forming step of forming an electrode by forming an electrode mixture containing a polymer as an active material on a current collector, and a dividing step of dividing the formed electrode into a plurality of predetermined portions. ,
Performing a drying step of drying the electrode divided into a plurality of portions in an atmosphere at a predetermined temperature to increase the capacity per unit area and increase the proportion of the electrode in the entire battery, thereby easily increasing the size of the battery. A battery electrode is formed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二次電池技術に関
し、特に単位面積あたりの容量の増加及び電池全体に占
める電極の割合の増加を図り、電池の大型化を容易にす
る電池用電極製造方法、及び電池用電極並びに二次電池
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery technology, and more particularly, to the manufacture of a battery electrode for increasing the capacity per unit area and increasing the ratio of the electrode to the entire battery, thereby facilitating the enlargement of the battery. The present invention relates to a method, a battery electrode, and a secondary battery.
【0002】[0002]
【従来の技術】電池活物質としてのポリマーは、次のよ
うな利点を持つため、広範に研究、開発が行われてい
る。第1に、分子設計が自由であり、官能基や重合度を
変化させることにより物性を変えることが容易である。
第2に、加工性に優れ、軽く、薄く、フレキシブルな電
池を製造することができる。第3に、反応電子数が多
く、容量(単位はmAh・g−1)が大きい。例えば、
ポリピリジンでは約348mAh・g−1の容量を実現
でき、ポリ1,5−ジアミノアントラキノンでは約33
8mAh・g−1の容量を実現できる(第1従来技
術)。また、ポリマーを活物質とした場合、例えば、あ
らかじめ分割パターンを持つマスクを用い、電極を分割
した状態にて成膜しその後120℃程度の温度で乾燥す
るような方法によって、薄膜ながら大面積の電極の作製
が可能であった(第2従来技術)。また発電性能劣化の
防止や発電膜の割れ防止を目的とする従来技術として
は、例えば、実開平6−70162号公報に記載のもの
がある(第3従来技術)。すなわち、第3従来技術は、
固体電解質燃料電池であって、一方の側に空気電極が形
成され他方の側に燃料電極が形成される発電膜を有して
いる。第3従来技術では、固体電解質層と電極層の熱膨
張係数が異なるため、焼成あるいは動作時の温度変化に
より電極のひび割れ、剥離を生じ易くなり、発電性能が
劣化すると考え、このような発電膜を、固体電解質上に
塗布した状態で焼成した後に複数領域に分割して作成し
ている。また、電極が固体電解質層(イオン伝導体)上
に形成されている。これにより、焼成時や動作時の温度
変化による発電膜(=電極)の割れを防止でき、焼成時
や動作時の温度変化による発電膜(=電極)の反りある
いは固体電解質からの剥離を防止でき、更に、焼成時や
動作時の温度変化による発電膜(=電極)の割れや、焼
成時や動作時の温度変化による発電膜(=電極)の反り
あるいは固体電解質からの剥離に起因する発電性能劣化
を防止できる機能を有していることが開示されている。2. Description of the Related Art Polymers as a battery active material have been extensively studied and developed since they have the following advantages. First, the molecular design is free, and it is easy to change the physical properties by changing the functional groups and the degree of polymerization.
Second, a light, thin, and flexible battery having excellent workability can be manufactured. Third, the number of reaction electrons is large and the capacity (unit is mAh · g −1 ) is large. For example,
Polypyridine can achieve a capacity of about 348 mAh · g −1 , and poly 1,5-diaminoanthraquinone has a capacity of about 33
A capacity of 8 mAh · g −1 can be realized (first prior art). When a polymer is used as an active material, for example, using a mask having a divided pattern in advance, a film is formed in a state where the electrodes are divided, and then dried at a temperature of about 120 ° C. It was possible to produce an electrode (second prior art). Further, as a conventional technique for preventing power generation performance deterioration and cracking of a power generation film, for example, there is a technique disclosed in Japanese Utility Model Laid-Open No. 6-70162 (third conventional technique). That is, the third prior art is
A solid electrolyte fuel cell having a power generation membrane in which an air electrode is formed on one side and a fuel electrode is formed on the other side. In the third prior art, since the thermal expansion coefficients of the solid electrolyte layer and the electrode layer are different, cracking and peeling of the electrode are likely to occur due to temperature change during firing or operation, and it is considered that the power generation performance is deteriorated. Is baked in a state of being applied on a solid electrolyte, and then divided into a plurality of regions. Further, electrodes are formed on the solid electrolyte layer (ion conductor). This can prevent the power generation film (= electrode) from cracking due to temperature change during firing or operation, and prevent the power generation film (= electrode) from warping or peeling from the solid electrolyte due to temperature change during firing or operation. In addition, power generation performance caused by cracking of the power generation film (= electrode) due to temperature change during firing or operation, warpage of the power generation film (= electrode) due to temperature change during firing or operation, or separation from the solid electrolyte It is disclosed that it has a function of preventing deterioration.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、第1従
来技術における電池活物質としてのポリマーは、ポリマ
ー分子が溶媒に膨潤あるいは溶解しているため、乾燥時
の溶媒除去に伴う体積収縮が大きいため、活物質あるい
は導電剤としてのポリマー、バインダー及び溶剤からな
る電極合剤を成膜して乾燥する際に電極が一体となって
大きく収縮するため、電極乾燥時にひずみが発生し、電
極のひび割れ、集電体との剥離等が生じる結果、ポリマ
ーを含んだ電極の厚膜化あるいは電極の大型化が困難で
あるという問題点があった。However, in the polymer as the battery active material in the first prior art, since the polymer molecules swell or dissolve in the solvent, the volume shrinkage accompanying the removal of the solvent during drying is large. When an electrode mixture consisting of a polymer as an active material or a conductive agent, a binder and a solvent is formed and dried, the electrodes are integrally shrunk as a whole, causing strain during drying of the electrodes, causing cracks and cracks in the electrodes. As a result of peeling off from the electric body, there is a problem that it is difficult to increase the thickness of the electrode containing the polymer or increase the size of the electrode.
【0004】また第2従来技術において、膜が薄いまま
で面積を広げて電池の容量を増加させた場合、電極面積
とともに、集電体、セパレータの面積も増大し、電解液
も増加するため、電池全体積あたりの電極の割合は小さ
く、大容量化が困難であるという問題点があった。In the second prior art, when the capacity of a battery is increased by enlarging the area while keeping the film thin, the area of the current collector and the separator increases as well as the area of the electrode, and the amount of the electrolyte increases. There is a problem that the ratio of the electrode to the whole volume of the battery is small, and it is difficult to increase the capacity.
【0005】また第3従来技術は、固体電解質燃料電池
の発電性能劣化防止や発電膜の割れ防止を挙げている
が、二次電池における電極膜厚を増大させ電池全体に占
める電極の割合を増やすこと、また、電極の大型化を図
り電池の大型化を容易に行うことについては開示されて
いない。本発明は斯かる問題点を鑑みてなされたもので
あり、その目的とするところは、単位面積あたりの容量
の増加及び電池全体に占める電極の割合の増加を図り、
電池の大型化を容易にする電池用電極製造方法、及び電
池用電極並びに二次電池を提供する点にある。The third prior art mentions prevention of deterioration in power generation performance of a solid electrolyte fuel cell and prevention of cracks in a power generation film. However, the electrode thickness in a secondary battery is increased to increase the proportion of the electrode in the entire battery. It does not disclose that the size of the electrode is increased and the size of the battery is easily increased. The present invention has been made in view of such problems, and aims to increase the capacity per unit area and increase the ratio of electrodes to the entire battery,
An object of the present invention is to provide a battery electrode manufacturing method, a battery electrode, and a secondary battery that facilitate the upsizing of a battery.
【0006】[0006]
【課題を解決するための手段】請求項1に記載の発明の
要旨は、単位面積あたりの容量の増加及び電池全体に占
める電極の割合の増加を図り、電池の大型化を容易にす
る電池用電極製造方法であって、活物質としてポリマー
を含む電極合剤を集電体上に成膜して電極を形成する成
膜工程と、当該成膜された後の電極を所定の複数部分に
分割する分割工程と、当該複数部分に分割された電極を
所定温度雰囲気内で乾燥させる乾燥工程とを有し、前記
活物質に用いるポリマーが、プロトンの吸脱着、及び/
またはプロトンを除く他のイオンのドープ並びに脱ドー
プに伴う酸化還元反応を生じる高分子化合物を含むこと
を特徴とする電池用電極製造方法に存する。また、請求
項2に記載の発明の要旨は、単位面積あたりの容量の増
加及び電池全体に占める電極の割合の増加を図り、電池
の大型化を容易にする電池用電極製造方法であって、導
電材としてポリマーを含む電極合剤を集電体上に成膜し
て電極を形成する成膜工程と、当該成膜された後の電極
を所定の複数部分に分割する分割工程と、当該複数部分
に分割された電極を所定温度雰囲気内で乾燥させる乾燥
工程とを有し、前記導電材に用いるポリマーが、分子主
鎖にπ共役を有するとともに所定の導電性を有する高分
子化合物を含むことを特徴とする電池用電極製造方法に
存する。また、請求項3に記載の発明の要旨は、前記成
膜工程が、印刷方法により前記集電体上に前記電極合剤
を塗工する工程を含むことを特徴とする請求項1または
2に記載の電池用電極製造方法に存する。また、請求項
4に記載の発明の要旨は、単位面積あたりの容量の増加
及び電池全体に占める電極の割合の増加を図り、電池の
大型化を容易にする電池用電極構造であって、活物質と
してのポリマーを含む電極合剤を集電体上に成膜し当該
成膜された後の電極を複数部分に分割しその後乾燥させ
た電極を有し、前記活物質に用いるポリマーが、プロト
ンの吸脱着、及び/またはプロトンを除く他のイオンの
ドープ並びに脱ドープに伴う酸化還元反応を生じる高分
子化合物を含むことを特徴とする電池用電極構造に存す
る。また、請求項5に記載の発明の要旨は、単位面積あ
たりの容量の増加及び電池全体に占める電極の割合の増
加を図り、電池の大型化を容易にする電池用電極構造で
あって、導電材としてのポリマーを含む電極合剤を集電
体上に成膜し当該成膜された後の電極を複数部分に分割
しその後乾燥させた電極を有し、前記導電材に用いるポ
リマーが、分子主鎖にπ共役を有するとともに所定の導
電性を有する高分子化合物を含むことを特徴とする電池
用電極構造に存する。また、請求項6に記載の発明の要
旨は、単位面積あたりの容量の増加及び電池全体に占め
る電極の割合の増加を図り、電池の大型化を容易にする
電池用電極構造を有する二次電池であって、前記電池用
電極構造が、活物質としてのポリマーを含む電極合剤を
集電体上に成膜し当該成膜された後の電極を複数部分に
分割しその後乾燥させた電極を有し、前記活物質に用い
るポリマーが、プロトンの吸脱着、及び/またはプロト
ンを除く他のイオンのドープ並びに脱ドープに伴う酸化
還元反応を生じる高分子化合物を含むことを特徴とする
二次電池に存する。また、請求項7に記載の発明の要旨
は、単位面積あたりの容量の増加及び電池全体に占める
電極の割合の増加を図り、電池の大型化を容易にする電
池用電極構造を有する二次電池であって、前記電池用電
極構造が、導電材としてのポリマーを含む電極合剤を集
電体上に成膜し当該成膜された後の電極を複数部分に分
割しその後乾燥させた電極を有し、前記導電材に用いる
ポリマーが、分子主鎖にπ共役を有するとともに所定の
導電性を有する高分子化合物を含むことを特徴とする二
次電池に存する。SUMMARY OF THE INVENTION The gist of the present invention is to increase the capacity per unit area and increase the ratio of the electrode to the whole battery, thereby facilitating the enlargement of the battery. An electrode manufacturing method, comprising: forming a film by forming an electrode mixture containing a polymer as an active material on a current collector to form an electrode; and dividing the formed electrode into a plurality of predetermined portions. includes a dividing step of, a drying step of drying the electrode divided into the plurality of portions within a predetermined temperature atmosphere, the
The polymer used for the active material is capable of absorbing and desorbing protons and / or
Or doping and dedoping of ions other than protons
The present invention relates to a method for producing an electrode for a battery, characterized by comprising a polymer compound which causes an oxidation-reduction reaction associated with the step. Further, the gist of the invention according to claim 2 is a method for manufacturing a battery electrode for increasing the capacity per unit area and increasing the proportion of the electrode in the whole battery, and facilitating the enlargement of the battery. A film forming step of forming an electrode by forming an electrode mixture containing a polymer as a conductive material on a current collector; a dividing step of dividing the formed electrode into a plurality of predetermined portions; Drying the electrode divided into portions in an atmosphere at a predetermined temperature , wherein the polymer used for the conductive material is
A chain with π conjugation and a given conductivity
The present invention resides in a method for producing an electrode for a battery, characterized by containing a secondary compound . The gist of the invention described in claim 3 is that the film forming step includes a step of applying the electrode mixture on the current collector by a printing method. The method for producing a battery electrode described above is provided. Claims
The gist of the invention described in 4 is an electrode structure for a battery, which increases the capacity per unit area and the ratio of the electrode to the entire battery, and facilitates upsizing of the battery. forming a electrode mixture on a current collector including the
After the film is formed, the electrode is divided into a plurality of portions and then dried.
Has electrodes, a polymer used for the active material, characterized in that it comprises absorption and desorption of protons, and / or other except proton-doped as well as high molecular compound to produce a redox reaction accompanied by undoping of ions The battery electrode structure. The gist of the invention described in claim 5 is an electrode structure for a battery that increases the capacity per unit area and the ratio of the electrode to the entire battery, and facilitates the enlargement of the battery. An electrode mixture containing a polymer as a material is formed on a current collector , and the formed electrode is divided into a plurality of portions.
And a dried electrode, wherein the polymer used for the conductive material contains a polymer compound having π-conjugated molecular main chain and predetermined conductivity. The gist of the invention described in claim 6 is to increase the capacity per unit area and increase the ratio of the electrode to the whole battery, and to facilitate the increase in the size of the battery. In the battery electrode structure, the electrode mixture containing a polymer as an active material is formed on a current collector , and the formed electrode is formed in a plurality of portions.
A polymer which has an electrode which has been divided and then dried , wherein the polymer used for the active material includes a polymer compound which causes adsorption / desorption of protons and / or doping and dedoping of ions other than protons and an oxidation-reduction reaction accompanying the doping A secondary battery characterized by the above. The gist of the invention described in claim 7 is that a secondary battery having a battery electrode structure that increases the capacity per unit area and the ratio of the electrode to the entire battery, and facilitates upsizing of the battery. In the battery electrode structure, an electrode mixture containing a polymer as a conductive material is formed on a current collector , and the formed electrode is divided into a plurality of portions.
A secondary battery having an electrode which has been cracked and then dried , wherein the polymer used for the conductive material contains a polymer compound having π-conjugated molecular main chain and predetermined conductivity.
【0007】[0007]
【発明の実施の形態】以下に示す各実施形態の特徴は、
活物質あるいは導電材としてポリマーを含む電極合剤を
集電体(電子伝導体)上に成膜し、成膜された後の電極
を複数部分に分割し、その後乾燥させる点にある。これ
により、電極乾燥時の溶媒の蒸発に伴う体積変化(収
縮)に主因すると考えられる電極のひび割れや剥離を低
減できるようになる。また電極の厚膜化を実現すること
が可能となる結果、単位面積あたりの容量(mAh・c
m−2)を増加させ、電池全体に占める電極の割合を増
加させることができるようになる。同時に、電極の大型
化を実現することが可能となる結果、電池の大型化を容
易にすることができるようになるといった効果を奏す
る。以下、本発明の実施形態を図面に基づいて詳細に説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of each embodiment described below are as follows.
An electrode mixture containing a polymer as an active material or a conductive material is formed on a current collector (electron conductor), and the formed electrode is divided into a plurality of portions and then dried. This makes it possible to reduce cracking and peeling of the electrode, which is considered to be mainly caused by volume change (shrinkage) due to evaporation of the solvent during electrode drying. In addition, as a result of making it possible to increase the thickness of the electrode, the capacitance per unit area (mAh · c
m −2 ) can be increased, and the ratio of the electrode to the entire battery can be increased. At the same time, it is possible to increase the size of the electrode, and as a result, it is possible to easily increase the size of the battery. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
【0008】(第1実施形態)活物質に用いるポリマー
として、プロトンの吸脱着、あるいは他のイオンのドー
プ及び/または脱ドープに伴う酸化還元反応を生じる高
分子化合物を用いる。プロトン吸脱着の関与する高分子
化合物の例として、ポリアニリンなどの分子内にアミノ
基を有する高分子またはその誘導体、ポリピロール、ポ
リピリジン、あるいはポリピリミジンなどの含窒素化合
物またはその誘導体、アントラキノン、ベンゾキノンな
どのキノイド構造を含む化合物の重合体またはその誘導
体を用いる。(First Embodiment) As a polymer used for an active material, a polymer compound which causes an adsorption / desorption of protons or a redox reaction accompanying doping and / or undoping of other ions is used. Examples of the polymer compound involved in proton adsorption and desorption include a polymer having an amino group in the molecule such as polyaniline or a derivative thereof, polypyrrole, polypyridine, or a nitrogen-containing compound such as polypyrimidine or a derivative thereof, anthraquinone, benzoquinone, or the like. A polymer of a compound having a quinoid structure or a derivative thereof is used.
【0009】プロトン以外のイオンのドープ及び/また
は脱ドープの関与する高分子化合物の例としては、ポリ
チオフェン、ポリパラフェニレン、ポリアニリン、ある
いはその誘導体、またはポリピロール、ポリチオフェン
等の複素環ポリマー、あるいはその誘導体などを用いる
ことができる。Examples of the high molecular compound involved in doping and / or undoping of ions other than protons include polythiophene, polyparaphenylene, polyaniline, and derivatives thereof, and heterocyclic polymers such as polypyrrole and polythiophene, and derivatives thereof. Etc. can be used.
【0010】導電材に用いるポリマーとしては、分子主
鎖にπ共役を有するとともに所定の導電性を有する高分
子化合物を用いる。これらの例としては、ポリアセン系
高分子、ポリチオフェン、ポリアセチレン、ポリパラフ
ェニレン、ポリパラフェニレンビニレン、ポリチオフェ
ンビニレン、ポリアニリン、ポリピロール、ポリチオフ
ェン、ポリセレノフェン、ポリ(3−アルキルチオフェ
ン)、あるいはポリイソチアナフテンなどを用いること
ができる。As the polymer used for the conductive material, a polymer compound having π conjugation in the molecular main chain and having predetermined conductivity is used. Examples of these include polyacene polymers, polythiophene, polyacetylene, polyparaphenylene, polyparaphenylenevinylene, polythiophenvinylene, polyaniline, polypyrrole, polythiophene, polyselenophene, poly (3-alkylthiophene), and polyisothianaphthene. Etc. can be used.
【0011】また、電極の導電性を増すために、グラフ
ァイト、カーボンブラック、アセチレンブラックなどの
炭素材料を導電材として併用するとさらに好適である。It is more preferable to use a carbon material such as graphite, carbon black or acetylene black as a conductive material in order to increase the conductivity of the electrode.
【0012】集電体1の例としては、カーボン板、導電
性ゴム、あるいは金属の板、あるいは箔などであり、電
解液に腐食されないものを適宜選んで用いればよい。As an example of the current collector 1, a carbon plate, conductive rubber, or a metal plate or foil, which is not corroded by the electrolyte, may be appropriately selected and used.
【0013】活物質と導電材の結合力を確保し、また電
極を集電体1上に固定化するために、有機バインダーを
用いる。その種類としては、ポリエステル樹脂、ポリア
ミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネ
ート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオ
レフィン樹脂、ポリビニル樹脂、フッ素系樹脂、あるい
はポリイミド樹脂などの熱可塑性樹脂が挙げられる。ま
た、これらの熱可塑性樹脂には、官能基を導入した化合
物(アクリレートモノマーまたはオリゴマー)を混入さ
せて使用することもできる。また、アクリレート、オリ
ゴマー単独、あるいはオリゴマーとモノマーとの混合系
も使用することができる。特に好ましいバインダーとし
ては、ポリフッ化ビニリデン、スチレン・ブタジエン共
重合体、あるいは水素添加スチレン・ブタジエン共重合
体が挙げられる。An organic binder is used to secure the bonding force between the active material and the conductive material and to fix the electrode on the current collector 1. Examples of the type include thermoplastic resins such as polyester resin, polyamide resin, polyacrylate resin, polycarbonate resin, polyurethane resin, cellulose resin, polyolefin resin, polyvinyl resin, fluorine resin, and polyimide resin. Further, a compound (acrylate monomer or oligomer) into which a functional group is introduced may be mixed with these thermoplastic resins and used. Also, acrylates, oligomers alone, or mixed systems of oligomers and monomers can be used. Particularly preferred binders include polyvinylidene fluoride, styrene / butadiene copolymer, or hydrogenated styrene / butadiene copolymer.
【0014】合剤の作製法としては、上記の材料から適
宜に選択された活物質、導電材、バインダーを混合し、
このものに、トルエン、メチルエチルケトン、N−メチ
ル−2−ピロリドン、N,N−ジメチルホルムアミドな
どの有機溶媒、あるいはこれらの混合物を添加した組成
物を加える。そして、ホモジナイザー、ボールミル、サ
ンドミル、ロールミルなどの分散機を用いて混合分散す
ることにより調製する。As a method for preparing the mixture, an active material, a conductive material, and a binder appropriately selected from the above materials are mixed,
An organic solvent such as toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, or a mixture thereof is added thereto. And it prepares by mixing and dispersing using a disperser, such as a homogenizer, a ball mill, a sand mill, and a roll mill.
【0015】成膜工程における成膜法としては、ディス
ペンサー、グラビア、ダイヘッド、スクリーン印刷、オ
フセット印刷などの一般的な印刷方法により集電体1上
に上記合剤を塗工する。また、厚い膜を成膜する場合に
は集電体1上に設置した枠内に上記合剤を流し込むのが
好適である。As the film forming method in the film forming step, the above-mentioned mixture is applied onto the current collector 1 by a general printing method such as dispenser, gravure, die head, screen printing, offset printing and the like. When a thick film is formed, it is preferable to pour the mixture into a frame provided on the current collector 1.
【0016】電極の分割に用いる治具としては、先端断
面形状がV字型をしたへら、先端断面形状がV字型をし
たローラー、針(ニードル)、釘、ワイヤー、ネット、
メッシュ、板、あるいは特定のパターンを持った型であ
る。これらの治具を電極に押しつける、あるいは擦過す
ることにより電極を複数の部分に分割する。The jig used for dividing the electrodes may be a spatula having a V-shaped tip section, a roller, a needle, a nail, a wire, a net having a V-shaped tip section.
It can be a mesh, plate, or mold with a specific pattern. The electrode is divided into a plurality of parts by pressing or rubbing these jigs against the electrode.
【0017】図1は本発明にかかる電池用電極製造方法
の第1実施形態で作製したPDAAQ電極2aを説明す
るための図であって、同図(a)はPDAAQ電極2a
の上面図、同図(b)はPDAAQ電極2aの断面構造
の模式図であり、同図(c)はPDAAQ電極2aの断
面の微細構造図である。分割部分は、成膜後に塗膜の一
部、あるいは全部を除去して形成される。特に、集電体
1を露出させ、電極を完全に分割するのが最も好適であ
る。FIG. 1 is a view for explaining a PDAAAQ electrode 2a manufactured in a first embodiment of a method for manufacturing a battery electrode according to the present invention, and FIG.
FIG. 2B is a schematic view of a cross-sectional structure of the PDAAQ electrode 2a, and FIG. 2C is a microstructure view of a cross-section of the PDAAQ electrode 2a. The divided portion is formed by removing part or all of the coating film after film formation. In particular, it is most preferable that the current collector 1 is exposed and the electrodes are completely divided.
【0018】さらに、成膜、分割した電極合剤を乾燥さ
せて電極を得る。乾燥工程における熱源として熱風、赤
外線、マイクロ波、高周波などおよびこれらの組み合わ
せが挙げられる。Further, the electrode mixture obtained by film formation and division is dried to obtain an electrode. Examples of the heat source in the drying step include hot air, infrared rays, microwaves, high frequency waves and the like, and combinations thereof.
【0019】マスクを用いて電極を細分化して成膜する
方法は、従来より広く知られ、実施されている。しか
し、この製法では、図7(b)に示すように電極の膜厚
が増大した際に、マスク除去の工程において電極2fが
マスク3とともに持ち上げられ、集電体1との剥離が生
じる。特開平10−223209号公報には、端子取り
付け用の非塗工部を得るため、電極を分割する製法が開
示されている。しかし、電極の分割は電極の乾燥後であ
る。A method for forming a film by subdividing an electrode using a mask has been widely known and practiced. However, in this manufacturing method, as shown in FIG. 7B, when the film thickness of the electrode increases, the electrode 2f is lifted together with the mask 3 in the mask removing step, and the electrode 2f is separated from the current collector 1. Japanese Patent Application Laid-Open No. Hei 10-223209 discloses a method of dividing an electrode in order to obtain a non-coated portion for terminal attachment. However, the splitting of the electrodes is after the electrodes have dried.
【0020】本発明にかかる各実施形態は、成膜後に電
極を分割して、その後に乾燥を行うことにより、電極の
ひび割れまたは集電体1からの剥離を防止して、電極の
厚み、および面積の増大を容易にすることを特徴として
おり、上記、従来公知の方法とは、目的、構成、効果と
も全く異なる。In each of the embodiments according to the present invention, the electrode is divided after the film is formed, and then the electrode is dried to prevent the electrode from cracking or peeling off from the current collector 1, and to reduce the thickness and the thickness of the electrode. The method is characterized by facilitating an increase in area, and is completely different in purpose, configuration, and effect from the above-described conventionally known methods.
【0021】成膜した電極を乾燥する際に生じる現象を
以下に詳しく説明する。合剤中のポリマーは溶媒を取り
込んで膨潤あるいは溶解している。乾燥時にはこの溶媒
が蒸発するため、電極は激しく収縮する。一方、集電体
1は電極の乾燥前後で体積変化がない。従って、両者の
体積変化の違いにより、乾燥時には電極内部でひずみが
生じる。電極の面積または厚みの少なくとも何れかが増
すにつれて、このひずみが大きくなり、電極と集電体1
の剥離、および電極のひび割れ(図2(a)中でジグザ
グ線で表記)が発生する。The phenomenon that occurs when the formed electrode is dried will be described in detail below. The polymer in the mixture is swollen or dissolved by taking in the solvent. During drying, the solvent evaporates and the electrode shrinks violently. On the other hand, the current collector 1 does not change in volume before and after the electrode is dried. Therefore, due to the difference in volume change between the two, distortion occurs inside the electrode during drying. As the area and / or thickness of the electrode increases, this strain increases and the electrode and the current collector 1
Peeling and cracks of the electrode (indicated by zigzag lines in FIG. 2A) occur.
【0022】図2は従来方法の第1比較例により作製し
た一体構造のPDAAQ電極2bを説明するための図で
あって、同図(a)はPDAAQ電極2bを乾燥した時
のひずみを模式的に示す図であり、同図(b)はPDA
AQ電極2aのひずみが分散された様子を模式的に示す
図である。電極のひび割れが発生する理由について、図
を用いて説明する。上記の理由により、電極は乾燥時
に、収縮しようとする。そして、図2(a)の四隅に向
かう矢印↑に示す方向にひずみが生じる。電極の面積が
増加するにつれ、このひずみは大きくなり、割れを生じ
る原因となる。本発明の電池用電極製造方法により、電
極を分割すると、図2(b)に示すように、ひずみは電
極各分割部に分散されて小さくなる。その結果、電極の
ひび割れを防ぐことができる。FIG. 2 is a view for explaining an integrated PDAAQ electrode 2b manufactured by the first comparative example of the conventional method, and FIG. 2A schematically shows the distortion when the PDAAQ electrode 2b is dried. (B) is a PDA.
FIG. 5 is a diagram schematically illustrating a state where the strain of the AQ electrode 2a is dispersed. The reason why the electrode cracks will be described with reference to the drawings. For the above reasons, the electrodes tend to shrink when dry. Then, distortion occurs in the direction indicated by the arrow 向 か う toward the four corners in FIG. As the area of the electrode increases, this strain increases, causing cracking. When the electrode is divided by the battery electrode manufacturing method of the present invention, as shown in FIG. 2 (b), the strain is distributed to each divided portion of the electrode and becomes smaller. As a result, cracking of the electrode can be prevented.
【0023】次に電極の剥離が発生する理由について、
図を用いて説明する。図3は従来方法の第1比較例に本
発明を適用して作製した一体構造のPDAAQ電極を説
明するための図であって、同図(a),(b)はPDA
AQ電極2a,2bにおける、乾燥時のひずみによる集
電体1からの剥離の様子を模式的に示す図であり、同図
(c)はPDAAQ電極2aに本発明を適用して、乾燥
時のひずみと集電体1からの剥離が抑制された様子を模
式的に示す断面図である。図3(a)に示すように、電
極下部では集電体1と密着しているために、乾燥時の収
縮は小さいものとなる。一方、電極上部では集電体1の
制約がないため、大きく収縮する。電極膜厚の増大とと
もに、電極下部と上部の収縮の差は大きくなり、電極内
部にひずみを生じる。図3(b)に示すように、電極は
湾曲してこのひずみを緩和する。そのために、膜厚の増
大に伴い、ひずみ、湾曲とも大きくなり、電極の剥離を
生じ易くなる。本発明の電池用電極製造方法により、電
極を分割すると、図3(c)に示すように、電極内部の
ひずみは各分割部に分散されて小さくなるため、電極の
剥離を防ぐことができる。Next, the reason why the peeling of the electrode occurs is as follows.
This will be described with reference to the drawings. FIGS. 3A and 3B are views for explaining a PDAAQ electrode having an integral structure manufactured by applying the present invention to the first comparative example of the conventional method. FIGS.
It is a figure which shows typically the mode of peeling from the collector 1 by the distortion at the time of drying in the AQ electrodes 2a and 2b, and the figure (c) which applies this invention to the PDAAQ electrode 2a, and FIG. 3 is a cross-sectional view schematically showing a state in which strain and peeling from a current collector 1 are suppressed. As shown in FIG. 3A, since the lower part of the electrode is in close contact with the current collector 1, the shrinkage during drying is small. On the other hand, there is no restriction on the current collector 1 at the upper part of the electrode, and therefore, the electrode largely contracts. As the thickness of the electrode increases, the difference in shrinkage between the lower part and the upper part of the electrode increases, causing distortion inside the electrode. As shown in FIG. 3 (b), the electrode curves to relieve this distortion. For this reason, as the film thickness increases, both the distortion and the curvature increase, and the peeling of the electrode tends to occur. When the electrode is divided by the method for producing an electrode for a battery according to the present invention, as shown in FIG. 3 (c), the strain inside the electrode is distributed to each divided portion and becomes small, so that the separation of the electrode can be prevented.
【0024】上記の通り、本発明の電池用電極製造方法
により電極を分割することで、面積増加による電極のひ
び割れ、あるいは膜厚増加による集電体1からの剥離を
防止することができる。As described above, by dividing the electrode by the method for manufacturing a battery electrode according to the present invention, it is possible to prevent the electrode from cracking due to an increase in the area or from the current collector 1 due to an increase in the film thickness.
【0025】更に詳しく、第1実施形態の製法を説明す
る。集電体1としてカーボン板(例えば、サイズ:70
×70×0.6mm)、活物質としてポリ1,5−ジア
ミノアントラキノン(以下、PDAAQ)、導電材とし
て気相成長カーボンファイバー(以下、VGCF)、バ
インダーとしてポリフッ化ビニリデン(以下、PVD
F)を用いた。PDAAQ:VGCF:PVDF=4
6:46:8(重量比)で混合し、N,N−ジメチルホ
ルムアミド(以下、DMF)を加えて電極合剤のペース
トを作製した。このペーストを十分に撹拌し、カーボン
板上に50mm×50mmのマスクを設置し、ペースト
を流し込み成膜した。成膜後、マスクを取り除き、先端
断面形状がV字型をしたへらを用いて図1(a)に示す
パターンの通りに電極を分割した。分割された電極の大
きさは約10×10mmである。使用したへらは、ポリ
エチレン製、へらの幅は1mm、厚さ約500μm、先
端の角度は約45度であった。その後、電極を120℃
の熱風循環炉に入れて乾燥させ、DMFを除去した。The production method of the first embodiment will be described in more detail. As the current collector 1, a carbon plate (for example, size: 70)
× 70 × 0.6 mm), poly-1,5-diaminoanthraquinone (hereinafter, PDAAQ) as an active material, vapor grown carbon fiber (hereinafter, VGCF) as a conductive material, polyvinylidene fluoride (hereinafter, PVD) as a binder
F) was used. PDAAQ: VGCF: PVDF = 4
The mixture was mixed at a weight ratio of 6: 46: 8, and N, N-dimethylformamide (hereinafter, DMF) was added to prepare a paste of an electrode mixture. This paste was sufficiently stirred, a 50 mm × 50 mm mask was placed on a carbon plate, and the paste was poured to form a film. After the film formation, the mask was removed, and the electrode was divided according to the pattern shown in FIG. 1A using a spatula having a V-shaped cross section at the tip. The size of the divided electrodes is about 10 × 10 mm. The spatula used was made of polyethylene, the width of the spatula was 1 mm, the thickness was about 500 μm, and the angle of the tip was about 45 degrees. Then, the electrode is heated to 120 ° C.
And dried in a hot air circulating furnace to remove DMF.
【0026】マスクの厚さを約200μmから約140
0μmまで、約200μmおきに用意し、各厚さのマス
クにつき100枚の電極を作製した。乾燥に伴い、電極
の膜厚はおよそ半分に収縮し、乾燥後の電極の膜厚は約
100〜700μmであった。作製した電極は肉眼に
て、割れあるいは剥離の有無を調べ、良品と不良品とに
区別した。第1実施形態で作製した電極の各膜厚に対す
る歩留まりを図8に示す。また、歩留まりが80%以上
確保できる最大の膜厚を、本製法での最大膜厚と定義す
る。その結果、1200μmのマスクを用いた際、第1
実施形態での最大膜厚は約600μmであった。第1実
施形態の製法により、比較例に比べて、同じ面積で厚い
電極を作製することができた。The thickness of the mask is from about 200 μm to about 140
Up to 0 μm, about 200 μm was prepared, and 100 electrodes were prepared for each thickness of the mask. With drying, the thickness of the electrode shrunk to about half, and the thickness of the electrode after drying was about 100 to 700 μm. The prepared electrode was visually inspected for cracks or peeling, and was discriminated into a good product and a defective product. FIG. 8 shows the yield for each film thickness of the electrode manufactured in the first embodiment. Further, the maximum film thickness that can secure a yield of 80% or more is defined as the maximum film thickness in the present manufacturing method. As a result, when a 1200 μm mask is used, the first
The maximum film thickness in the embodiment was about 600 μm. According to the manufacturing method of the first embodiment, a thick electrode having the same area as the comparative example could be manufactured.
【0027】図9は本発明の第1実施形態により作製し
たPDAAQ電極2aおよび従来方法の第1,2比較例
により作製したPDAAQ電極2b,2fの放電特性を
比較して示す図である。最大膜厚の良品(実測膜厚:約
603μm)を用いて、放電特性を調べた。その結果を
図9に示す。測定は約500mlのガラスビーカーにて
行い、電解液には約40%硫酸、対極には集電体1と同
形、同素材のカーボン板、参照電極にはAg/AgCl
(銀/塩化銀)電極を用いて、充放電レート約1mA・
cm−2にて行った。第1実施形態の電極は、従来方法
で作製した電極の4倍もの約0.55mAh・cm−2
の容量が得られた。FIG. 9 is a diagram showing a comparison between the discharge characteristics of the PDAAQ electrode 2a manufactured according to the first embodiment of the present invention and the PDAAQ electrodes 2b and 2f manufactured according to the first and second comparative examples of the conventional method. Using a non-defective product having the maximum film thickness (measured film thickness: about 603 μm), discharge characteristics were examined. FIG. 9 shows the result. The measurement was carried out in a glass beaker of about 500 ml, the electrolyte was about 40% sulfuric acid, the counter electrode was the same shape as the current collector 1, a carbon plate of the same material, and the reference electrode was Ag / AgCl.
Using a (silver / silver chloride) electrode, the charge / discharge rate is about 1 mA
cm- 2 . The electrode of the first embodiment is about 0.55 mAh · cm −2 , which is four times as large as the electrode manufactured by the conventional method.
Was obtained.
【0028】以上説明したように、第1実施形態によれ
ば、成膜後の電極を分割することにより、乾燥時の体積
収縮に伴うひずみを分散し、割れあるいは剥離を防ぐこ
とができる。従って、電極面積及び厚みの増大を可能と
なる結果、この電極を電池用電極として使用した場合、
第1に、電極面積の増大が可能となることにより、小さ
い電極を組み合わせて一体化するなどといった手間が省
け、その結果、電池の大型化が容易となる。また第2
に、電極膜厚の増大が可能となることにより、電極の体
積および重量を増加させることができ、その結果、電池
の容量増加が可能となる。また第3に、同じ膜厚であっ
ても、一体構造の電極に比べて電極構造の保持力が向上
しているため、使用中の脆化、弛緩がなく、かつ長期間
安定した動作が可能となるといった効果を奏する。As described above, according to the first embodiment, by dividing the electrode after film formation, strain due to volume shrinkage during drying can be dispersed, and cracking or peeling can be prevented. Therefore, as a result of increasing the electrode area and thickness, when this electrode is used as a battery electrode,
First, since the electrode area can be increased, the trouble of combining and integrating small electrodes can be omitted, and as a result, the size of the battery can be easily increased. Also the second
In addition, since the electrode thickness can be increased, the volume and weight of the electrode can be increased, and as a result, the capacity of the battery can be increased. Third, even when the film thickness is the same, the electrode structure retains more force than the electrode having a single structure, so there is no embrittlement or relaxation during use and stable operation for a long period of time is possible. This has the effect of becoming
【0029】(第2実施形態)第1実施形態と同じ活物
質、導電材、バインダーを用いて電極合剤を作製し、同
様な方法で成膜を行った。成膜後、型を押しつけて電極
を分割した。分割後のPDAAQ電極2cの模式図を図
4に示す。分割された電極の直径は約10mmである。
使用した型はステンレス製で、押しつけ時に電極の剥離
を避けるために先端が細くなっている。その後、電極を
約120℃の熱風乾燥機で乾燥させ、DMFを除去し
た。(Second Embodiment) An electrode mixture was prepared using the same active material, conductive material and binder as in the first embodiment, and a film was formed by the same method. After film formation, the mold was pressed to divide the electrodes. FIG. 4 is a schematic diagram of the PDAAQ electrode 2c after the division. The diameter of the divided electrode is about 10 mm.
The mold used is made of stainless steel, and the tip is thin to avoid peeling of the electrode during pressing. Thereafter, the electrode was dried with a hot air dryer at about 120 ° C. to remove DMF.
【0030】図8は本発明の第2実施形態により作製し
たPDAAQ電極2cの各膜厚および従来方法の第1,
2比較例により作製したPDAAQ電極2b,2fの各
膜厚に対する歩留まりを示す図である。第1実施形態と
同様にマスク厚を変化させて、各膜厚につき100枚の
電極を作製した。図8に示すように、第2実施形態の最
大膜厚は約500μmであった。第2実施形態の製法に
より、第1実施形態と同様に、厚い電極が得られること
が判明した。FIG. 8 shows each film thickness of the PDAAQ electrode 2c manufactured according to the second embodiment of the present invention and the first and second conventional methods.
FIG. 9 is a diagram showing the yield with respect to each film thickness of PDAAQ electrodes 2b and 2f manufactured by Comparative Example 2. By changing the mask thickness in the same manner as in the first embodiment, 100 electrodes were manufactured for each film thickness. As shown in FIG. 8, the maximum film thickness of the second embodiment was about 500 μm. It has been found that a thick electrode can be obtained by the manufacturing method of the second embodiment, similarly to the first embodiment.
【0031】図9は本発明の第2実施形態により作製し
たPDAAQ電極2cおよび従来方法の第1,2比較例
により作製したPDAAQ電極2b,2fの放電特性を
比較して示す図である。第2実施形態で作製した最大膜
厚の良品(実測膜厚:約495μm)の放電特性を図9
に併せて示す。電池セルの構成、放電レートは第1実施
形態と同様である。第2実施形態においても、比較例に
比べて放電容量が増加しており、本製法による電極の厚
膜化の効果が確認された。FIG. 9 is a diagram showing a comparison between the discharge characteristics of the PDAAQ electrode 2c manufactured according to the second embodiment of the present invention and the PDAAQ electrodes 2b and 2f manufactured according to the first and second comparative examples of the conventional method. FIG. 9 shows the discharge characteristics of a non-defective product having a maximum film thickness (measured film thickness: about 495 μm) manufactured in the second embodiment.
Are shown together. The configuration and the discharge rate of the battery cell are the same as in the first embodiment. Also in the second embodiment, the discharge capacity was increased as compared with the comparative example, and the effect of increasing the thickness of the electrode by this manufacturing method was confirmed.
【0032】(第3実施形態)図5は本発明にかかる電
池用電極製造方法の第3実施形態で作製したPDAAQ
電極2d,2eを説明するための図であって、同図
(a)はPDAAQ電極2d,2eを断面から見た模式
図であり、同図(b)はPDAAQ電極2d,2eの断
面の微細構造を模式的に示す図である。第3実施形態に
おいても、第1、第2実施形態と同様の集電体1、電極
合剤を用いた。成膜方法、分割パターン並びに電極分割
方法、および乾燥法は第1実施形態と全く同様である。
乾燥後に、図5(a),(b)に示すとおり電極の分割
部分に同じ組成の電極合剤2eを埋め込み、電極を一体
化した。その後、約120℃で再び乾燥したが、埋め込
んだ電極合剤は、乾燥時に割れ、剥離を生じることはな
かった。(Third Embodiment) FIG. 5 shows a PDAAQ manufactured in a third embodiment of the method for manufacturing a battery electrode according to the present invention.
FIGS. 4A and 4B are diagrams for explaining the electrodes 2d and 2e, wherein FIG. 4A is a schematic view of the PDAAAQ electrodes 2d and 2e as viewed from a cross section, and FIG. It is a figure which shows a structure typically. Also in the third embodiment, the same current collector 1 and electrode mixture as those in the first and second embodiments were used. The film forming method, the division pattern, the electrode division method, and the drying method are exactly the same as in the first embodiment.
After the drying, as shown in FIGS. 5A and 5B, the electrode mixture 2e having the same composition was embedded in the divided portions of the electrodes to integrate the electrodes. Thereafter, the electrode mixture was dried again at about 120 ° C., but the embedded electrode mixture did not crack or peel during drying.
【0033】図8は本発明の第3実施形態により作製し
たPDAAQ電極2d,2eの各膜厚および従来方法の
第1,2比較例により作製したPDAAQ電極2b,2
fの各膜厚に対する歩留まりを示す図である。第1、第
2実施形態と同様に、膜厚に対する歩留まりを図8に示
す。第3実施形態の最大膜厚は約600μmであった。
第3実施形態の製法により、第1実施形態と同等の歩留
まりが得られ、かつ平滑な電極を作製することができ
た。FIG. 8 shows the respective thicknesses of the PDAAQ electrodes 2d and 2e manufactured according to the third embodiment of the present invention and the PDAAQ electrodes 2b and 2 manufactured according to the first and second comparative examples of the conventional method.
It is a figure which shows the yield for each film thickness of f. FIG. 8 shows the yield with respect to the film thickness as in the first and second embodiments. The maximum thickness of the third embodiment was about 600 μm.
According to the manufacturing method of the third embodiment, the same yield as that of the first embodiment was obtained, and a smooth electrode was manufactured.
【0034】図9は本発明の第3実施形態により作製し
たPDAAQ電極2d,2eおよび従来方法の第1,2
比較例により作製したPDAAQ電極2b,2fの放電
特性を比較して示す図である。第3実施形態で作製した
最大膜厚の良品(実測膜厚:約598μm)の放電特性
を図9に示す。測定の条件はすべて第1、第2実施形態
と同様である。分割部に再び電極合剤を充填することに
より活物質量が増え、第1、第2実施形態に比較してさ
らに容量の増加が認められた。FIG. 9 shows PDAAQ electrodes 2d and 2e manufactured according to the third embodiment of the present invention and first and second conventional methods.
FIG. 9 is a diagram showing a comparison of discharge characteristics of PDAAQ electrodes 2b and 2f manufactured according to a comparative example. FIG. 9 shows the discharge characteristics of a non-defective product having the maximum film thickness (measured film thickness: about 598 μm) manufactured in the third embodiment. All measurement conditions are the same as in the first and second embodiments. By filling the electrode mixture again in the divided portion, the amount of the active material was increased, and the capacity was further increased as compared with the first and second embodiments.
【0035】(第1比較例)図6は従来方法の第1比較
例により作製した一体構造のPDAAQ電極2bを上方
から見た模式図である。第1乃至第3実施形態と全く同
じ電極合剤、集電体1を用いた。第1比較例では、図6
に示すように、一体型の電極を作製した後に、分割は行
わなかった。その後、120℃で電極を乾燥した。第1
乃至第3実施形態と同様に、マスクの膜厚を変化させて
異なる厚さの電極を作製したが、図8に示すように、第
1比較例における最大膜厚は約100μmにすぎなかっ
た。この際に用いたマスクの厚さは約200μmであ
る。第1比較例で作製した最大膜厚の良品(実測膜厚:
約108μm)の放電容量は図9に示すとおり、約0.
14mAh・cm−2であった。測定には第1乃至第3
実施形態と同様に、良品の電極を用いたが、測定中に集
電体1からの浮きが認められた。第1比較例で作製した
電極は、集電体1との密着性に劣るものと考えられる。(First Comparative Example) FIG. 6 is a schematic view of an integrated PDAAQ electrode 2b manufactured from the first comparative example of the conventional method as viewed from above. The exactly same electrode mixture and current collector 1 as in the first to third embodiments were used. In the first comparative example, FIG.
As shown in Fig. 7, after the integrated electrode was manufactured, no division was performed. Thereafter, the electrode was dried at 120 ° C. First
As in the third to third embodiments, electrodes having different thicknesses were manufactured by changing the thickness of the mask. However, as shown in FIG. 8, the maximum thickness in the first comparative example was only about 100 μm. The thickness of the mask used at this time is about 200 μm. A non-defective product having the maximum film thickness (measured film thickness:
As shown in FIG. 9, the discharge capacity of about 108 μm) is about 0.1 μm.
It was 14 mAh · cm −2 . First to third measurement
As in the embodiment, good electrodes were used, but floating from the current collector 1 was observed during the measurement. The electrode manufactured in the first comparative example is considered to have poor adhesion to the current collector 1.
【0036】(第2比較例)図7は従来方法の第2比較
例を説明するための図であって、同図(a)は従来方法
の第2比較例に用いたマスク3の構造を模式的に示す図
であり、同図(b)は従来方法の第2比較例において、
成膜後、マスク3の除去時に電極が持ち上げられ、集電
体1から剥離する様子を模式的に示す図である。第1乃
至第3実施形態および第1比較例と同じ電極合剤、集電
体1を用いた。図7(a)に示すとおり、あらかじめ分
割パターンを持つマスク3を用い、電極を分割した状態
にて成膜し、その後120℃にて乾燥した。(Second Comparative Example) FIG. 7 is a view for explaining a second comparative example of the conventional method. FIG. 7A shows the structure of the mask 3 used in the second comparative example of the conventional method. It is a figure which shows typically, and the figure (b) is a 2nd comparative example of a conventional method,
FIG. 4 is a diagram schematically illustrating a state in which an electrode is lifted and removed from a current collector 1 when a mask 3 is removed after film formation. The same electrode mixture and current collector 1 as in the first to third embodiments and the first comparative example were used. As shown in FIG. 7A, a film was formed in a state where the electrodes were divided using a mask 3 having a division pattern in advance, and then dried at 120 ° C.
【0037】図8は本発明の第1乃至第3実施形態によ
り作製したPDAAQ電極2a,2c,2d,2eの各
膜厚および従来方法の第1,2比較例により作製したP
DAAQ電極2b,2fの各膜厚に対する歩留まりを示
す図である。横軸は電極の平均膜厚(単位は[μ
m])、縦軸は歩留まり(単位は[%])である。第1
実施形態により作製したPDAAQ電極2aに対する歩
留まりを●で示し、第2実施形態により作製したPDA
AQ電極2cに対する歩留まりを■で示し、第3実施形
態により作製したPDAAQ電極2d,2eに対する歩
留まりを▲で示し、第1比較例により作製したPDAA
Q電極2bに対する歩留まりを×で示し、第2比較例に
より作製したPDAAQ電極2fに対する歩留まりを◆
で示す。FIG. 8 shows the respective film thicknesses of the PDAAQ electrodes 2a, 2c, 2d, and 2e manufactured according to the first to third embodiments of the present invention, and the P-type manufactured according to the first and second comparative examples of the conventional method.
It is a figure which shows the yield for each film thickness of DAAQ electrode 2b, 2f. The horizontal axis is the average thickness of the electrode (unit is [μ
m]) and the vertical axis is the yield (unit is [%]). First
The yield with respect to the PDAAQ electrode 2a manufactured according to the embodiment is indicated by ●, and the PDA manufactured according to the second embodiment
The yield for the AQ electrode 2c is indicated by ■, the yield for the PDAAQ electrodes 2d and 2e manufactured according to the third embodiment is indicated by で, and the PDAA manufactured according to the first comparative example.
The yield for the Q electrode 2b is indicated by x, and the yield for the PDAAQ electrode 2f manufactured in the second comparative example is ◆.
Indicated by
【0038】第1乃至第3実施形態および第1比較例と
同様に、第2比較例の製法により各膜厚の電極をそれぞ
れ100枚作製した。第2比較例においては、図7
(b)に示すように、マスク3の除去時に電極がマスク
3とともに持ち上がり、集電体1から剥離するため膜厚
の増大は困難であった。第2比較例の最大膜厚は図8に
示すとおり、約200μmであった。In the same manner as in the first to third embodiments and the first comparative example, 100 electrodes of each thickness were produced by the production method of the second comparative example. In the second comparative example, FIG.
As shown in (b), when the mask 3 was removed, the electrode was lifted together with the mask 3 and peeled off from the current collector 1, so that it was difficult to increase the film thickness. As shown in FIG. 8, the maximum thickness of the second comparative example was about 200 μm.
【0039】図9は本発明の第1乃至第3実施形態によ
り作製したPDAAQ電極2a,2c,2dおよび従来
方法の第1,2比較例により作製したPDAAQ電極2
b,2fの放電特性を比較して示す図である。横軸は放
電容量(単位は[mAh・cm−2])、縦軸は出力電
圧(単位は[mV])である。第2比較例により作製し
た最大膜厚の良品(実測膜厚:201μm)の放電容量
は、図9に示すとおり、約0.22mAh・cm−2で
あった。これは、第1乃至第3実施形態に比べ、約1/
2〜1/3にすぎなかった。FIG. 9 shows PDAAQ electrodes 2a, 2c and 2d manufactured according to the first to third embodiments of the present invention, and PDAAQ electrodes 2 manufactured according to the first and second comparative examples of the conventional method.
It is a figure which shows and compares discharge characteristics of b and 2f. The horizontal axis represents the discharge capacity (unit: [mAh · cm −2 ]), and the vertical axis represents the output voltage (unit: [mV]). As shown in FIG. 9, the discharge capacity of the non-defective product having the maximum film thickness (actually measured film thickness: 201 μm) manufactured by the second comparative example was about 0.22 mAh · cm −2 . This is about 1 / compared to the first to third embodiments.
It was only 2/3.
【0040】ここで、前述の実開平6−70162号公
報(第3従来技術)と上記各実施形態を比較する。第1
に発明の目的に着目すると、第3従来技術では固体電解
質燃料電池の発電性能劣化防止や発電膜の割れ防止を挙
げているが、本発明の目的は、二次電池において、電極
膜厚を増大させ電池全体に占める電極の割合を増やすこ
と、また、電極の大型化を図り電池の大型化を容易にす
ることである点において目的を異にする。第2に発明の
構成に着目すると、第3従来技術では、電極が固体電解
質層(イオン伝導体)上に形成されているのに対し、本
発明の電極は集電体1(電子伝導体)上に形成されてい
る点で構成が大きく異なる。また第3従来技術では、電
極の分割に関する記述が一切なく、最初から分割された
状態に成膜するのか、あるいは成膜後に分割するのかが
全く不明である。一方、本発明では成膜された後の電極
を複数部分に分割し、このものを乾燥させることによ
り、特有の効果を発揮させることが可能になる。第3に
発明の作用・効果に着目すると、第3従来技術では,固
体電解質層と電極層の熱膨張係数が異なるため、焼成、
あるいは動作時の温度変化により電極のひび割れ、剥離
を生じ易くなり、発電性能が劣化すると説明している。
しかし、いかなる過程を経て電極のひび割れ、剥離に到
るのかが全く不明である。一方、本発明では電極のひび
割れ、剥離が、電極乾燥時の溶媒の蒸発に伴う体積変化
(収縮)に起因すると説明し、割れ、剥離に到る過程を
詳細に記述している。そして、上記の構成を具備するこ
とにより、課題を解決できることを述べている点におい
て作用・効果を異にする。すなわち、上記の如く、本発
明と実開平6−70162号公報では、目的、構成、動
作、効果とも異なる。Here, the above-described Japanese Utility Model Laid-Open Publication No. 6-70162 (third prior art) and the above embodiments will be compared. First
Focusing on the object of the invention, the third prior art mentions prevention of deterioration of the power generation performance of the solid electrolyte fuel cell and prevention of cracking of the power generation film, but the object of the present invention is to increase the electrode film thickness in the secondary battery. The purpose is different in that the ratio of the electrode to the entire battery is increased, and the size of the electrode is increased to facilitate the size of the battery. Second, focusing on the configuration of the invention, in the third conventional technique, the electrode is formed on the solid electrolyte layer (ion conductor), whereas the electrode of the invention is the current collector 1 (electron conductor). The configuration differs greatly in that it is formed above. Further, in the third prior art, there is no description about the division of the electrodes, and it is completely unknown whether the film is to be formed in a state of being divided from the beginning or to be divided after the film is formed. On the other hand, in the present invention, the electrode after film formation is divided into a plurality of portions, and this is dried, whereby a specific effect can be exhibited. Thirdly, focusing on the operation and effect of the invention, in the third prior art, since the thermal expansion coefficients of the solid electrolyte layer and the electrode layer are different, firing,
Alternatively, it is described that cracking and peeling of the electrode are easily caused by a temperature change during operation, and the power generation performance is deteriorated.
However, it is completely unknown what process leads to cracking and peeling of the electrode. On the other hand, in the present invention, it is explained that the cracking and peeling of the electrode is caused by a volume change (shrinkage) accompanying the evaporation of the solvent when the electrode is dried, and the process leading to the cracking and peeling is described in detail. The operation and effect are different in that it is stated that the problem can be solved by providing the above configuration. That is, as described above, the present invention and Japanese Utility Model Laid-Open Publication No. 6-70162 differ from each other in the purpose, configuration, operation, and effect.
【0041】なお、本発明が上記各実施形態に限定され
ず、本発明の技術思想の範囲内において、各実施形態は
適宜変更され得ることは明らかである。また上記構成部
材の数、位置、形状等は上記実施の形態に限定されず、
本発明を実施する上で好適な数、位置、形状等にするこ
とができる。また、各図において、同一構成要素には同
一符号を付している。It should be noted that the present invention is not limited to the above embodiments, and each embodiment can be appropriately modified within the scope of the technical idea of the present invention. Further, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment,
The number, position, shape, and the like suitable for carrying out the present invention can be obtained. In each drawing, the same components are denoted by the same reference numerals.
【0042】[0042]
【発明の効果】本発明は、成膜後の電極を分割すること
により、乾燥時の体積収縮に伴うひずみを分散し、割れ
あるいは剥離を防ぐことができる。従って、電極面積及
び厚みの増大を可能となる結果、この電極を電池用電極
として使用した場合、第1に、電極面積の増大が可能と
なることにより、小さい電極を組み合わせて一体化する
などといった手間が省け、その結果、電池の大型化が容
易となる。また第2に、電極膜厚の増大が可能となるこ
とにより、電極の体積および重量を増加させることがで
き、その結果、電池の容量増加が可能となる。また第3
に、同じ膜厚であっても、一体構造の電極に比べて電極
構造の保持力が向上しているため、使用中の脆化、弛緩
がなく、かつ長期間安定した動作が可能となるといった
効果を奏する。According to the present invention, by dividing the electrode after film formation, the strain accompanying the volume shrinkage at the time of drying can be dispersed, and cracking or peeling can be prevented. Therefore, the electrode area and thickness can be increased. As a result, when this electrode is used as a battery electrode, firstly, it is possible to increase the electrode area, thereby combining small electrodes and integrating them. This saves time and, as a result, facilitates upsizing of the battery. Second, since the electrode thickness can be increased, the volume and weight of the electrode can be increased, and as a result, the capacity of the battery can be increased. Also the third
In addition, even if the film thickness is the same, since the holding force of the electrode structure is improved as compared with the electrode having a single structure, there is no embrittlement or relaxation during use, and stable operation can be performed for a long time. It works.
【図1】本発明にかかる電池用電極製造方法、及び電池
用電極並びに二次電池の第1実施形態で作製したPDA
AQ電極を説明するための図であって、同図(a)はP
DAAQ電極の上面図、同図(b)はPDAAQ電極の
断面構造の模式図であり、同図(c)はPDAAQ電極
の断面の微細構造図である。FIG. 1 is a method for manufacturing a battery electrode according to the present invention, and a PDA manufactured in the first embodiment of a battery electrode and a secondary battery.
It is a figure for demonstrating an AQ electrode, and the same figure (a) is P
FIG. 2B is a top view of the DAAAQ electrode, and FIG. 2B is a schematic view of a cross-sectional structure of the PDAAQ electrode, and FIG.
【図2】従来方法の第1比較例により作製した一体構造
のPDAAQ電極を説明するための図であって、同図
(a)はPDAAQ電極を乾燥した時のひずみを模式的
に示す図であり、同図(b)はPDAAQ電極のひずみ
が分散された様子を模式的に示す図である。FIG. 2 is a view for explaining a PDAAAQ electrode having an integral structure manufactured according to a first comparative example of a conventional method, and FIG. 2A is a view schematically showing a strain when the PDAAQ electrode is dried. FIG. 2B is a diagram schematically showing a state in which the strain of the PDAAQ electrode is dispersed.
【図3】従来方法の第1比較例に本発明を適用して作製
した一体構造のPDAAQ電極を説明するための図であ
って、同図(a),(b)はPDAAQ電極における、
乾燥時のひずみによる集電体1からの剥離の様子を模式
的に示す図であり、同図(c)はPDAAQ電極に本発
明を適用して、乾燥時のひずみと集電体1からの剥離が
抑制された様子を模式的に示す断面図である。FIGS. 3A and 3B are diagrams for explaining a PDAAAQ electrode having an integral structure manufactured by applying the present invention to a first comparative example of a conventional method. FIGS.
It is a figure which shows typically the mode of the peeling from the current collector 1 by the distortion at the time of drying, and the figure (c) which applied this invention to the PDAAQ electrode, and shows the distortion at the time of drying and the current collector 1 It is sectional drawing which shows the mode that peeling was suppressed typically.
【図4】本発明の第2実施形態の方法で作製したPDA
AQ電極を上方から見た模式図である。FIG. 4 is a PDA manufactured by the method of the second embodiment of the present invention.
It is the schematic diagram which looked at the AQ electrode from the upper part.
【図5】本発明にかかる電池用電極製造方法、及び電池
用電極並びに二次電池の第3実施形態で作製したPDA
AQ電極を説明するための図であって、同図(a)はP
DAAQ電極を断面から見た模式図であり、同図(b)
はPDAAQ電極の断面の微細構造を模式的に示す図で
ある。FIG. 5 is a diagram illustrating a method for manufacturing a battery electrode according to the present invention, and a PDA manufactured in a third embodiment of a battery electrode and a secondary battery.
It is a figure for demonstrating an AQ electrode, and the same figure (a) is P
FIG. 3B is a schematic view of the DAAQ electrode viewed from a cross section, and FIG.
FIG. 3 is a diagram schematically showing a fine structure of a cross section of a PDAAAQ electrode.
【図6】従来方法の第1比較例により作製した一体構造
のPDAAQ電極を上方から見た模式図である。FIG. 6 is a schematic diagram of a PDAAAQ electrode having an integral structure manufactured according to a first comparative example of a conventional method, as viewed from above.
【図7】従来方法の第2比較例を説明するための図であ
って、同図(a)は従来方法の第2比較例に用いたマス
クの構造を模式的に示す図であり、同図(b)は従来方
法の第2比較例において、成膜後、マスク除去時に電極
が持ち上げられ、集電体から剥離する様子を模式的に示
す図である。FIG. 7 is a diagram for explaining a second comparative example of the conventional method, and FIG. 7A is a diagram schematically showing the structure of a mask used in the second comparative example of the conventional method. FIG. 2B is a view schematically showing a state in which the electrode is lifted up and removed from the current collector when removing the mask after film formation in the second comparative example of the conventional method.
【図8】本発明の第1乃至第3実施形態により作製した
PDAAQ電極の各膜厚および従来方法の第1,2比較
例により作製したPDAAQ電極の各膜厚に対する歩留
まりを示す図である。FIG. 8 is a diagram showing the yield for each film thickness of the PDAAQ electrode manufactured according to the first to third embodiments of the present invention and the film thickness of the PDAAQ electrode manufactured according to the first and second comparative examples of the conventional method.
【図9】本発明の第1乃至第3実施形態により作製した
PDAAQ電極および従来方法の第1,2比較例により
作製したPDAAQ電極の放電特性を比較して示す図で
ある。FIG. 9 is a diagram showing a comparison of the discharge characteristics of the PDAAQ electrodes manufactured according to the first to third embodiments of the present invention and the PDAAQ electrodes manufactured according to the first and second comparative examples of the conventional method.
1…集電体 2a…本発明の第1実施形態により作製されたPDAA
Q電極 2b…従来方法の第1比較例により作製された一体構造
のPDAAQ電極 2c…本発明の第2実施形態により作製されたPDAA
Q電極 2d…本発明の第3実施形態により作製されたPDAA
Q電極(分割後のPDAAQ電極) 2e…本発明の第3実施形態により作製されたPDAA
Q電極(二度目に成膜したPDAAQ電極) 2f…従来方法の第2比較例で形成されたPDAAQ電
極 3…従来方法の第2比較例での成膜に用いたマスクDESCRIPTION OF SYMBOLS 1 ... Current collector 2a ... PDAA manufactured by 1st Embodiment of this invention
Q electrode 2b: PDAAA having an integral structure manufactured according to the first comparative example of the conventional method Qc 2c: PDAA manufactured according to the second embodiment of the present invention
Q electrode 2d: PDAA fabricated according to the third embodiment of the present invention
Q electrode (PDAAQ electrode after division) 2e: PDAA manufactured according to the third embodiment of the present invention
Q electrode (PDAAQ electrode formed second time) 2f ... PDAAQ electrode formed in second comparative example of conventional method 3 ... Mask used for film formation in second comparative example of conventional method
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 正樹 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 西山 利彦 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 昭59−49161(JP,A) 特開 平7−296792(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/60 H01M 4/62 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Fujiwara 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Toshihiko Nishiyama 5-7-1 Shiba, Minato-ku, Tokyo NEC (56) References JP-A-59-49161 (JP, A) JP-A-7-296792 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 -4/04 H01M 4/60 H01M 4/62 H01M 10/40
Claims (7)
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極製造方法であって、 活物質としてポリマーを含む電極合剤を集電体上に成膜
して電極を形成する成膜工程と、 当該成膜された後の電極を所定の複数部分に分割する分
割工程と、 当該複数部分に分割された電極を所定温度雰囲気内で乾
燥させる乾燥工程とを有し、 前記活物質に用いるポリマーが、プロトンの吸脱着、及
び/またはプロトンを除く他のイオンのドープ並びに脱
ドープに伴う酸化還元反応を生じる高分子化合物を含む
ことを特徴とする電池用電極製造方法。1. A method for manufacturing an electrode for a battery, wherein the capacity per unit area is increased and the ratio of the electrode to the entire battery is increased, and the size of the battery is easily increased. A film forming step of forming an electrode by forming a film on the current collector, a dividing step of dividing the formed electrode into a plurality of predetermined portions, and a predetermined process of dividing the electrode divided into the plurality of portions into predetermined portions. A drying step of drying in a temperature atmosphere , wherein the polymer used for the active material absorbs and desorbs protons.
Doping and elimination of ions other than protons and / or protons
A method for producing an electrode for a battery , comprising a polymer compound that causes an oxidation-reduction reaction accompanying doping .
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極製造方法であって、 導電材としてポリマーを含む電極合剤を集電体上に成膜
して電極を形成する成膜工程と、 当該成膜された後の電極を所定の複数部分に分割する分
割工程と、 当該複数部分に分割された電極を所定温度雰囲気内で乾
燥させる乾燥工程とを有し、 前記導電材に用いるポリマーが、分子主鎖にπ共役を有
するとともに所定の導電性を有する高分子化合物を含む
ことを特徴とする電池用電極製造方法。2. A method for manufacturing an electrode for a battery, wherein the capacity per unit area is increased and the ratio of the electrode to the entire battery is increased, and the size of the battery is easily increased. A film forming step of forming an electrode by forming a film on the current collector, a dividing step of dividing the formed electrode into a plurality of predetermined portions, and a predetermined process of dividing the electrode divided into the plurality of portions into predetermined portions. A drying step of drying in a temperature atmosphere , wherein the polymer used for the conductive material has π conjugation in the molecular main chain.
A method for producing an electrode for a battery , comprising a polymer compound having predetermined conductivity .
電体上に前記電極合剤を塗工する工程を含むことを特徴
とする請求項1または2に記載の電池用電極製造方法。3. The method according to claim 1, wherein the film forming step includes a step of applying the electrode mixture on the current collector by a printing method.
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極構造であって、活物質としてのポリ
マーを含む電極合剤を集電体上に成膜し当該成膜された
後 の電極を複数部分に分割しその後乾燥させた電極を有
し、 前記活物質に用いるポリマーが、プロトンの吸脱着、及
び/またはプロトンを除く他のイオンのドープ並びに脱
ドープに伴う酸化還元反応を生じる高分子化合物を含む
ことを特徴とする電池用電極構造。4. An electrode structure for a battery, which increases the capacity per unit area and increases the ratio of the electrode to the entire battery, and facilitates upsizing of the battery, wherein the electrode assembly includes a polymer as an active material. The agent was formed on the current collector and the film was formed.
Has a post and the electrode is divided and then dried into a plurality partial electrodes, the polymer used in the active material, absorption and desorption of protons, and / or due to doping and undoping of other ions except proton redox reaction An electrode structure for a battery, comprising a polymer compound that produces the following.
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極構造であって、 導電材としてのポリマーを含む電極合剤を集電体上に成
膜し当該成膜された後の電極を複数部分に分割しその後
乾燥させた電極を有し、 前記導電材に用いるポリマーが、分子主鎖にπ共役を有
するとともに所定の導電性を有する高分子化合物を含む
ことを特徴とする電池用電極構造。5. An electrode structure for a battery, which increases the capacity per unit area and the ratio of the electrode to the entire battery, and facilitates upsizing of the battery, wherein the electrode assembly includes a polymer as a conductive material. Film is formed on the current collector, and the electrode after the film formation is divided into a plurality of portions.
An electrode structure for a battery, comprising a dried electrode, wherein the polymer used for the conductive material includes a polymer compound having π conjugation in a molecular main chain and having a predetermined conductivity.
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極構造を有する二次電池であって、 前記電池用電極構造が、活物質としてのポリマーを含む
電極合剤を集電体上に成膜し当該成膜された後の電極を
複数部分に分割しその後乾燥させた電極を有し、 前記活物質に用いるポリマーが、プロトンの吸脱着、及
び/またはプロトンを除く他のイオンのドープ並びに脱
ドープに伴う酸化還元反応を生じる高分子化合物を含む
ことを特徴とする二次電池。6. A secondary battery having a battery electrode structure for increasing the capacity per unit area and increasing the ratio of the electrode to the whole battery to facilitate upsizing of the battery. The structure is such that an electrode mixture containing a polymer as an active material is formed on a current collector , and the electrode after the film formation is formed.
A polymer having an electrode which is divided into a plurality of portions and then dried , wherein the polymer used for the active material causes adsorption / desorption of protons and / or doping of other ions other than protons and redox reaction accompanying dedoping A secondary battery comprising a compound.
体に占める電極の割合の増加を図り、電池の大型化を容
易にする電池用電極構造を有する二次電池であって、 前記電池用電極構造が、導電材としてのポリマーを含む
電極合剤を集電体上に成膜し当該成膜された後の電極を
複数部分に分割しその後乾燥させた電極を有し、 前記導電材に用いるポリマーが、分子主鎖にπ共役を有
するとともに所定の導電性を有する高分子化合物を含む
ことを特徴とする二次電池。7. A secondary battery having a battery electrode structure that facilitates upsizing of a battery by increasing the capacity per unit area and increasing the ratio of the electrode to the entire battery, wherein the battery electrode is provided. The structure is such that an electrode mixture containing a polymer as a conductive material is formed on a current collector , and the electrode after the film formation is formed on the current collector.
A secondary battery having an electrode that is divided into a plurality of portions and then dried , wherein the polymer used for the conductive material includes a polymer compound having π conjugation in the molecular main chain and having a predetermined conductivity. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11006382A JP3058157B1 (en) | 1999-01-13 | 1999-01-13 | Method for producing electrode for battery, electrode for battery and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11006382A JP3058157B1 (en) | 1999-01-13 | 1999-01-13 | Method for producing electrode for battery, electrode for battery and secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3058157B1 true JP3058157B1 (en) | 2000-07-04 |
JP2000208136A JP2000208136A (en) | 2000-07-28 |
Family
ID=11636845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11006382A Expired - Fee Related JP3058157B1 (en) | 1999-01-13 | 1999-01-13 | Method for producing electrode for battery, electrode for battery and secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3058157B1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU7950900A (en) | 1999-10-22 | 2001-05-08 | Sanyo Electric Co., Ltd. | Electrode for lithium secondary cell and lithium secondary cell |
EP1244164A4 (en) | 1999-10-22 | 2007-11-14 | Sanyo Electric Co | Electrode for lithium secondary cell and lithium secondary cell |
JP3733065B2 (en) * | 1999-10-22 | 2006-01-11 | 三洋電機株式会社 | Lithium battery electrode and lithium secondary battery |
WO2001031724A1 (en) | 1999-10-22 | 2001-05-03 | Sanyo Electric Co., Ltd. | Electrode for lithium cell and lithium secondary cell |
EP1246278B1 (en) * | 1999-10-22 | 2011-05-18 | Sanyo Electric Co., Ltd. | Electrode for lithium cell and lithium secondary cell |
CN1306634C (en) | 2000-04-26 | 2007-03-21 | 三洋电机株式会社 | Lithium secondary battery-use electrode and lithium secondary battery |
WO2005112151A1 (en) * | 2004-05-17 | 2005-11-24 | Lg Chem, Ltd. | Electrode, and method for preparing the same |
CN1839497B (en) | 2004-05-17 | 2010-06-30 | 株式会社Lg化学 | Electrode, and method for preparing the same |
JP5077315B2 (en) * | 2009-09-30 | 2012-11-21 | 日産自動車株式会社 | Secondary battery electrode |
JP5755870B2 (en) * | 2010-11-22 | 2015-07-29 | シャープ株式会社 | Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery |
KR101671421B1 (en) * | 2014-04-16 | 2016-11-01 | 주식회사 엘지화학 | Flexible Electrode Assembly Comprising Electrode Pattern-Coated |
JP7116890B2 (en) * | 2018-10-29 | 2022-08-12 | トヨタ自動車株式会社 | secondary battery |
-
1999
- 1999-01-13 JP JP11006382A patent/JP3058157B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000208136A (en) | 2000-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7442284B2 (en) | Coated carbon nanotube array electrodes | |
JP3058157B1 (en) | Method for producing electrode for battery, electrode for battery and secondary battery | |
US6413676B1 (en) | Lithium ion polymer electrolytes | |
US6503661B1 (en) | Lithium secondary battery | |
CN1324728C (en) | Lithium secondary cell of electrolyte decomposition being inhibited and preparing process thereof | |
JP2943792B1 (en) | Proton conductive polymer battery and method for producing the same | |
WO2018024203A1 (en) | Pole piece and electrochemical cell | |
US20200335792A1 (en) | Particulates of conducting polymer network-protected anode active material particles for lithium-ion batteries | |
US20130316245A1 (en) | Battery electrode material and method for making the same | |
CN107437623B (en) | Lithium ion battery positive plate and preparation method thereof | |
CN115411228A (en) | Lithium iron manganese phosphate positive plate and preparation method thereof | |
Yang et al. | Highly Elastic hyperbranched polymer binder for silicon anodes in lithium-ion batteries | |
EP4131508A1 (en) | Pole piece, cell and battery | |
US6225003B1 (en) | Electrode materials having an elastomer binder and associated electrochemical and fabrication process | |
CN108598557B (en) | All-solid-state battery integrated module and all-solid-state battery comprising same | |
CN108767322B (en) | Preparation method of all-solid-state battery core | |
US20180115021A1 (en) | Lithium battery and method for manufacturing same | |
CN113410426A (en) | Lithium ion battery | |
JP3578185B2 (en) | Thin lithium battery and method of manufacturing the same | |
JP3512082B2 (en) | Thin lithium battery and method of manufacturing the same | |
JPH1197026A (en) | Electrode for li cell | |
CN114497453B (en) | Negative plate and battery comprising same | |
KR102712411B1 (en) | A stretchable electrode, a manufacturing method thereof, and a stretchable battery comprising the stretchable electrode | |
CN111769285B (en) | Lithium battery negative electrode adhesive and negative electrode plate | |
CN118315522A (en) | Preparation method of novel self-repairing coated electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |