JP3056300B2 - Resin composition for sealing electronic parts and electronic parts - Google Patents

Resin composition for sealing electronic parts and electronic parts

Info

Publication number
JP3056300B2
JP3056300B2 JP25324891A JP25324891A JP3056300B2 JP 3056300 B2 JP3056300 B2 JP 3056300B2 JP 25324891 A JP25324891 A JP 25324891A JP 25324891 A JP25324891 A JP 25324891A JP 3056300 B2 JP3056300 B2 JP 3056300B2
Authority
JP
Japan
Prior art keywords
resin composition
inorganic powder
sealing
mol
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25324891A
Other languages
Japanese (ja)
Other versions
JPH0593052A (en
Inventor
敬之 林
幸彦 影山
健二 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP25324891A priority Critical patent/JP3056300B2/en
Publication of JPH0593052A publication Critical patent/JPH0593052A/en
Application granted granted Critical
Publication of JP3056300B2 publication Critical patent/JP3056300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融時に光学的異方性
を示す溶融加工性ポリエステル樹脂からなる電子部品の
封止材に係わる。更に詳しくは、流動性及び耐湿性に優
れた電子部品封止用樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing material for electronic parts comprising a melt-processable polyester resin exhibiting optical anisotropy when melted. More specifically, the present invention relates to a resin composition for sealing electronic components having excellent fluidity and moisture resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】例えば
IC、トランジスター、ダイオード、コイル、コンデンサ
ー、抵抗器、コネクター、LSI 等においては、電気絶縁
性の保持、外力に対する保護、外部雰囲気による特性変
化の防止等の目的で、これらを合成樹脂で封止すること
が広く行われている。異方性溶融相を形成し得る溶融加
工性ポリエステル(以下「液晶性ポリエステル」と略
す)は低線膨張係数、低成形収縮、低弾性係数等の優れ
た性質を有する点から封止材に極めて適した素材であ
る。ところが、高分子量の液晶性ポリエステルを用いた
電子部品封止材は、射出成形条件によっては溶融時の流
動不足、流動時の剪断力の為、素子の金線の変形、断線
等、部品の内部構造に損傷を与える場合がある。また、
従来の液晶性ポリエステルからなる電子部品封止材は吸
湿性が高いため、高湿条件下で使用すると吸収された水
分による電流のリーク、或いは素子の腐食などが生じる
ことがあった。この様な問題点は、最近の様に電子部品
の素子の構造が複雑となるにつれて、ますます注目され
ている。
BACKGROUND OF THE INVENTION Problems to be Solved by the Invention
For ICs, transistors, diodes, coils, capacitors, resistors, connectors, LSIs, etc., these are sealed with synthetic resin for the purpose of maintaining electrical insulation, protecting against external forces, and preventing changes in characteristics due to external atmosphere. That is widely done. Melt-processable polyesters capable of forming an anisotropic molten phase (hereinafter abbreviated as "liquid crystalline polyester") are extremely suitable for encapsulants because of their excellent properties such as low linear expansion coefficient, low molding shrinkage, and low elastic modulus. It is a suitable material. However, depending on the injection molding conditions, the encapsulating material for electronic parts using a high-molecular-weight liquid crystalline polyester may have insufficient internal flow due to insufficient flow during melting and shearing force during flow due to deformation of the element's gold wire, disconnection, etc. May damage the structure. Also,
A conventional electronic component sealing material made of a liquid crystalline polyester has a high hygroscopic property, and therefore, when used under high humidity conditions, current leakage due to absorbed moisture or element corrosion may occur. Such a problem has been attracting more and more attention as the structure of electronic component elements has become more complicated recently.

【0003】[0003]

【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意検討した結果、特定の液晶性ポリエス
テルが有効であることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have found that a specific liquid crystalline polyester is effective, and have reached the present invention.

【0004】すなわち、本発明は、重量平均分子量が1,
000 〜25,000で、下記(I)〜(IV)で表わされる構成
単位を含み、全構成単位に対して(I)が50乃至85モル
%、(II)が0.1 乃至5モル%、(III)が5乃至37モル
%、(IV)が4.5 乃至23モル%である異方性溶融相を形
成し得る溶融加工性ポリエステルを樹脂を主成分とする
電子部品封止用樹脂組成物を提供するものである。
That is, according to the present invention, the weight average molecular weight is 1,
000 to 25,000, including the structural units represented by the following (I) to (IV), wherein (I) is 50 to 85 mol%, (II) is 0.1 to 5 mol%, and (III) The present invention provides a resin composition for electronic component encapsulation, comprising as a main component a melt-processable polyester capable of forming an anisotropic molten phase having a resin content of 5 to 37 mol% and (IV) of 4.5 to 23 mol%. It is.

【0005】[0005]

【化2】 Embedded image

【0006】(I)〜(IV)の各構成単位を実現する原
料としては、以下のものが代表的な例としてあげられ
る。 (I)式は、p−ヒドロキシ安息香酸及びその誘導体で
あるp−アセトキシ安息香酸、p−ヒドロキシ安息香酸
フェニルエステル、p−ヒドロキシ安息香酸メチルエス
テル等である。 (II)式は、6−ヒドロキシ−2−ナフトエ酸及びその
誘導体である6−アセトキシ−2−ナフトエ酸、6−ヒ
ドロキシ−2−ナフトエ酸フェニルエステル、6−ヒド
ロキシ−2−ナフトエ酸メチルエステル等である。 (III)式は、テレフタル酸、イソフタル酸、2,6 −ナフ
タレンジカルボン酸及びその誘導体であり、特にテレフ
タル酸及びその誘導体が好ましい。 (IV)式は、ハイドロキノン、レゾルシン、4,4'−ジヒ
ドロキシビフェニル、4,4'−ジヒドロキシジフェニルプ
ロパン、4,4'−ジヒドロキシベンゾフェノン、4,4'−ジ
ヒドロキシジフェニルスルホン及びその誘導体である各
化合物のアセトキシ化物等である。中でも4,4'−ジヒド
ロキシビフェニル、4,4'−ジヒドロキシジフェニルプロ
パン及びその誘導体が好ましく、特に4,4'−ジヒドロキ
シビフェニル及びその誘導体が好ましい。 構成単位(I)は全体に対し50〜85モル%であり、好ま
しくは50〜75モル%である。これらの範囲を越えると、
溶融粘度が上昇し、加工性が阻害される。構成単位(I
I)は全体に対し0.1 〜5モル%であり、好ましくは1
〜4モル%である。これより少ないと溶融粘度の上昇に
より加工性が阻害され、また多いと所望の耐湿性が得ら
れない。構成単位(III)は全体に対し5乃至37モル%で
あり、構成単位(IV)は全体に対し4.5 乃至23モル%で
ある。この構成単位(III)と構成単位(IV)の比率の差
を0.5 〜15モル%に調製することにより、所望の分子量
のポリマーを得ることができる。
The following are typical examples of raw materials for realizing each of the structural units (I) to (IV). The formula (I) includes p-hydroxybenzoic acid and its derivatives such as p-acetoxybenzoic acid, phenyl p-hydroxybenzoate, and methyl p-hydroxybenzoate. (II) Formula 6-hydroxy-2-naphthoic acid and its derivatives such as 6-acetoxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid phenyl ester, 6-hydroxy-2-naphthoic acid methyl ester and the like It is. Formula (III) is terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and derivatives thereof, and terephthalic acid and derivatives thereof are particularly preferred. (IV) Formulas are hydroquinone, resorcinol, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenylpropane, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylsulfone, and each compound thereof. And the like. Among them, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenylpropane and its derivatives are preferable, and 4,4'-dihydroxybiphenyl and its derivatives are particularly preferable. The amount of the structural unit (I) is 50 to 85 mol%, preferably 50 to 75 mol%, based on the whole. Beyond these ranges,
The melt viscosity increases, and workability is impaired. Structural unit (I
I) is from 0.1 to 5 mol% based on the whole, and preferably 1%.
44 mol%. If the amount is less than this, the workability is impaired due to an increase in the melt viscosity, and if it is greater, the desired moisture resistance cannot be obtained. Structural unit (III) accounts for 5 to 37 mol% of the whole, and structural unit (IV) accounts for 4.5 to 23 mol% of the whole. By adjusting the difference between the ratio of the structural unit (III) and the structural unit (IV) to 0.5 to 15 mol%, a polymer having a desired molecular weight can be obtained.

【0007】本発明で用いるのに好適な液晶性ポリエス
テルは一般に重量平均分子量1,000〜25,000である。1,0
00 未満では成形性が悪く、26000 以上では流動不足、
流動時の剪断力により封止すべき物体の破損、変形等を
生じ好ましくない。好ましくは約2,000 〜8,000 であ
る。かかる分子量の測定は、ゲルパーミエーションクロ
マトグラフィーならびにその他のポリマーの溶液形成を
伴わない標準的測定法、例えば圧縮成形フィルムについ
て赤外分光法により末端基を定量することにより実施で
きる。また、ペンタフルオロフェノール溶液にして光散
乱法を用いて分子量を測定することもできる。本発明に
用いるポリエステルは、直接重合法やエステル交換法を
用いて重合でき、重合に際しては、通常溶融重合法やス
ラリー重合法が用いられる。これらの重合に際しては種
々の触媒の使用が可能であり、代表的なものはジアルキ
ル錫酸化物、ジアリール錫酸化物、二酸化チタン、アル
コキシチタンけい酸塩類、チタンアルコラート類、カル
ボン酸のアルカリ及びアルカリ土類金属塩類、BF3 の如
きルイス酸等が挙げられる。触媒の使用量は一般にはモ
ノマーの全重量に基いて約0.001 乃至1重量%、特に約
0.01乃至0.2 重量%が好ましい。溶融時に光学的異方性
を示す液晶性ポリマーであることは、本発明において耐
湿性と易加工性を併せ持つ上で不可欠な要素である。溶
融異方性の性質は直交偏光子を利用した慣用の偏光検査
方法により確認することができる。より具体的には溶融
異方性の確認はLeitz 偏光顕微鏡を使用しLeitz ホット
ステージにのせた試料を溶融し、窒素雰囲気下で40倍の
倍率で観察することにより実施できる。上記ポリマーは
光学的に異方性であり、直交偏光子間に挿入したとき光
を透過させる。試料が光学的に異方性であると、例えば
溶融静止液状態であっても偏光は透過する。
[0007] Liquid crystalline polyesters suitable for use in the present invention generally have a weight average molecular weight of 1,000 to 25,000. 1,0
If it is less than 00, the formability is poor.
Undesirably, the object to be sealed is broken, deformed, etc. due to the shearing force during the flow. Preferably it is about 2,000-8,000. Such determination of molecular weight can be carried out by gel permeation chromatography and other standard methods without solution formation of polymers, for example by quantifying end groups by infrared spectroscopy on compression molded films. Alternatively, the molecular weight can be measured by using a pentafluorophenol solution and using a light scattering method. The polyester used in the present invention can be polymerized by a direct polymerization method or a transesterification method, and the polymerization is usually carried out by a melt polymerization method or a slurry polymerization method. In the polymerization, various catalysts can be used. Representative examples include dialkyltin oxides, diaryltin oxides, titanium dioxide, alkoxytitanium silicates, titanium alcoholates, and alkali and alkaline earth carboxylic acids. Metal salts, Lewis acids such as BF 3 and the like. The amount of catalyst used is generally from about 0.001 to 1% by weight, based on the total weight of the monomers,
0.01 to 0.2% by weight is preferred. A liquid crystalline polymer that exhibits optical anisotropy when melted is an essential element in the present invention in order to have both moisture resistance and easy processability. The property of the melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by using a Leitz polarizing microscope, melting a sample placed on a Leitz hot stage, and observing the sample at a magnification of 40 times in a nitrogen atmosphere. The polymers are optically anisotropic and transmit light when inserted between orthogonal polarizers. When the sample is optically anisotropic, polarized light is transmitted, for example, even in the state of a molten still liquid.

【0008】本発明の電子部品封止用樹脂組成物には無
機粉末を配合するのが好ましい。本発明に使用する無機
粉末とは、非導電性であれば特に限定されないが、好ま
しくは熱伝導率が300°K で10W/m・K以上であるものが
良い。熱伝導率の良好な無機粉末としては金属又は珪素
の酸化物、窒化物、炭化物を挙げることができる。この
場合、元素としては周期律表第II、III 、IV族の夫々第
7列までの元素から選ばれる。具体的な化合物として酸
化珪素、特に溶融シリカ、酸化ベリリウム、酸化マグネ
シウム、酸化アルミニウム、酸化トリウム、酸化亜鉛、
窒化珪素、窒化硼素、窒化アルミニウム、炭化珪素を挙
げることができる。これらの無機粉末は、一種又は二種
以上併用使用することができる。これらの中で、酸化珪
素が好ましく、特に溶融シリカが更に好ましい。無機粉
末は粉粒状であることが好ましく、その好ましい平均粒
径は1〜100 μm であり、更に好ましくは10〜70μm で
ある。無機粉末の使用量は、得られる組成物が封止すべ
き電子部品の線膨張係数と一致する様な組成であること
が好ましく、また、必要とされる熱伝導度や強度を得る
量に調製する必要がある。よってその使用量は全組成物
に対し、20〜80重量%、好ましくは20〜75重量%、特に
40〜75重量%が好ましい。
It is preferred that the resin composition for sealing electronic parts of the present invention contains an inorganic powder. The inorganic powder used in the present invention is not particularly limited as long as it is non-conductive, but preferably has a thermal conductivity of at least 10 W / m · K at 300 ° K. Examples of the inorganic powder having good thermal conductivity include oxides, nitrides, and carbides of metals or silicon. In this case, the elements are selected from the elements in the seventh to seventh columns of each of Groups II, III, and IV of the periodic table. As a specific compound, silicon oxide, particularly fused silica, beryllium oxide, magnesium oxide, aluminum oxide, thorium oxide, zinc oxide,
Silicon nitride, boron nitride, aluminum nitride, and silicon carbide can be given. These inorganic powders can be used alone or in combination of two or more. Among these, silicon oxide is preferred, and fused silica is particularly preferred. The inorganic powder is preferably in the form of powder, and the preferred average particle size is 1 to 100 μm, and more preferably 10 to 70 μm. The amount of the inorganic powder used is preferably such that the composition obtained matches the coefficient of linear expansion of the electronic component to be sealed, and is adjusted to obtain the required thermal conductivity and strength. There is a need to. Therefore, its use amount is from 20 to 80% by weight, preferably from 20 to 75% by weight, particularly
40-75% by weight is preferred.

【0009】本発明の封止材には更に成形硬化時、及び
急激な温度変化のある使用時の樹脂の低歪化、低応力化
及び封止すべき物体との接着性のためシリコーンを配合
することができる。ここで言うシリコーンとはシリコー
ンオイル、シリコーンゴム、シリコーン樹脂である。こ
れらはポリオルガノシロキサンであり、主成分のジメチ
ルポリシロキサンの側鎖、例えばメチル基の一部及び/
又は主鎖末端の少なくとも一部が、水素、アルキル基、
アリール基、ハロゲン化アルキル基、ハロゲン化アリー
ル基、アミノ変性アルキル基、メルカプト変性アルキル
基、エポキシ変性アルキル基、カルボキシル基変性アル
キル基を有するもの、ポリエーテル変性化合物、アルコ
ール変性化合物、エステル変性化合物の一種又は二種以
上で置換されたものであっても良く、又架橋又はグラフ
ト構造を有するものであっても良い。使用するシリコー
ンオイルの粘度は0.5 〜1,000,000cStの範囲のものであ
り、好ましくは500 〜600,000cStである。押出、成形の
操作性及び成形性の樹脂からのしみ出しにくさの面か
ら、特に1,000 〜100,000cStの粘度のものが好ましい。
シリコーンオイルの添加量は組成物全量に対して 0.1〜
5重量%が好ましく、更に好ましくは0.5 〜3重量%で
ある。本発明に於いて、使用するシリコーンゴムは、粉
粒状のものが好ましく、高重合度のオルガノポリシロキ
サンに無機充填剤、硬化剤を混練し、熱加硫して架橋さ
せたミラブル型シリコーンゴム、この他触媒の存在下、
加熱、紫外線照射等により反応基を有するオルガノポリ
シロキサンの少なくとも一種以上を架橋させたシリコー
ンゴム等である。特に白金化合物触媒下でビニル基等の
不飽和基と-Si-H との間のヒドロシリル化付加反応によ
って架橋する付加型の粉粒状のシリコーンゴムが好まし
い。該粉粒状シリコーンゴムとしては、平均粒径 0.1〜
100 μm のものが好ましく、特に好ましくは1〜20μm
のものである。シリコーンゴムの添加量は組成物全量に
対して1〜20重量%が好ましく、更に好ましくは2〜15
重量%である。本発明に於いて、使用するシリコーン樹
脂とは三次元の高度に網状構造をもったポリオルガノシ
ロキサンであり、粉粒化したものが好ましく、平均粒径
0.1 〜100 μm のものが好ましく、特に好ましくは1〜
20μm のものである。シリコーン樹脂の添加量は組成物
全量に対して1〜20重量%が好ましい。
The encapsulant of the present invention is further compounded with silicone for the purpose of lowering the distortion and stress of the resin at the time of molding and curing, and at the time of use with a sudden temperature change, and adhesion to the object to be sealed. can do. Here, silicone refers to silicone oil, silicone rubber, and silicone resin. These are polyorganosiloxanes, and have a side chain of dimethylpolysiloxane as a main component, for example, a part of a methyl group and / or
Or at least part of the main chain terminal is hydrogen, an alkyl group,
Aryl group, halogenated alkyl group, halogenated aryl group, amino-modified alkyl group, mercapto-modified alkyl group, epoxy-modified alkyl group, those having a carboxyl group-modified alkyl group, polyether-modified compounds, alcohol-modified compounds, ester-modified compounds It may be substituted with one or more kinds, or may have a crosslinked or grafted structure. The viscosity of the silicone oil used ranges from 0.5 to 1,000,000 cSt, preferably from 500 to 600,000 cSt. In view of the operability of extrusion and molding and the difficulty of exuding from the moldable resin, those having a viscosity of 1,000 to 100,000 cSt are particularly preferable.
The amount of silicone oil added is 0.1 to the total amount of the composition.
It is preferably 5% by weight, more preferably 0.5 to 3% by weight. In the present invention, the silicone rubber to be used is preferably in the form of a powder, and a millable silicone rubber in which an inorganic filler and a curing agent are kneaded with an organopolysiloxane having a high degree of polymerization and which is crosslinked by heat vulcanization, In addition, in the presence of a catalyst,
It is a silicone rubber or the like obtained by crosslinking at least one or more of organopolysiloxanes having a reactive group by heating, irradiation with ultraviolet light, or the like. Particularly preferred is an addition-type powdery silicone rubber which is crosslinked by a hydrosilylation addition reaction between an unsaturated group such as a vinyl group and -Si-H under a platinum compound catalyst. The granular silicone rubber has an average particle size of 0.1 to
100 μm is preferable, and 1-20 μm is particularly preferable.
belongs to. The addition amount of the silicone rubber is preferably 1 to 20% by weight, more preferably 2 to 15% by weight based on the total amount of the composition.
% By weight. In the present invention, the silicone resin used is a polyorganosiloxane having a three-dimensional highly network-like structure, preferably in the form of a powder,
It is preferably 0.1 to 100 μm, particularly preferably 1 to 100 μm.
It is 20 μm. The addition amount of the silicone resin is preferably 1 to 20% by weight based on the total amount of the composition.

【0010】本発明の封止剤には更に従来通常使用され
る前記以外の無機充填剤、染顔料、離型剤、酸化防止
剤、熱安定剤、強化剤、加水分解安定剤等の添加剤を配
合し得る。上記安定剤としては、各種エポキシ樹脂を使
用するのが好ましい。
The sealant of the present invention further contains additives such as inorganic fillers, dyes and pigments, release agents, antioxidants, heat stabilizers, reinforcing agents, hydrolysis stabilizers and the like which are conventionally used. May be blended. It is preferable to use various epoxy resins as the stabilizer.

【0011】[0011]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0012】実施例1 表1に示す如く、p−アセトキシ安息香酸58モル%、6
−アセトキシ−2−ナフトエ酸4モル%、テレフタル酸
20.2モル%、4,4'−ジアセトキシビフェニル17.5モル%
及び全仕込み量に対し0.05重量%の酢酸カリウムを各
々、攪拌機、窒素導入管及び留出管を備えた反応器中に
仕込み、窒素気流下でこの混合物を1時間で260 ℃にま
で加熱した。反応器中から酢酸を留出させながら 260〜
300 ℃に2時間加熱し、更に 300〜320 ℃で1時間、 3
20〜360 ℃で1時間加熱し、真空下に酢酸を留出させ
た。次いで窒素を導入し室温まで冷却した。得られた重
合体は360 ℃で偏光ホットステージ顕微鏡観察により光
学異方性を示した。この重合体に平均粒径20μm の溶融
シリカを50重量%の割合で混合し、通常の押出成形機で
320 ℃で常法に従ってペレット化した。次にいわゆるイ
ンサート射出成形法でDIP 型14ピンICを成形した。下記
に示す測定法で評価した結果を表1に示す。試験法は次
の通りである。 (ICの金線断線数)図1に示す如き封止成形品に導通テ
ストを行い、チップ1とリードフレーム2間の金線3の
断線率(100 個の試料中の断線試料数)を測定した。 (ICの金線スイープ)封止成形品を軟X線で観察し、図
2におけるd/l を測定し、その平均を算出した。 (PCT 不良率)封止成形品を133 ℃、100 %RHのオート
クレーブ中に入れ、100 時間後のIC不良率(100 個の試
料中の不良試料率)を測定した。 (半田耐熱性)半田耐熱性は280 ℃、30秒の半田浴中に
封止成形品を浸した後、表面を観察した。フクレ、し
わ、クラック、変形等の異常が認められたものは×、異
常のなかったものは○とした。
Example 1 As shown in Table 1, p-acetoxybenzoic acid (58 mol%)
-Acetoxy-2-naphthoic acid 4 mol%, terephthalic acid
20.2 mol%, 4,4'-diacetoxybiphenyl 17.5 mol%
And 0.05% by weight of potassium acetate based on the total charged amount were charged into a reactor equipped with a stirrer, a nitrogen inlet tube and a distilling tube, and the mixture was heated to 260 ° C. in a nitrogen stream for 1 hour. While distilling acetic acid from the reactor,
Heat to 300 ° C for 2 hours, then at 300-320 ° C for 1 hour, 3
The mixture was heated at 20-360 ° C for 1 hour, and acetic acid was distilled off under vacuum. Then, nitrogen was introduced and the mixture was cooled to room temperature. The obtained polymer showed optical anisotropy at 360 ° C. by observation with a polarizing hot stage microscope. Fused silica having an average particle size of 20 μm was mixed with this polymer at a ratio of 50% by weight, and the mixture was extruded using a normal extruder.
The pellet was formed at 320 ° C. according to a conventional method. Next, a DIP type 14-pin IC was formed by a so-called insert injection molding method. Table 1 shows the results of evaluation by the following measurement methods. The test method is as follows. (Number of broken gold wires of IC) Conduction test is performed on the molded product as shown in Fig. 1 to measure the breaking rate of gold wire 3 between chip 1 and lead frame 2 (the number of broken samples in 100 samples). did. (IC gold wire sweep) The sealed molded product was observed with soft X-rays, d / l in FIG. 2 was measured, and the average was calculated. (PCT failure rate) The sealed molded article was placed in an autoclave at 133 ° C. and 100% RH, and the IC failure rate after 100 hours (the failure rate of 100 samples) was measured. (Solder heat resistance) The solder heat resistance was determined by immersing the molded product in a solder bath at 280 ° C. for 30 seconds, and then observing the surface. When there was abnormality such as blisters, wrinkles, cracks, deformation, etc., it was evaluated as x, and when there was no abnormality, it was evaluated as ○.

【0013】実施例2〜4 最終的に加熱する温度が重合物の流動する温度域を下回
らないように設定する以外は実施例1と略同様の方法で
表1に記載の構成比率で各々重合を行い、得られた重合
体も同様の手法で評価した。結果を表1に示す。
Examples 2 to 4 The polymerization was carried out in substantially the same manner as in Example 1 except that the final heating temperature was set so as not to fall below the temperature range in which the polymer flows. The obtained polymer was evaluated in the same manner. Table 1 shows the results.

【0014】比較例1〜3 最終的に加熱する温度が重合物の流動する温度域を下回
らないように設定する以外は実施例1と略同様の方法で
表1に記載の構成比率で各々重合を行い、得られた重合
体も同様の手法で評価した。結果を表1に示す。
Comparative Examples 1 to 3 Polymerization was carried out in substantially the same manner as in Example 1 except that the final heating temperature was not lower than the temperature range in which the polymer flows. The obtained polymer was evaluated in the same manner. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上述べた様に、本発明の電子部品封止
用樹脂組成物によれば溶融時に高い流動性を示し、また
高い耐湿性を有する封止材を得ることが可能となる。
As described above, according to the resin composition for sealing electronic parts of the present invention, it is possible to obtain a sealing material which exhibits high fluidity during melting and has high moisture resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作成した封止成形品の略示平面図であ
る。
FIG. 1 is a schematic plan view of a sealing molded product created in an example.

【図2】ICの金線スイープ試験の実施状況を示す模式図
である。
FIG. 2 is a schematic diagram showing an implementation state of a gold wire sweep test of an IC.

【符号の説明】[Explanation of symbols]

1…チップ 2…リードフレーム 3…金線 3a…成形前の金線の状態 3b…成形後の金線の状態 DESCRIPTION OF SYMBOLS 1 ... Chip 2 ... Lead frame 3 ... Gold wire 3a ... State of gold wire before molding 3b ... State of gold wire after molding

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 63/60 C08L 67/04 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C08G 63/60 C08L 67/04 CA (STN) REGISTRY (STN)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量平均分子量が1,000 〜25,000で、下
記(I)〜(IV)で表わされる構成単位を含み、全構成
単位に対して(I)が50乃至85モル%、(II)が0.1 乃
至5モル%、(III)が5乃至37モル%、(IV)が4.5 乃
至23モル%である異方性溶融相を形成し得る溶融加工性
ポリエステルを主成分とする電子部品封止用樹脂組成
物。 【化1】
A weight average molecular weight of 1,000 to 25,000, including structural units represented by the following (I) to (IV), wherein (I) is 50 to 85 mol% and (II) is 0.1 to 5 mol%, (III) is 5 to 37 mol%, and (IV) is 4.5 to 23 mol% for sealing electronic parts mainly composed of a melt-processable polyester capable of forming an anisotropic molten phase. Resin composition. Embedded image
【請求項2】 異方性溶融相を形成し得る溶融加工性ポ
リエステルに、20〜80重量%の無機粉末を配合してなる
請求項1記載の電子部品封止用樹脂組成物。
2. The resin composition for sealing electronic parts according to claim 1, wherein 20 to 80% by weight of an inorganic powder is blended with a melt-processable polyester capable of forming an anisotropic molten phase.
【請求項3】 無機粉末が熱伝導率が300°K で10W/m・
K 以上で且つ非導電性の無機粉末である請求項2記載の
電子部品封止用樹脂組成物。
3. The inorganic powder has a thermal conductivity of 10 W / m · at 300 ° K.
The resin composition for electronic component sealing according to claim 2, which is a non-conductive inorganic powder having a K of not less than K.
【請求項4】 無機粉末が金属又は珪素の酸化物、窒化
物及び炭化物より選ばれた化合物である請求項2又は3
記載の電子部品封止用樹脂組成物。
4. The inorganic powder is a compound selected from oxides, nitrides and carbides of metals or silicon.
The resin composition for electronic component sealing according to the above.
【請求項5】 無機粉末が周期律第II、III 、IV族の夫
々第7列までの元素の酸化物、窒化物、炭化物より選ば
れた化合物である請求項2、3又は4記載の電子部品封
止用樹脂組成物。
5. The electron according to claim 2, wherein the inorganic powder is a compound selected from oxides, nitrides, and carbides of elements of the seventh to fourth columns of the periodic rules II, III, and IV, respectively. A resin composition for sealing parts.
【請求項6】 無機粉末が酸化珪素、酸化ベリリウム、
酸化マグネシウム、酸化アルミニウム、酸化トリウム、
酸化亜鉛、窒化珪素、窒化硼素、窒化アルミニウム及び
炭化珪素よりなる群から選ばれた一種又は二種以上の化
合物である請求項2〜5の何れか1項記載の電子部品封
止用樹脂組成物。
6. An inorganic powder comprising silicon oxide, beryllium oxide,
Magnesium oxide, aluminum oxide, thorium oxide,
The resin composition for electronic component sealing according to any one of claims 2 to 5, which is one or more compounds selected from the group consisting of zinc oxide, silicon nitride, boron nitride, aluminum nitride, and silicon carbide. .
【請求項7】 酸化珪素が溶融シリカである請求項6記
載の電子部品封止用樹脂組成物。
7. The electronic component sealing resin composition according to claim 6, wherein the silicon oxide is fused silica.
【請求項8】 請求項1〜7の何れか1項記載の組成物
に更にシリコーンを配合してなる電子部品封止用樹脂組
成物。
8. A resin composition for encapsulating electronic parts, wherein the composition according to claim 1 is further mixed with silicone.
【請求項9】 請求項1〜8の何れか1項記載の組成物
を用いて封止してなる電子部品。
9. An electronic component encapsulated with the composition according to claim 1. Description:
JP25324891A 1991-10-01 1991-10-01 Resin composition for sealing electronic parts and electronic parts Expired - Fee Related JP3056300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25324891A JP3056300B2 (en) 1991-10-01 1991-10-01 Resin composition for sealing electronic parts and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25324891A JP3056300B2 (en) 1991-10-01 1991-10-01 Resin composition for sealing electronic parts and electronic parts

Publications (2)

Publication Number Publication Date
JPH0593052A JPH0593052A (en) 1993-04-16
JP3056300B2 true JP3056300B2 (en) 2000-06-26

Family

ID=17248628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25324891A Expired - Fee Related JP3056300B2 (en) 1991-10-01 1991-10-01 Resin composition for sealing electronic parts and electronic parts

Country Status (1)

Country Link
JP (1) JP3056300B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289849A (en) * 1996-04-26 1997-11-11 Toray Ind Inc Fishing line guide
JP4501526B2 (en) * 2004-05-14 2010-07-14 住友化学株式会社 High thermal conductive resin composition

Also Published As

Publication number Publication date
JPH0593052A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
JP3588539B2 (en) Polyphenylene sulfide resin composition and resin-encapsulated semiconductor device using the same
KR910008742B1 (en) Low stress encapsulant composition
JP3098074B2 (en) Resin composition for sealing electronic parts and electronic parts
JP3056300B2 (en) Resin composition for sealing electronic parts and electronic parts
EP0353933B1 (en) Sealing resin composition for electronic component and electronic component
JPH0535189B2 (en)
JP3375217B2 (en) Sealing material for electric and electronic parts
JP3102276B2 (en) Method for producing epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JPS62141064A (en) Thermoplastic resin sealing agent
JPH0922969A (en) Electronic-component sealing material
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JPH07331036A (en) Resin-sealing material and electric and electronic part using the same
JP3353847B2 (en) Resin sealing resin composition and resin sealing type semiconductor device
JPH02167362A (en) Resin composition for sealing electronic part and electronic part
JPH0722943B2 (en) Pre-molded package
JPH11140330A (en) Thermoplastic resin composition, resin molding, and composite molded article
JP3038623B2 (en) Liquid epoxy resin molding compound for sealing
JP2926888B2 (en) Resin composition
JP3024149B2 (en) Electronic component sealant
JP2785553B2 (en) Tab-type semiconductor device sealing material and tab-type semiconductor device
JP2000086867A (en) Epoxy resin composition and semiconductor device
JPH0376146A (en) Package made from liquid polymer composition
JP2007084624A (en) Preliminarily kneaded composition, semiconductor sealing epoxy resin composition, and semiconductor device
JP3484744B2 (en) Electronic component sealing method
JP2658749B2 (en) Resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees