JP3054102B2 - Ferritic heat-resistant cast steel - Google Patents
Ferritic heat-resistant cast steelInfo
- Publication number
- JP3054102B2 JP3054102B2 JP9103875A JP10387597A JP3054102B2 JP 3054102 B2 JP3054102 B2 JP 3054102B2 JP 9103875 A JP9103875 A JP 9103875A JP 10387597 A JP10387597 A JP 10387597A JP 3054102 B2 JP3054102 B2 JP 3054102B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- heat
- cast steel
- resistant
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001208 Crucible steel Inorganic materials 0.000 title claims description 38
- 229910052758 niobium Inorganic materials 0.000 claims description 15
- 238000005266 casting Methods 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 21
- 230000003647 oxidation Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- 239000010955 niobium Substances 0.000 description 16
- 239000011651 chromium Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000011572 manganese Substances 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 229910001141 Ductile iron Inorganic materials 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000025599 Heat Stress disease Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 235000000396 iron Nutrition 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車エンジンの排気系
部品等に適する耐熱鋳鋼に関し、特に熱疲労寿命、耐酸
化性といった耐久性に優れているとともに、鋳造性、加
工性に優れ、安価なコストで製造可能な耐熱鋳鋼に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant cast steel suitable for exhaust system parts of an automobile engine and the like, and in particular, has excellent durability such as thermal fatigue life and oxidation resistance, as well as excellent castability and workability, and is inexpensive. It relates to heat-resistant cast steel that can be manufactured at low cost.
【0002】[0002]
【従来の技術】従来の耐熱鋳鉄、耐熱鋳鋼としては、た
とえば表1に比較例として示すような組成のものがあ
る。自動車のエキゾーストマニフォールドやタービンハ
ウジング等の排気系部品等においては、使用条件が高温
で過酷であることから、表1に示すような高Si球状黒
鉛鋳鉄、ニレジスト鋳鉄(Ni−Cr−Cu系オーステ
ナイト鋳鉄)等の耐熱鋳鉄や、特例的にオーステナイト
鋳鋼等の高価な高合金耐熱鋳鋼が採用されている。2. Description of the Related Art Conventional heat-resistant cast irons and heat-resistant cast steels have compositions as shown in Table 1 as comparative examples. Exhaust system parts such as exhaust manifolds and turbine housings for automobiles are used under severe conditions at high temperatures. Therefore, high Si spheroidal graphite cast iron and niresist cast iron (Ni-Cr-Cu based austenitic cast iron) as shown in Table 1 are used. ) And expensive high-alloy heat-resistant cast steel such as austenitic cast steel.
【0003】[0003]
【発明が解決しようとする課題】このような従来の耐熱
鋳鉄、耐熱鋳鋼のうち、たとえば高Si球状黒鉛鋳鉄や
ニレジスト鋳鉄は比較的鋳造性が良好であるものの、耐
熱疲労性、あるいは耐酸化性といった耐久性に劣ること
から、900 ℃以上の高温となる部材には適用できない。
またオーステナイト系耐熱鋳鋼等の高合金耐熱鋳鋼は90
0 ℃以上での高温強度が優れているものの、熱膨張係数
が大きいことに起因して熱疲労寿命が短いという欠点を
有する。また鋳造性が悪いために、鋳造時にひけ巣や湯
廻り不良等の鋳造欠陥が発生しやすく、さらに機械加工
性が悪いために、それから部品等を製造する場合に、生
産性が低いという問題点もあった。なおその他にフェラ
イト系ステンレス鋳鋼もあるが、通常のフェライト系ス
テンレス鋳鋼は、高温の耐久性を改善しようとすると、
室温における延性に乏しくなり、機械的衝撃等の加わる
部材には使用できないという問題がある。Among such conventional heat-resistant cast irons and heat-resistant cast steels, for example, high Si spheroidal graphite cast iron and niresist cast iron have relatively good castability, but have high heat fatigue resistance or oxidation resistance. Therefore, the method cannot be applied to a member having a high temperature of 900 ° C. or more.
High alloy heat-resistant cast steel such as austenitic heat-resistant cast steel is 90
Although it has excellent high-temperature strength at 0 ° C. or higher, it has a drawback that its thermal fatigue life is short due to its large thermal expansion coefficient. In addition, due to poor castability, casting defects such as shrinkage cavities and poor run-off are likely to occur during casting, and furthermore, due to poor machinability, the productivity is low when manufacturing parts and the like. There was also. In addition, there is also a ferritic stainless cast steel, but ordinary ferritic cast stainless steel, when trying to improve the durability at high temperatures,
There is a problem that the ductility at room temperature is poor and it cannot be used for a member to which mechanical shock or the like is applied.
【0004】従って、本発明は、上記従来の耐熱鋳鉄、
耐熱鋳鋼の問題点を解決し、耐熱疲労性、耐酸化性とい
った耐久性、及び鋳造性、加工性等に優れ、安価に製造
可能な耐熱鋳鋼を提供することを目的とする。Accordingly, the present invention relates to the above-mentioned conventional heat-resistant cast iron,
An object of the present invention is to solve the problems of heat-resistant cast steel, to provide a heat-resistant cast steel that is excellent in durability such as heat fatigue resistance and oxidation resistance, castability, workability, and the like, and can be manufactured at low cost.
【0005】[0005]
【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、W、Nb及び/又はVを適量添
加することにより、フェライト基地及び結晶粒界を強化
し、室温における延性を損なわずに変態点を上昇させ、
高温強度を向上することができることを発見し、本発明
に想到した。Means for Solving the Problems As a result of intensive studies in view of the above-mentioned objects, the present inventors have found that by adding an appropriate amount of W, Nb and / or V, the ferrite matrix and crystal grain boundaries are strengthened, and Raise the transformation point without losing ductility,
They discovered that high-temperature strength could be improved, and reached the present invention.
【0006】すなわち、本発明のフェライト系耐熱鋳鋼
は、重量比率で C:0.05〜0.45%、 Si:0.4 〜2.0 %、 Mn:0.3 〜1.0 %、 Cr:16.0〜25.0%、 W:1.2 〜5.0 %、 Nb及び/又はV:0.01〜1.0 %(ただし各々は 0.5%
以下)、 N:0.01〜0.15%、及び 残部:Fe及び不可避不純物 からなる組成(ただしNiを含有しない)を有し、α相
のほかにγ相からα相+炭化物に変態した相(以下α’
相)を有するとともに、α’相の面積率(α’/α+
α’)が20〜90%であり、かつ鋳造後にγ+α混合領域
未満の温度で焼鈍処理が施されていることを特徴とす
る。That is, the heat-resistant ferritic cast steel of the present invention has a weight ratio of C: 0.05 to 0.45%, Si: 0.4 to 2.0%, Mn: 0.3 to 1.0%, Cr: 16.0 to 25.0%, W: 1.2 to 5.0. %, Nb and / or V: 0.01 to 1.0% (each 0.5%
), N: 0.01 to 0.15%, and the balance: Fe and unavoidable impurities (but not containing Ni), and in addition to the α phase, a phase transformed from γ phase to α phase + carbide (hereinafter α '
Phase) and the area ratio of α ′ phase (α ′ / α +
α ′) is 20 to 90%, and an annealing treatment is performed after the casting at a temperature lower than the γ + α mixed region.
【0007】また本発明の好ましい実施例によるフェラ
イト系耐熱鋳鋼は、重量比率で C:0.15〜0.45%、 Si:0.4 〜2.0 %、 Mn:0.3 〜1.0 %、 Cr:17.0〜22.0%、 W:1.2 〜4.0 %、 Nb及び/又はV:0.01〜0.5 %、 N:0.02〜0.08%、及び 残部:Fe及び不可避不純物 からなる組成(ただしNiを含有しない)を有し、α相
のほかにγ相からα相+炭化物に変態した相(以下α’
相)を有するとともに、α’相の面積率(α’/α+
α’)が20〜80%であり、かつ鋳造後にγ+α混合領域
未満の温度で焼鈍処理が施されていることを特徴とす
る。このフェライト系耐熱鋳鋼において、α相からγ相
への変態点は1000℃以上である。The heat-resistant ferritic cast steel according to the preferred embodiment of the present invention has a weight ratio of C: 0.15 to 0.45%, Si: 0.4 to 2.0%, Mn: 0.3 to 1.0%, Cr: 17.0 to 22.0%, W: 1.2 to 4.0%, Nb and / or V: 0.01 to 0.5%, N: 0.02 to 0.08%, and the balance: Fe and unavoidable impurities (but not containing Ni). Phase to α phase + carbide transformed phase (hereinafter α '
Phase) and the area ratio of α ′ phase (α ′ / α +
α ′) is 20 to 80%, and an annealing process is performed after the casting at a temperature lower than the γ + α mixed region. In this heat-resistant ferritic cast steel, the transformation point from the α phase to the γ phase is 1000 ° C. or higher.
【0008】[0008]
【作用】上述したように、フェライト系耐熱鋳鋼に、重
量比率で、Wを1.2 〜5.0 %、Nb及び/又はVを0.01
〜1.0 %添加すると、α’相を含有する組織が得られ、
それにより、従来の高合金鋳鋼を上まわる耐熱疲労性及
び耐酸化性を有し、室温における延性を損なうことなく
耐熱鋳鉄と同等の鋳造性、加工性を有し、かつ低価格な
耐熱鋳鋼が得られる。さらに変態点が900 ℃以上となる
ので、耐熱疲労性が向上する。As described above, 1.2 to 5.0% by weight of W and Nb and / or V by 0.01% are added to the heat-resistant ferritic cast steel by weight.
When ~ 1.0% is added, a structure containing the α 'phase is obtained,
As a result, heat-resistant cast steel that has heat resistance fatigue resistance and oxidation resistance higher than conventional high alloy cast steel, has the same castability and workability as heat-resistant cast iron without impairing ductility at room temperature, and is inexpensive can get. Further, since the transformation point is 900 ° C. or higher, the thermal fatigue resistance is improved.
【0009】以下、本発明のフェライト系耐熱鋳鋼の各
合金元素の組成範囲(重量比率)の限定理由について詳
細に説明する。The reason for limiting the composition range (weight ratio) of each alloy element in the heat-resistant ferritic cast steel of the present invention will be described in detail below.
【0010】本発明のフェライト系耐熱鋳鋼はC、S
i、Mn、Cr、W、Nb及び/又はV、及びNを必須
元素として含有する。[0010] The heat-resistant ferritic cast steel of the present invention is C, S
i, Mn, Cr, W, Nb and / or V, and N are contained as essential elements.
【0011】(1) C(炭素):0.05〜0.45% Cは溶湯の流動性すなわち鋳造性を改善するとともに、
α’相を適当量生成する作用を有し、さらには900 ℃以
上の高温における強度を高く維持する働きがある。この
ような作用を有効に発揮するために、Cは0.05%以上必
要である。なお一般のフェライト系耐熱鋳鋼では室温で
α相のみであるが、炭素量の調整により、高温から常温
まで存在するα相のほかに、高温ではCが固溶したγ相
ができる。このγ相は冷却中に炭化物を析出して(α相
+炭化物)に変態する。このような相をα’相と呼ぶ。(1) C (carbon): 0.05 to 0.45% C improves the fluidity of the molten metal, that is, the castability, and
It has the function of producing an appropriate amount of the α 'phase, and also has the function of maintaining high strength at high temperatures of 900 ° C. or higher. In order to effectively exert such an effect, C needs to be 0.05% or more. In general, heat-resistant ferritic cast steel has only an α phase at room temperature, but by adjusting the amount of carbon, there is a γ phase in which C forms a solid solution at a high temperature, in addition to an α phase existing from a high temperature to a normal temperature. The γ phase precipitates carbide during cooling and transforms into (α phase + carbide). Such a phase is called α ′ phase.
【0012】一方Cの含有量が0.45%を超えるとα’相
が存在しにくくなって、マルテンサイト組織になり、ま
た耐酸化性、耐食性及び加工性の低下を引き起こすCr
炭化物の析出が顕著になる。このためCは0.05〜0.45%
とする。好ましいCの含有量は0.15〜0.45%であり、特
に0.15〜0.3 %である。On the other hand, if the content of C exceeds 0.45%, the α 'phase becomes difficult to exist, resulting in a martensitic structure, and a decrease in oxidation resistance, corrosion resistance and workability.
Precipitation of carbides becomes remarkable. Therefore C is 0.05-0.45%
And The preferred C content is 0.15-0.45%, especially 0.15-0.3%.
【0013】(2) Si(ケイ素):0.4 〜2.0 % Siは本発明のフェライト系耐熱鋳鋼のγ相の範囲を狭
め、組織の安定性を増し、耐酸化性の改善の効果もあ
る。さらに、鋳造性の改善、脱酸剤としての作用、鋳物
のピンホール欠陥の低減効果等もある。このような効果
を有効にするため、Siの含有量は0.4 %以上とする。
しかし多すぎると、Cとのバランス(炭素当量)により
一次炭化物を粗大化し、鋳鋼の加工性を低下したり、ま
たフェライト基地組織中のSi含有量が過多となって延
性の低下を引き起こしたり、高温でのδ相を形成したり
する。このため、Siの含有量は2.0 %以下とする。(2) Si (silicon): 0.4 to 2.0% Si has the effect of narrowing the range of the γ phase of the heat-resistant ferritic cast steel of the present invention, increasing the stability of the structure, and improving the oxidation resistance. Further, there are effects such as improvement of castability, action as a deoxidizing agent, and reduction of pinhole defects in castings. In order to make such an effect effective, the content of Si is set to 0.4% or more.
However, if it is too large, the primary carbides are coarsened due to the balance with carbon (carbon equivalent), and the workability of the cast steel is reduced, and the Si content in the ferrite matrix structure is excessive, causing a decrease in ductility, Or the formation of a δ phase at high temperatures. Therefore, the content of Si is set to 2.0% or less.
【0014】(3) Mn(マンガン):0.3 〜1.0 % MnはSiと同様に溶湯の脱酸剤として有効であり、ま
た鋳造時の湯流れ性を向上させて生産性を改善する作用
を有する。このような作用を有効に発揮させため、Mn
の含有量を0.3 〜1.0 %とする。(3) Mn (manganese): 0.3 to 1.0% Mn is effective as a deoxidizing agent for molten metal like Si, and has an effect of improving the flowability of molten metal during casting to improve productivity. . In order to effectively exert such an effect, Mn
Is 0.3 to 1.0%.
【0015】(4) Cr(クロム):16.0〜25.0% Crは耐酸化性を改善し、フェライト組織を安定にする
元素であるが、その効果を確実にするため16.0%以上と
する。一方多量の添加はCrの一次炭化物を粗大化さ
せ、高温でのδ相の形成を助長し、著しい脆化を引き起
こす。そのためCrの上限を25.0%とする。好ましいC
rの含有量は17.0〜22.0%である。(4) Cr (chromium): 16.0 to 25.0% Cr is an element which improves the oxidation resistance and stabilizes the ferrite structure. In order to ensure its effect, the content is made 16.0% or more. On the other hand, a large amount of Cr coarsens the primary carbides of Cr, promotes the formation of a δ phase at a high temperature, and causes significant embrittlement. Therefore, the upper limit of Cr is set to 25.0%. Preferred C
The content of r is 17.0 to 22.0%.
【0016】(5) W(タングステン):1.2 〜5.0 % Wはフェライト基地を強化して室温における延性を損な
わずに高温強度を向上させる作用を有する。従って、耐
クリープ性及び変態点上昇による耐熱疲労性向上の目的
で、1.2 %以上のWを添加する。しかし、その含有量が
5.0 %を超えると、粗大な共晶炭化物が生成し、延性の
低下及び機械加工性の悪化を引き起こすので、5.0 %以
下とする。好ましいWの含有量は1.2 〜4.0 %である。(5) W (tungsten): 1.2 to 5.0% W has the effect of strengthening the ferrite matrix and improving the high-temperature strength without impairing the ductility at room temperature. Therefore, for the purpose of improving creep resistance and thermal fatigue resistance by raising the transformation point, W is added in an amount of 1.2% or more. However, its content
If it exceeds 5.0%, coarse eutectic carbides are formed, which causes a reduction in ductility and a deterioration in machinability, so that the content is made 5.0% or less. The preferred W content is 1.2-4.0%.
【0017】なおWとほぼ同様の効果はMoを添加して
も得られるが(ただし、Moは原子量でWの2倍である
ので、重量比率では添加量が1/2となる)、高温でW
の方がMoより安定であるので、本発明ではWを添加す
る。It should be noted that the same effect as W can be obtained by adding Mo (however, Mo is twice the atomic weight of W, so the addition amount is 1/2 by weight). W
Is more stable than Mo, so W is added in the present invention.
【0018】(6) Nb(ニオビウム)及び/又はV(バ
ナジウム):0.01〜1.0 % Nb及びVはCと結合して微細な炭化物を形成し、高温
での引張強さならびに耐熱疲労性を増大させる。またC
rの炭化物の生成を抑制することによって耐酸化性と切
削性を向上させる。このような目的でNb及び/又はV
の含有量は0.01%以上とする。しかし多量に添加する
と、結晶粒界に炭化物を形成し、またNb及びVの炭化
物を生成することによりCが消費され、α’相が形成さ
れにくくなり、強度と延性が著しく低下する。そのため
各々0.5 %以下(合計1%以下)とする。なおNbとV
では炭化物を形成する温度域が異なるので、広い温度域
にわたり析出強化(硬化)作用が期待できる。従って、
どちらか一方の単独含有のみならず、複合添加により大
きな効果が期待できる。(6) Nb (niobium) and / or V (vanadium): 0.01 to 1.0% Nb and V combine with C to form fine carbides, and increase tensile strength at high temperatures and thermal fatigue resistance. Let it. Also C
Oxidation resistance and machinability are improved by suppressing the formation of carbides of r. Nb and / or V
Is 0.01% or more. However, when added in a large amount, carbides are formed at the crystal grain boundaries and C is consumed by forming carbides of Nb and V, so that it is difficult to form an α ′ phase, and the strength and ductility are significantly reduced. Therefore, each should be 0.5% or less (total 1% or less). Note that Nb and V
Since the temperature ranges in which carbides are formed are different, precipitation strengthening (hardening) action can be expected over a wide temperature range. Therefore,
A great effect can be expected by not only containing either one alone but also adding it in combination.
【0019】(7) N(窒素):0.01〜0.15% Nは高温強度及び耐熱疲労性を改善する元素で、0.01%
以上で効果が現れる。一方製造の安定性を確保するため
とCr窒化物の析出により脆化を避けるため、0.15%以
下とする。好ましいNの含有量は0.02〜0.08%である。(7) N (nitrogen): 0.01 to 0.15% N is an element for improving high-temperature strength and thermal fatigue resistance, and is 0.01%.
The effect appears above. On the other hand, the content is set to 0.15% or less in order to secure production stability and to avoid embrittlement due to precipitation of Cr nitride. The preferred N content is 0.02 to 0.08%.
【0020】上記組成を有する本発明のフェライト系耐
熱鋳鋼は通常のα相のほかにγ相からα相+炭化物に変
態したα’相を有する。なお通常のα相とはδ(デル
タ)フェライトを意味する。また析出した炭化物はFe、
Cr、W、Nb等の炭化物(M23C 6 、M7 C3 、MC等)
である。[0020] The ferrite-based resistance of the present invention having the above composition.
Hot cast steel changes from γ phase to α phase + carbide in addition to normal α phase
Α ′ phase. The normal α phase is δ (Del
Ta) means ferrite. The precipitated carbide is Fe,
Carbides such as Cr, W and Nb (Mtwenty threeC 6, M7CThree, MC, etc.)
It is.
【0021】このα’相の面積率(α’/α+α’)が
20%未満では室温における延性が低く、鋳鋼は極めて脆
い。一方90%を超えると硬くなりすぎ、室温における延
性が低下するとともに、機械加工性が著しく悪くなる。
そのため面積率(α’/α+α’)は20〜90%とし、好
ましくは20〜80%とする。The area ratio of this α ′ phase (α ′ / α + α ′) is
If it is less than 20%, the ductility at room temperature is low, and the cast steel is extremely brittle. On the other hand, if it exceeds 90%, it becomes too hard, the ductility at room temperature decreases, and the machinability deteriorates remarkably.
Therefore, the area ratio (α ′ / α + α ′) is set to 20 to 90%, preferably 20 to 80%.
【0022】またフェライト系耐熱鋳鋼に対して、鋳造
後にγ+α混合領域未満の温度で焼鈍処理を施す。この
ときの焼鈍処理の温度は一般に700 〜850 ℃であり、焼
鈍時間は1〜10時間である。これはα’相がγ相に変態
しない温度域である。Further, the ferritic heat-resistant cast steel is subjected to an annealing treatment after casting at a temperature lower than the γ + α mixed region. The annealing temperature at this time is generally 700 to 850 ° C., and the annealing time is 1 to 10 hours. This is a temperature range in which the α ′ phase does not transform into the γ phase.
【0023】なお使用温度域にα相からγ相への変態点
が存在すると、加熱─冷却のサイクルを受けて発生する
熱応力が増大し、熱疲労寿命が短くなる。そのため900
℃以上、好ましくは1000℃以上の変態点を有する必要が
ある。このように高い変態点を有するためには、フェラ
イト生成元素であるCr、Si、W、V、Nbとオーステナイ
ト生成元素であるC、Co、N、Mnのバランスが適正であ
ることが必要である。When a transformation point from the α phase to the γ phase exists in the operating temperature range, the thermal stress generated by the heating / cooling cycle increases, and the thermal fatigue life is shortened. Therefore 900
It is necessary to have a transformation point of at least 1000C, preferably at least 1000C. In order to have such a high transformation point, it is necessary that the balance between Cr, Si, W, V, and Nb, which are ferrite-forming elements, and C, Co, N, and Mn, which are austenite-forming elements, is appropriate. .
【0024】このような本発明のフェライト系耐熱鋳鋼
は特に自動車の排気系部品を製造するのに適している。
自動車の排気系部品として、過給機付き直列4気筒エン
ジンに取り付けられた一体構造型エキゾーストマニフォ
ールドを図1に示す。エキゾーストマニフォールド1は
ターボチャージャのタービンハウジング2に結合してお
り、またタービンハウジング2にはエキゾーストアウト
レットパイプ3を介して排気ガス浄化用触媒コンバータ
容器4が接続している。さらにコンバータ容器4にはメ
インキャタライザ5が接続している。メインキャタライ
ザ5の出口はマフラー(D)に連通している。一方ター
ビンハウジング2はインテークマニフォールドBに連通
しており、かつCより吸気されるようになっている。な
お排気ガスはAよりエキゾーストマニフォールド1に流
入する。The heat-resistant ferritic cast steel of the present invention is particularly suitable for manufacturing exhaust system parts for automobiles.
FIG. 1 shows an integrated exhaust manifold mounted on an in-line four-cylinder engine with a supercharger as an exhaust system component of a vehicle. The exhaust manifold 1 is connected to a turbine housing 2 of a turbocharger. The exhaust gas purifying catalytic converter container 4 is connected to the turbine housing 2 via an exhaust outlet pipe 3. Further, a main catalyzer 5 is connected to the converter container 4. The outlet of the main catalyzer 5 communicates with the muffler (D). On the other hand, the turbine housing 2 communicates with the intake manifold B, and is taken in from C. The exhaust gas flows from A into the exhaust manifold 1.
【0025】このようなエキゾーストマニフォールド1
やタービンハウジング2は、熱容量を小さくするため
に、できるだけ薄肉にするのが好ましい。エキゾースト
マニフォールド1及びタービンハウジング2の肉厚は例
えば、それぞれ 2.5〜3.4 mm、2.7〜4.1 mmである。Such an exhaust manifold 1
The turbine housing 2 and the turbine housing 2 are preferably made as thin as possible in order to reduce the heat capacity. The thicknesses of the exhaust manifold 1 and the turbine housing 2 are, for example, 2.5 to 3.4 mm and 2.7 to 4.1 mm, respectively.
【0026】このような薄肉のフェライト系耐熱鋳鋼か
らなるエキゾーストマニフォールド1やタービンハウジ
ング2は、加熱冷却のサイクルを受けても亀裂が生ずる
ことがなく、優れた耐久性を有する。The exhaust manifold 1 and the turbine housing 2 made of such a thin ferritic heat-resistant cast steel do not crack even when subjected to a heating and cooling cycle, and have excellent durability.
【0027】[0027]
【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はそれらの実施例に限定されるものではな
い。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
【0028】実施例1〜5、比較例1〜5 表1に示す組成のフェライト系耐熱鋳鋼(実施例1〜
5)及び比較材(比較例1〜5)について、鋳造により
JIS 規格のY形B号供試材を作製した。比較材(比較例
1〜5)はいずれも自動車のターボチャージャー用ハウ
ジングやエキゾーストマニフォールド等の耐熱部品に使
用されているもので、比較例1は高Si球状黒鉛鋳鉄で
あり、比較例2はニレジスト球状黒鉛鋳鉄であり、比較
例3はACI(Alloy Casting Institute )規格のCB-3
0 であり、比較例4はオーステナイト系耐熱鋳鋼(JIS
規格SCH12 )と称されるものの一種であり、比較例5は
高性能エンジン用エキゾーストマニフォールドに使われ
ているフェライト系耐熱鋳鋼(NSHR-F2 、日立金属
(株)製)である。なお鋳造にあたっては100 kg用高周
波炉を用いて大気中溶解し、直ちに1550℃以上で出湯し
て約1500℃で注湯した。 Examples 1 to 5 and Comparative Examples 1 to 5 Heat-resistant ferritic cast steels having the compositions shown in Table 1 (Examples 1 to 5)
5) and comparative materials (Comparative Examples 1 to 5) by casting
JIS standard Y type B test material was prepared. Comparative materials (Comparative Examples 1 to 5) are all used for heat-resistant parts such as an automobile turbocharger housing and an exhaust manifold. Comparative Example 1 is a high Si spheroidal graphite cast iron, and Comparative Example 2 is a Niresist. Spheroidal graphite cast iron, Comparative Example 3 is CB-3 of ACI (Alloy Casting Institute) standard.
Comparative Example 4 was a heat-resistant austenitic cast steel (JIS
Comparative Example 5 is a heat-resistant ferritic cast steel (NSHR-F2, manufactured by Hitachi Metals, Ltd.) used in an exhaust manifold for high-performance engines. For casting, it was melted in the atmosphere using a high-frequency furnace for 100 kg, and immediately poured out at 1550 ° C or higher and poured at about 1500 ° C.
【0029】実施例1〜5のフェライト系耐熱鋳鋼につ
いては、鋳造時の湯流れ性が良く、鋳造欠陥の発生が見
られなかった。次に鋳造した本発明材(実施例1〜5)
の供試材(Yブロック)を加熱炉中にて800 ℃で2時間
保持後空冷する熱処理を行った。一方比較材(比較例1
〜5)については、すべて鋳放しのまま試験に供した。With respect to the heat-resistant ferritic cast steels of Examples 1 to 5, the flowability of the molten metal at the time of casting was good, and no generation of casting defects was observed. Next, the cast material of the present invention (Examples 1 to 5)
Was heated at 800 ° C. for 2 hours in a heating furnace and then air-cooled. On the other hand, a comparative material (Comparative Example 1)
About 5), all were subjected to the test as cast.
【0030】 表1 化学成分(重量%) 実施例No. C Si Mn Cr W Nb 1 0.16 0.82 0.44 18.6 1.52 0.05 2 0.22 1.52 0.53 20.5 3.08 − 3 0.33 1.02 0.66 21.8 2.52 0.4 4 0.42 1.09 0.69 18.3 3.85 0.15 5 0.30 1.82 0.95 21.5 2.04 0.25 比較例No. 1 3.33 4.04 0.35 − − − 2 2.01 4.82 0.45 1.91 − − 3 0.28 1.05 0.44 17.9 − − 4 0.21 1.24 0.50 18.8 − − 5 0.12 1.05 0.48 18.1 − 1.12 Table 1 Chemical components (% by weight) Example No. C Si Mn Cr W Nb 1 0.16 0.82 0.44 18.6 1.52 0.05 2 0.22 1.52 0.53 20.5 3.08 -3 0.33 1.02 0.66 21.8 2.52 0.4 4 0.42 1.09 0.69 18.3 3.85 0.15 5 0.30 1.82 0.95 21.5 2.04 0.25 Comparative Example No. 1 3.33 4.04 0.35 − − − 2 2.01 4.82 0.45 1.91 − − 3 0.28 1.05 0.44 17.9 − − 4 0.21 1.24 0.50 18.8 − − 5 0.12 1.05 0.48 18.1 − 1.12
【0031】 表1(続き) 化学成分(重量%) α'/(α+α') 変態点 実施例No. V Ni (%) (℃) 1 − − 55 1010 2 0.35 − 62 1060 3 0.09 − 58 1070 4 0.15 − 72 1050 5 0.03 − 48 >1100 比較例No. 1 − 0.62* − 800〜850 2 − 35.3 − − 3 − − 93 910 4 − 9.1 − − 5 − − 0 >1100 (注) *:MoTable 1 (continued) Chemical components (% by weight) α ′ / (α + α ′) Transformation point Example No. V Ni (%) (° C.) 1 − − 55 1010 2 0.35 − 62 1060 3 0.09 − 58 1070 4 0.15-72 1050 5 0.03-48> 1100 Comparative Example No. 1-0.62 *-800 to 850 2-35.3--3--93 910 4-9.1--5--0> 1100 (Note) *: Mo
【0032】表1に示す通り、本発明材1〜5は変態点
が1000℃以上であり、比較材1及び3に比較して高いこ
とがわかる。As shown in Table 1, the materials of the present invention 1 to 5 have a transformation point of 1000 ° C. or higher and are higher than those of comparative materials 1 and 3.
【0033】次に鋳造後の各供試材を用いて、以下に述
べる各種の評価試験を行った。 (1) 室温引張試験 標点間距離が50mm、標点間の直径が14mmの丸棒試験片
(JIS 規格4号試験片)を用いて行った。Next, various evaluation tests described below were performed using the test materials after casting. (1) Room Temperature Tensile Test The test was performed using a round bar test piece (JIS standard No. 4 test piece) having a gauge length of 50 mm and a gauge diameter of 14 mm.
【0034】(2) 高温引張試験 標点間距離が50mm、標点間の直径が10mmのつばつき試験
片を用いて、それぞれ900 ℃及び1000℃の温度で行った
(ただし比較例では900 ℃のみ)。(2) High Temperature Tensile Test The test was conducted at a temperature of 900 ° C. and 1000 ° C. using a flanged test piece having a distance between the gauge points of 50 mm and a diameter between the gauge points of 10 mm. only).
【0035】(3) 熱疲労試験 標点間距離が20mm、標点間の直径が10mmの丸棒試験片を
用い、加熱冷却による伸び縮みを機械的に完全に拘束し
た状態で、150 ℃の下限温度、900 ℃及び1000℃の上限
温度(ただし比較例では900 ℃のみ)及び1サイクル各
12分の条件下で、加熱冷却サイクルを繰り返し、熱疲労
破壊を起こさせた。なお試験機として電気−油圧サーボ
方式の熱疲労試験機を用いた。(3) Thermal Fatigue Test Using a round bar test piece having a distance between gauge points of 20 mm and a diameter between gauge points of 10 mm, the test was conducted at 150.degree. Lower limit temperature, upper limit temperature of 900 ℃ and 1000 ℃ (However, only 900 ℃ in the comparative example) and each cycle
Under the condition of 12 minutes, the heating / cooling cycle was repeated to cause thermal fatigue fracture. Note that a thermal fatigue tester of an electro-hydraulic servo system was used as a tester.
【0036】(4) 酸化試験 直径10mm×長さ20mmの丸棒試験片を作製し、それぞれ90
0 ℃及び1000℃において200時間大気中に保持し(た
だし比較例では900 ℃のみ)、取出し後にショットブラ
スト処理を施して酸化スケールを除去し、酸化試験前後
の単位面積当たりの重量変化(酸化減量:mg/cm2 )を
求めることにより、耐酸化性を評価した。(4) Oxidation test A round bar test piece having a diameter of 10 mm and a length of 20 mm was prepared, and 90
The sample was kept in the air at 0 ° C and 1000 ° C for 200 hours (however, only 900 ° C in the comparative example). After removal, the oxide scale was removed by shot blasting, and the weight change per unit area before and after the oxidation test (oxidation loss) : Mg / cm 2 ) to evaluate the oxidation resistance.
【0037】以上の室温引張試験の結果を表2に、高温
引張試験、熱疲労試験及び酸化試験の結果を表3(at 9
00℃)及び表4(at 1000 ℃)にそれぞれ示す。The results of the above room temperature tensile test are shown in Table 2, and the results of the high temperature tensile test, thermal fatigue test and oxidation test are shown in Table 3 (at 9
00 ° C) and Table 4 (at 1000 ° C).
【0038】 表2 室温 0.2%耐力 引張強さ 伸び 硬さ実施例No. (MPa) (MPa) (%) (HB ) 1 360 460 5 170 2 340 475 6 192 3 380 500 8 207 4 425 570 4 212 5 350 490 4 212 比較例No. 1 510 640 11 215 2 245 510 19 139 3 540 760 4 240 4 250 560 20 170 5 300 370 1 149 [0038] Table 2 elongation at room temperature 0.2% proof stress Tensile strength Hardness Example No. (MPa) (MPa) ( %) (H B) 1 360 460 5 170 2 340 475 6 192 3 380 500 8 207 4 425 570 4 212 5 350 490 4 212 Comparative Example No. 1 510 640 11 215 2 245 510 19 139 3 540 760 4 240 4 250 560 20 170 5 300 370 1 149
【0039】 表3 900 ℃ 0.2%耐力 引張強さ 伸び 熱疲労寿命 酸化減量実施例No. (MPa) (MPa) (%) (サイクル) (mg/cm2 ) 1 21 37 50 180 2 2 24 39 45 215 1 3 25 41 38 232 1 4 28 43 42 368 2 5 27 40 55 342 1比較例No. 1 20 40 33 9 200 2 40 90 44 23 20 3 25 42 58 18 1 4 65 128 31 35 2 5 15 28 93 185 2Table 3 900 ° C. 0.2% yield strength Tensile strength Elongation Thermal fatigue life Oxidation weight loss Example No. (MPa) (MPa) (%) (cycle) (mg / cm 2 ) 1 1 2 37 50 180 2 2 24 39 45 215 13 25 41 38 232 1 4 28 43 42 368 25 27 40 55 342 1 Comparative example No. 1 20 40 33 9 200 2 40 90 44 23 20 3 25 42 58 18 14 65 128 31 35 25 15 28 93 185 2
【0040】 表4 1000℃ 0.2%耐力 引張強さ 伸び 熱疲労寿命 酸化減量実施例No. (MPa) (MPa) (%) (サイクル) (mg/cm2 ) 1 14 24 80 95 29 2 16 25 92 180 8 3 17 28 98 195 13 4 17 29 100 290 14 5 15 26 115 242 22Table 4 1000 ° C. 0.2% yield strength Tensile strength Elongation Thermal fatigue life Oxidation weight loss Example No. (MPa) (MPa) (%) (cycle) (mg / cm 2 ) 1 14 24 80 95 29 2 16 25 92 180 8 3 17 28 98 195 13 4 17 29 100 290 14 5 15 26 115 242 22
【0041】表3及び4から明らかなように、本発明材
1〜5はいずれも従来例である比較例1〜5の供試材と
比較して、高温強度、耐酸化性及び熱疲労寿命が著しく
改善されていることがわかる。これは適量のW及びNb
を含有することにより、フェライト基地が強化され、室
温の延性を損なわずに変態点が1000℃以上に上昇したた
めである。また表2に示す通り、本発明材1〜5は硬さ
(HB )が170 〜212と比較的低く、機械加工性にも優
れていることがわかる。As is clear from Tables 3 and 4, the materials 1 to 5 of the present invention are higher in strength at high temperature, oxidation resistance and thermal fatigue life than the test materials of Comparative Examples 1 to 5 which are conventional examples. It can be seen that is significantly improved. This is an appropriate amount of W and Nb
This is because the ferrite matrix was strengthened by containing, and the transformation point was raised to 1000 ° C or more without impairing the ductility at room temperature. Also as shown in Table 2, the inventive materials 1-5 Hardness (H B) is relatively low as 170 to 212, it can be seen that they are excellent in machinability.
【0042】次に図1に示すように、各実施例のフェラ
イト系耐熱鋳鋼によりエキゾーストマニフォールド及び
ターボチャージャハウジングを製造し、それらを組み付
けた直列4気筒で排気量2000ccの高性能ガソリンエンジ
ンのテスト機により、耐久試験を実施した。試験条件と
して、6000回転での全負荷運転(連続14分間)−アイド
リング(1分間)−完全停止(14分間)−アイドリング
(1分間)を1サイクルとする熱冷(GO−STOP)サイク
ルを、 500サイクルまで実施した。全負荷時の排気ガス
温度はターボチャージャハウジングの入口で 930℃であ
った。この条件下でのエキゾーストマニフォールドの表
面最高温度は集合部で約 870℃、ターボチャージャハウ
ジングの表面最高温度はウェストゲート部で約 890℃で
あった。評価試験の結果、熱変形によるガス漏れや熱亀
裂は生じず、優れた耐久性及び信頼性を有することが確
認された。Next, as shown in FIG. 1, an exhaust manifold and a turbocharger housing are manufactured from the heat-resistant ferritic cast steel of each embodiment, and a test machine for a high-performance gasoline engine having a displacement of 2,000 cc in an in-line four-cylinder assembly with these manufactured. A durability test was performed. As the test conditions, a heat-cooling (GO-STOP) cycle with one cycle of full load operation at 6000 rpm (14 minutes continuous)-idling (1 minute)-complete stop (14 minutes)-idling (1 minute), Performed up to 500 cycles. The exhaust gas temperature at full load was 930 ° C at the inlet of the turbocharger housing. Under these conditions, the maximum surface temperature of the exhaust manifold was about 870 ° C at the junction, and the maximum surface temperature of the turbocharger housing was about 890 ° C at the wastegate. As a result of the evaluation test, it was confirmed that gas leakage and thermal cracking due to thermal deformation did not occur, and that it had excellent durability and reliability.
【0043】一方表5に示す化学成分の高Si球状黒鉛
鋳鉄によりエキゾーストマニフォールドを作製し、また
同表の化学成分のNI−RESIST D2 (INCO社の商標名)な
るオーステナイト球状黒鉛鋳鉄によりターボチャージャ
ハウジングを作製した。同じエンジンにこれらの部品を
取付けて、前記と同じ条件で試験を行った。この結果、
高Si球状黒鉛鋳鉄製エキゾーストマニフォールドは98
サイクルで集合部近傍に酸化による熱亀裂が生じ、使用
不能となった。その後、エキゾーストマニフォールドを
実施例1のものに取り替え、試験を続行したところ、 3
24サイクル目にオーステナイト球状黒鉛鋳鉄製のターボ
チャージャハウジングのスクロール部に肉厚を貫通する
亀裂が生じた。以上の結果、本発明のフェライト系耐熱
鋳鋼からなるエキゾーストマニフォールド及びターボチ
ャージャハウジングは、優れた耐熱性を有していること
が明らかとなった。On the other hand, an exhaust manifold was prepared from high Si spheroidal graphite cast iron having a chemical composition shown in Table 5, and a turbocharger housing was formed from austenitic spheroidal graphite cast iron having the chemical composition NI-RESIST D2 (trade name of INCO). Was prepared. These parts were mounted on the same engine and tested under the same conditions as above. As a result,
Exhaust manifold made of high Si spheroidal graphite cast iron is 98
During the cycle, thermal cracks occurred due to oxidation in the vicinity of the gathering portion, making it unusable. After that, the exhaust manifold was replaced with the one in Example 1 and the test was continued.
At the 24th cycle, a crack penetrating the wall thickness occurred in the scroll portion of the turbocharger housing made of austenitic spheroidal graphite cast iron. As a result, it has become clear that the exhaust manifold and the turbocharger housing made of the heat-resistant ferritic cast steel of the present invention have excellent heat resistance.
【0044】 表5 化学成分(重量%) 球状黒鉛鋳鉄材 C Si Mn P S 高Si系 3.15 3.95 0.47 0.024 0.008 オーステナイト系 2.91 2.61 0.81 0.018 0.010 [0044] Table 5 Chemical composition (wt%) of spheroidal graphite cast iron C Si Mn P S High Si-based 3.15 3.95 0.47 0.024 0.008 austenitic 2.91 2.61 0.81 0.018 0.010
【0045】 [0045]
【0046】[0046]
【発明の効果】以上に詳述した通り、本発明のフェライ
ト系耐熱鋳鋼においては、W、Nb及び/又はVを適量
添加することにより、それぞれフェライト基地及び結晶
粒界が強化され、室温における延性を損なわずに変態点
が上昇し、高温強度が向上している。そのため特に重要
な高温引張強度、耐熱疲労性及び耐酸化性について、従
来の耐熱鋳鋼を上まわる特性を示す。また鋳造性及び加
工性に優れているので、安価に製造することができる。
このような本発明のフェライト系耐熱鋳鋼はエンジン排
気系部品等に特に好適である。本発明のフェライト系耐
熱鋳鋼からなる排気系部品は熱亀裂を生ずることなく、
極めて優れた耐久性を示す。As described in detail above, in the heat-resistant ferritic cast steel of the present invention, by adding an appropriate amount of W, Nb and / or V, the ferrite matrix and the grain boundaries are strengthened, respectively, and the ductility at room temperature is increased. The transformation point increases without impairing the strength, and the high-temperature strength is improved. Therefore, it shows properties that are particularly important, such as high-temperature tensile strength, thermal fatigue resistance, and oxidation resistance, over those of conventional heat-resistant cast steel. Also, since it is excellent in castability and workability, it can be manufactured at low cost.
Such a heat-resistant ferritic cast steel of the present invention is particularly suitable for engine exhaust system parts and the like. Exhaust system parts made of the heat-resistant ferritic cast steel of the present invention do not generate thermal cracks,
It shows extremely excellent durability.
【図1】本発明のフェライト系耐熱鋳鋼により作製し得
るエキゾーストマニフォールド及びタービンハウジング
を示す概略図である。FIG. 1 is a schematic view showing an exhaust manifold and a turbine housing that can be produced from the heat-resistant ferritic cast steel of the present invention.
1・・・エキゾーストマニフォールド 2・・・タービンハウジング 3・・・エキゾーストアウトレットパイプ 4・・・コンバータ容器 5・・・メインキャタライザ DESCRIPTION OF SYMBOLS 1 ... Exhaust manifold 2 ... Turbine housing 3 ... Exhaust outlet pipe 4 ... Converter container 5 ... Main catalyzer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−117251(JP,A) 特開 平1−159354(JP,A) 特開 平1−8250(JP,A) 特開 平2−175841(JP,A) 特開 昭56−41354(JP,A) 特公 平4−70388(JP,B2) 特公 昭46−18845(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/48 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-117251 (JP, A) JP-A-1-159354 (JP, A) JP-A-1-8250 (JP, A) JP-A-2- 175841 (JP, A) JP-A-56-41354 (JP, A) JP-B4-70388 (JP, B2) JP-B-46-18845 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 C22C 38/48
Claims (4)
以下)、N:0.01〜0.15%、及び 残部:Fe及び不可避不純物 からなる組成(ただしNiを含有しない)を有し、α相
のほかにγ相からα相+炭化物に変態した相(以下α’
相)を有するとともに、α’相の面積率(α’/α+
α’)が20〜90%であり、かつ鋳造後にγ+α混合領域
未満の温度で焼鈍処理が施されていることを特徴とする
フェライト系耐熱鋳鋼。C: 0.05 to 0.45%, Si: 0.4 to 2.0%, Mn: 0.3 to 1.0%, Cr: 16.0 to 25.0%, W: 1.2 to 5.0%, Nb and / or V: 0.01 by weight ratio. ~ 1.0% (each 0.5%
N ) : 0.01 to 0.15%, and the balance: Fe and unavoidable impurities (but not containing Ni), and in addition to the α phase, a phase transformed from γ phase to α phase + carbide (hereinafter α) '
Phase) and the area ratio of α ′ phase (α ′ / α +
α ′) is 20 to 90%, and is annealed at a temperature lower than the γ + α mixed region after casting.
において、α相からγ相への変態点が900 ℃以上である
ことを特徴とするフェライト系耐熱鋳鋼。2. The heat-resistant ferritic cast steel according to claim 1, wherein the transformation point from the α phase to the γ phase is 900 ° C. or higher.
熱鋳鋼において、重量比率で C:0.15〜0.45%、 Si:0.4 〜2.0 %、 Mn:0.3 〜1.0 %、 Cr:17.0〜22.0%、 W:1.2 〜4.0 %、 Nb及び/又はV:0.01〜0.5 %、N:0.02〜0.08%、及び 残部:Fe及び不可避不純物 からなる組成(ただしNiを含有しない)を有し、前記
α’相の面積率(α’/α+α’)が20〜80%であるこ
とを特徴とするフェライト系耐熱鋳鋼。3. The heat-resistant ferritic cast steel according to claim 1, wherein C: 0.15 to 0.45%, Si: 0.4 to 2.0%, Mn: 0.3 to 1.0%, Cr: 17.0 to 22.0% by weight ratio. W: 1.2 to 4.0%, Nb and / or V: 0.01 to 0.5%, N: 0.02 to 0.08%, and the balance: Fe and inevitable impurities (but not containing Ni), and the α ′ phase Wherein the area ratio (α ′ / α + α ′) is 20 to 80%.
において、α相からγ相への変態点が1000℃以上である
ことを特徴とするフェライト系耐熱鋳鋼。4. The heat-resistant ferritic cast steel according to claim 3, wherein the transformation point from the α phase to the γ phase is 1000 ° C. or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9103875A JP3054102B2 (en) | 1990-03-27 | 1997-04-07 | Ferritic heat-resistant cast steel |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7775990 | 1990-03-27 | ||
JP2-205462 | 1990-08-02 | ||
JP20546290 | 1990-08-02 | ||
JP2-77759 | 1990-08-02 | ||
JP9103875A JP3054102B2 (en) | 1990-03-27 | 1997-04-07 | Ferritic heat-resistant cast steel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3081647A Division JPH0826438B2 (en) | 1990-03-27 | 1991-03-20 | Ferritic heat-resistant cast steel with excellent thermal fatigue life |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1060606A JPH1060606A (en) | 1998-03-03 |
JP3054102B2 true JP3054102B2 (en) | 2000-06-19 |
Family
ID=27302512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9103875A Expired - Lifetime JP3054102B2 (en) | 1990-03-27 | 1997-04-07 | Ferritic heat-resistant cast steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3054102B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180108881A (en) * | 2011-06-07 | 2018-10-04 | 보르그워너 인코퍼레이티드 | Turbocharger and component therefor |
-
1997
- 1997-04-07 JP JP9103875A patent/JP3054102B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1060606A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3936849B2 (en) | Ferrite-based spheroidal graphite cast iron and exhaust system parts using the same | |
JPH0826438B2 (en) | Ferritic heat-resistant cast steel with excellent thermal fatigue life | |
EP0655511B1 (en) | Heat-resistant, ferritic cast steel having high castability and exhaust equipment member made thereof | |
EP0668367A1 (en) | Heat-resistant, austenitic cast steel and exhaust equipment member made thereof | |
JP2542753B2 (en) | Austenitic heat-resistant cast steel exhaust system parts with excellent high-temperature strength | |
WO2011125901A1 (en) | Ferrite heat-resistant cast steel having excellent normal-temperature toughness and exhaust system component formed from the same | |
JP3332189B2 (en) | Ferritic heat-resistant cast steel with excellent castability | |
JP3458971B2 (en) | Austenitic heat-resistant cast steel with excellent high-temperature strength and machinability, and exhaust system parts made of it | |
US5106578A (en) | Cast-to-near-net-shape steel body of heat-resistant cast steel | |
EP0530604B1 (en) | Heat-resistant, ferritic cast steel, and exhaust equipment member made thereof | |
JP3054102B2 (en) | Ferritic heat-resistant cast steel | |
JPH06256908A (en) | Heat resistant cast steel and exhaust system parts using the same | |
JPH05179406A (en) | Heat resistant cast steel and its production and parts for internal combustion engine | |
JP3605874B2 (en) | Heat-resistant cast steel | |
JP3375001B2 (en) | Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it | |
JP2542778B2 (en) | Exhaust system parts | |
JPH07228950A (en) | Austenitic heat resistant cast steel, excellent in strength at high temperature and machinability, and exhaust system parts made of the same | |
JPH06228713A (en) | Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same | |
JPH1161343A (en) | Ferrite based heat resistant cast steel superior in high temp. strength especially against greep rupture and exhaust parts made from it | |
JPH06228712A (en) | Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same | |
JP3417636B2 (en) | Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it | |
JP3840762B2 (en) | Heat resistant steel with excellent cold workability | |
JPH07113139B2 (en) | Exhaust manifold and automobile turbine housing with excellent castability and heat fatigue resistance | |
JP3449644B2 (en) | Heat-resistant cast steel | |
JPH05171365A (en) | Ferritic heat resistant cast steel and exhaust system parts made of it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |