JP3051273B2 - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JP3051273B2
JP3051273B2 JP4338427A JP33842792A JP3051273B2 JP 3051273 B2 JP3051273 B2 JP 3051273B2 JP 4338427 A JP4338427 A JP 4338427A JP 33842792 A JP33842792 A JP 33842792A JP 3051273 B2 JP3051273 B2 JP 3051273B2
Authority
JP
Japan
Prior art keywords
layer
active layer
intermediate concentration
contact
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4338427A
Other languages
Japanese (ja)
Other versions
JPH06188269A (en
Inventor
邦彦 金澤
正則 広瀬
則之 吉川
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP4338427A priority Critical patent/JP3051273B2/en
Publication of JPH06188269A publication Critical patent/JPH06188269A/en
Application granted granted Critical
Publication of JP3051273B2 publication Critical patent/JP3051273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高周波通信機器の送信用
に不可欠な高出力半導体素子等高耐圧が必要な半導体素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device requiring a high withstand voltage, such as a high-output semiconductor device essential for transmission of high-frequency communication equipment.

【0002】[0002]

【従来の技術】近年、ニューメディアが普及し、携帯電
話、自動車電話、コードレステレホン等通信機器の高性
能化が進められている。
2. Description of the Related Art In recent years, with the spread of new media, the performance of communication devices such as cellular phones, car phones, and cordless telephones has been improved.

【0003】特に、携帯電話と自動車電話が、普及して
いる。それは、その小型化技術が進んできたからであ
り、使用する電池の数が減ったからである。この結果、
電源電圧はますます低くなる方向にあり、使用される半
導体素子は、ますます低抵抗化と高耐圧化を両立する必
要がある。
[0003] In particular, portable telephones and car telephones have become widespread. This is because the miniaturization technology has advanced and the number of batteries used has decreased. As a result,
The power supply voltage is in the direction of becoming lower, and the semiconductor element to be used needs to achieve both lower resistance and higher breakdown voltage.

【0004】従来、アナログ方式の携帯電話と自動車電
話の送信段に用いられる高出力半導体素子にはシリコン
・バイポーラ・トランジスタやガリウムヒ素電界効果ト
ランジスタ(以後、GaAsFETと呼ぶ)がその優れ
た高周波特性を生かして使われている。
Conventionally, silicon bipolar transistors and gallium arsenide field effect transistors (hereinafter referred to as GaAs FETs) have been used as high-power semiconductor elements used in transmission stages of analog cellular phones and automobile telephones because of their excellent high-frequency characteristics. It is used alive.

【0005】図6に従来の高出力GaAsFETの構造
を概略断面図で示す。図中符号の1はソース、2はドレ
イン、3はゲートである。ゲート3にはアルミニウムと
チタンを用い、ゲート長は約1μmである。基板4に
は、イオン注入を用いて活性層5とコンタクト層6を形
成するとともに、その両者間に、高耐圧を得るために中
間濃度層9を形成する。この構造はライトリードープド
ドレイン(Ligh−tly Doped Drai
n、以下、LDDと記す)と呼ばれ、このLDD構造に
より、ゲート直下の空乏層は高電界が緩和されて、耐圧
が向上するわけである。しかしながら、注入で活性層を
形成する場合、活性層の厚さがそのまま電流を決定する
ため、低加速電圧でイオン注入しなければならず、表面
濃度がどうしても高くなって、ゲートリーク電流が大き
くなる。この時、FETに抵抗でバイアスを与えると、
このリーク電流でバイアス点が浅い方に動き、B級動作
時はよりA級動作に近くなり、付加効率が悪化する。た
とえば、活性層と中間濃度層との各濃度を下げて、12
Vの耐圧を持たせたとき、そのオン抵抗は単位ゲート幅
に対して、5オーム/mmになってしまっていた。した
がって、電池を3セル化する場合や、リチウム電池を用
いる場合、その3.6V以下の電源に対しては、50%
程度の付加効率となり、60%以上の付加効率を得るこ
とは、困難であった。
FIG. 6 is a schematic sectional view showing the structure of a conventional high-power GaAs FET. In the figure, reference numeral 1 denotes a source, 2 denotes a drain, and 3 denotes a gate. The gate 3 is made of aluminum and titanium, and has a gate length of about 1 μm. An active layer 5 and a contact layer 6 are formed on the substrate 4 by ion implantation, and an intermediate concentration layer 9 is formed between the active layer 5 and the contact layer 6 in order to obtain a high breakdown voltage. This structure has a lightly-doped drain.
n, hereinafter referred to as LDD). With this LDD structure, a high electric field is alleviated in the depletion layer immediately below the gate, and the breakdown voltage is improved. However, when an active layer is formed by implantation, since the current is directly determined by the thickness of the active layer, ions must be implanted at a low accelerating voltage, so that the surface concentration becomes inevitably high and the gate leak current increases. . At this time, if a bias is applied to the FET with a resistor,
This leak current causes the bias point to move to a shallower position, and during class B operation, becomes closer to class A operation, resulting in lower addition efficiency. For example, by lowering each concentration of the active layer and the intermediate concentration layer, 12
When a withstand voltage of V was provided, the on-resistance was 5 ohm / mm with respect to the unit gate width. Therefore, when the battery is made into three cells or when a lithium battery is used, 50%
It was difficult to obtain an additional efficiency of about 60% or more.

【0006】上記のように、従来の高出力半導体素子で
は、低電圧動作で高い付加効率のGaAsFETを実現
することは、困難であった。
As described above, it has been difficult for a conventional high-power semiconductor device to realize a GaAsFET with a low voltage operation and a high added efficiency.

【0007】[0007]

【発明が解決しようとする課題】上記のように、従来の
半導体素子では、電源電圧が低いとき、そのパワーや効
率にもっとも寄与するドレインソース間のオン抵抗が高
い欠点があった。例えば、従来の電源電圧4.8V以上
で使用されるGaAsFETにより実現できていた60
%の高付加効率が、低電圧化の場合の実用化の課題であ
った。
As described above, the conventional semiconductor device has a disadvantage that when the power supply voltage is low, the on-resistance between the drain and the source, which contributes most to the power and efficiency, is high. For example, a conventional GaAs FET that is used at a power supply voltage of 4.8 V or more can achieve this.
% Is an issue of practical application in the case of lower voltage.

【0008】本発明では、低電圧動作に適し、低抵抗か
つ高耐圧で低ゲートリーク電流の半導体素子を提供する
ものである。
The present invention provides a semiconductor device suitable for low-voltage operation, having low resistance, high withstand voltage, and low gate leakage current.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体素子は、活性層とコンタクト層およ
び前記活性層と前記コンタクト層の間に中間濃度層を設
けたLDD構造を有するFETにおいて、前記活性層の
表面が前記コンタクト層の表面より低く形成され、前記
中間濃度層の前記活性層側の表面と前記活性層の端部表
面とが一致し、前記中間濃度層の前記コンタクト層側の
表面と前記コンタクト層の端部表面とが一致するととも
に、前記中間濃度層の表面に傾斜を設けて前記中間濃度
層の厚さが前記コンタクト層側方向に厚くなるものであ
また、本発明の半導体素子は、活性層とコンタクト
層および前記活性層と前記コンタクト層の間に中間濃度
層を設けたLDD構造を有するFETにおいて、前記活
性層の表面が前記コンタクト層の表面より低く形成さ
れ、前記中間濃度層の前記活性層側の表面と前記活性層
の端部表面とが一致し、前記中間濃度層の前記コンタク
ト層側の表面と前記コンタクト層の端部表面とが一致す
るとともに、前記中間濃度層の表面に断面が直線状の傾
斜を設けて前記中間濃度層の厚さが前記コンタクト層側
方向に厚くなるものであるまた、本発明の半導体素子
は、活性層とコンタクト層および前記活性層と前記コン
タクト層の間に中間濃度層を設けたLDD構造を有する
FETにおいて、前記活性層の表面が前記コンタクト層
の表面より低く形成され、前記中間濃度層の前記活性層
側の表面と前記活性層の端部表面とが一致するととも
に、前記中間濃度層の表面に断面が湾曲状の傾斜を設け
て前記中間濃度層の厚さが前記コンタクト層側方向に厚
くなるものであるまた、本発明の半導体素子は、活性
層とコンタクト層および前記活性層と前記コンタクト層
の間に中間濃度層を設けたLDD構造を有するFETに
おいて、前記活性層の表面が前記コンタクト層の表面よ
り低く形成され、前記中間濃度層の前記活性層側の表面
と前記活性層の端部表面とが一致し、前記中間濃度層の
表面に傾斜を設けて前記中間濃度層の厚さが前記コンタ
クト層側方向に厚くなるとともに、前記活性層の表面に
凹部が設けられ、同凹部の上にゲ−ト金属が形成されて
いるものであるまた、本発明の半導体素子は、活性層
とコンタクト層および前記活性層と前記コンタクト層の
間に中間濃度層を設けたLDD構造を有するFETにお
いて、前記活性層の表面が前記コンタクト層の表面より
低く形成され、前記中間濃度層の前記活性層側の表面と
前記活性層の端部表面とが一致し、前記中間濃度層の表
面に傾斜を設けて前記中間濃度層の厚さが前記コンタク
ト層側方向に厚くなるとともに、前記中間濃度層とゲー
トの間隔がソース側よりドレイン側の方が長いものであ
る。 また、本発明の半導体素子は、活性層とコンタクト
層および前記活性層と前記コンタクト層の間に中間濃度
層を設けたLDD構造を有するFETにおいて、前記活
性層のゲート金属直下の表面が前記中間濃度層の表面お
よび前記コンタクト層より低く形成され、前記活性層の
ゲート金属直下の表面と前記活性層の前記中間濃度層側
の表面との間に傾斜が設けられているものである。
た、本発明の半導体素子は、活性層とコンタクト層およ
び前記活性層と前記コンタクト層の間に中間濃度層を設
けたLDD構造を有するFETにおいて、前記中間濃度
層とゲートの間隔がソース側よりドレイン側の方が長い
ことを特徴とするものである。
In order to solve the above problems, a semiconductor device according to the present invention comprises an active layer, a contact layer,
An intermediate concentration layer between the active layer and the contact layer.
In the FET having the multi-layered LDD structure, the active layer
The surface is formed lower than the surface of the contact layer,
Surface of the intermediate concentration layer on the side of the active layer and an end table of the active layer
And the surface of the intermediate concentration layer on the side of the contact layer.
When the surface coincides with the end surface of the contact layer
The surface of the intermediate concentration layer is provided with an inclination to
The thickness of the layer increases in the direction of the contact layer.
You . In addition, the semiconductor element of the present invention can be used for contacting an active layer
Layer and an intermediate concentration between the active layer and the contact layer
In an FET having an LDD structure provided with a layer,
The surface of the conductive layer is formed lower than the surface of the contact layer.
The active layer side surface of the intermediate concentration layer and the active layer
And the contact surface of the intermediate concentration layer
The surface on the side of the contact layer coincides with the end surface of the contact layer.
And the cross section of the intermediate concentration layer has a linear inclination.
By providing a slope, the thickness of the intermediate concentration layer is closer to the contact layer side.
It becomes thicker in the direction . Also, the semiconductor device of the present invention
Are an active layer and a contact layer, and the active layer and the
Has an LDD structure in which an intermediate concentration layer is provided between tact layers
In the FET, the surface of the active layer is the contact layer
The active layer of the intermediate concentration layer formed lower than the surface of
Side surface and the end surface of the active layer coincide with each other.
The surface of the intermediate concentration layer is provided with a slope having a curved cross section.
The thickness of the intermediate concentration layer is increased in the direction of the contact layer.
It will be . Further, the semiconductor device of the present invention
Layer and contact layer, and the active layer and the contact layer
FET with LDD structure with intermediate concentration layer between
Wherein the surface of the active layer is different from the surface of the contact layer.
Surface of the intermediate concentration layer on the side of the active layer.
And the end surface of the active layer coincide with each other,
An inclined surface is provided so that the thickness of the intermediate concentration layer is
In addition to increasing the thickness in the direction of the
A recess is provided, and a gate metal is formed on the recess.
Is what it is . In addition, the semiconductor device of the present invention may further comprise an active layer
Between the contact layer and the active layer and the contact layer.
FET with LDD structure with intermediate concentration layer between
Wherein the surface of the active layer is higher than the surface of the contact layer.
Formed on the surface of the intermediate concentration layer on the side of the active layer.
The end surface of the active layer coincides with the surface of the intermediate concentration layer.
The thickness of the intermediate concentration layer is adjusted so that the contact
Together becomes thick coat layer side direction, the better spacing of intermediate density layer and a gate of the drain side of the source side is longer Monodea
You. In addition, the semiconductor element of the present invention can be used to make contact with an active layer.
Layer and an intermediate concentration between the active layer and the contact layer
In an FET having an LDD structure provided with a layer,
The surface immediately below the gate metal of the conductive layer is the surface of the intermediate concentration layer
And lower than the contact layer,
The surface immediately below the gate metal and the side of the intermediate concentration layer of the active layer
And a surface is provided with an inclination. Ma
Further, the semiconductor device of the present invention comprises an active layer, a contact layer,
An intermediate concentration layer between the active layer and the contact layer.
In the FET having a double-digit LDD structure, the intermediate concentration
The distance between the layer and the gate is longer on the drain side than on the source side
It is characterized by the following.

【0010】[0010]

【作用】本発明の半導体素子により、低電圧動作に適
し、非常に高効率で、低抵抗かつ高耐圧で低ゲートリー
ク電流を実現できる。
The semiconductor device of the present invention is suitable for low-voltage operation, and can realize extremely high efficiency, low resistance, high withstand voltage, and low gate leak current.

【0011】[0011]

【実施例】以下に、本発明の一実施例について図を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の第一の実施例のGaAs
FETの概略断面構造図である。このFETは、LDD
構造の中間濃度層が、半導体表面の垂直方向で半導体表
面より凸部を成す方向に活性層より厚くなり、中間濃度
層が矩形型構造を特なしたものである。図中の符号1、
2はソース、ドレイン各電極で、AuGe金属を用いた
オーミック金属で構成する。3はゲートである。このゲ
ート3にはアルミニウムとチタンを用い、ゲート長1μ
mに形成される。GaAs基板4には、イオン注入法に
より、活性層5とコンタクト層6、およびこれら両者の
間に中間濃度層7を形成する。このとき、高耐圧を得る
ために中間濃度層7を酸系のウエットエッチング法を用
いて矩形に形成する。つまり、主に活性層5と中間濃度
層7の一部をエッチングすることになる。LDD構造に
より、耐圧が向上し、容易に12V以上の耐圧を実現で
きる。そのうえ、活性層をエッチングにより薄くするの
で、例えば、180keVの高加速電圧の注入プロセス
を行うことができるようになり、表面濃度を下げれるの
で、ゲートリーク電流を減らすことが可能になる。この
時、FETに抵抗でバイアスを与えると、このリーク電
流でバイアス点が浅い方に動くことが避けられ、B級動
作時よりA級動作に近くなり付加効率が悪化することが
避けられる。矩形型の中間濃度層7の厚みの表面方向に
従来より厚い部分により、オン抵抗を下げることがで
き、3.5オーム/mm以下を実現することが可能にな
る。これらゲートリーク電流の低減とオン抵抗の低減と
高耐圧化を同時に実現出来る本発明によって、3.6V
以下の電源に対しても、60%以上の付加効率を得るこ
とが可能になる。
FIG. 1 shows a GaAs of the first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional structure diagram of an FET. This FET is an LDD
The intermediate concentration layer of the structure is thicker than the active layer in a direction perpendicular to the semiconductor surface and forms a projection from the semiconductor surface, and the intermediate concentration layer has a rectangular structure. Reference numeral 1 in the figure,
Reference numeral 2 denotes source and drain electrodes, each of which is made of an ohmic metal using AuGe metal. 3 is a gate. The gate 3 is made of aluminum and titanium and has a gate length of 1 μm.
m. On the GaAs substrate 4, an active layer 5 and a contact layer 6, and an intermediate concentration layer 7 between them are formed by ion implantation. At this time, the intermediate concentration layer 7 is formed in a rectangular shape by using an acid-based wet etching method in order to obtain a high withstand voltage. That is, the active layer 5 and a part of the intermediate concentration layer 7 are mainly etched. With the LDD structure, the breakdown voltage is improved, and a breakdown voltage of 12 V or more can be easily realized. In addition, since the active layer is thinned by etching, an implantation process at a high accelerating voltage of, for example, 180 keV can be performed, and the surface concentration can be reduced, so that the gate leak current can be reduced. At this time, when a bias is applied to the FET with a resistor, the bias point is prevented from moving to a shallower side by the leak current, and the class A operation is closer to that of the class B operation than in the class B operation. The on-resistance can be reduced by the thicker portion in the surface direction of the rectangular intermediate concentration layer 7 in the surface direction than before, and it is possible to realize 3.5 ohm / mm or less. According to the present invention, the reduction of the gate leakage current, the reduction of the on-resistance, and the increase in the withstand voltage can be realized at the same time.
Even for the following power supplies, it is possible to obtain an additional efficiency of 60% or more.

【0013】図2は、本発明の第二の実施例の高出力G
aAsFETの概略断面図であり、このFETは、LD
D構造の中間濃度層が、半導体表面の垂直方向で半導体
表面より凸部を成す方向に活性層より厚くなり、中間濃
度層が湾曲型構造を持つ。図中の符号1、2はソース、
ドレインの各電極で、AuGe金属を用いたオーミック
金属で構成される。3はゲートである。このゲート3に
はアルミニウムとチタンを用い、ゲート長1μmに形成
される。GaAs基板4には、イオン注入法を用いて活
性層5とコンタクト層6およびこれら両者の間に中間濃
度層7を形成する。このとき、高耐圧を得るために湾曲
型中間濃度層7をリン酸系のエッチング法を用いて表面
湾曲型に形成する。この湾曲型中間濃度層7は、電界集
中が起こりにくいので、耐圧をいちだんと向上できるう
え、オン抵抗も若干の向上が可能になる。LDD構造に
より、耐圧が向上し、容易に13V以上の耐圧を実現で
きる。そのうえ、活性層を第一の実施例と同様に薄くエ
ッチングするので、例えば、180keV等の高加速電
圧の注入プロセスを行うことができるようになり、表面
濃度を下げられるのでゲートリーク電流を減らすことが
可能になる。この時、FETに抵抗でバイアスを与える
と、このリーク電流でバイアス点が浅い方に動くことが
避けられ、B級動作時によりA級動作に近くなり付加効
率が悪化することが避けられる。従来より表面方向に厚
い湾曲型の中間濃度層を用いることにより、オン抵抗を
下げることができ、3オーム/mm以下を実現すること
が可能になる。これらゲートリーク電流の低減とオン抵
抗の低減と高耐圧化を同時に実現できることによって、
3.6V以下の電源に対しても、60%以上の付加効率
を得ることが可能になる。
FIG. 2 shows a high power G according to a second embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of an aAsFET.
The intermediate concentration layer having the D structure is thicker than the active layer in a direction perpendicular to the semiconductor surface and in a direction forming a protrusion from the semiconductor surface, and the intermediate concentration layer has a curved structure. Symbols 1 and 2 in the figure are sources,
Each drain electrode is made of an ohmic metal using AuGe metal. 3 is a gate. The gate 3 is made of aluminum and titanium and has a gate length of 1 μm. The active layer 5 and the contact layer 6 are formed on the GaAs substrate 4 by ion implantation, and the intermediate concentration layer 7 is formed between the active layer 5 and the contact layer 6. At this time, in order to obtain a high withstand voltage, the curved intermediate concentration layer 7 is formed into a curved surface using phosphoric acid-based etching. In the curved intermediate concentration layer 7, since the electric field concentration hardly occurs, the withstand voltage can be further improved, and the on-resistance can be slightly improved. With the LDD structure, the breakdown voltage is improved, and a breakdown voltage of 13 V or more can be easily realized. In addition, since the active layer is thinly etched in the same manner as in the first embodiment, for example, an implantation process of a high accelerating voltage such as 180 keV can be performed, and the surface concentration can be reduced, thereby reducing the gate leakage current. Becomes possible. At this time, if a bias is applied to the FET with a resistor, it is possible to prevent the bias point from moving to a shallower side due to the leak current, and it is possible to avoid that the class B operation becomes closer to the class A operation and the additional efficiency is deteriorated. By using a curved intermediate concentration layer that is thicker in the surface direction than in the related art, the on-resistance can be reduced, and it is possible to realize 3 ohm / mm or less. By simultaneously reducing the gate leakage current, reducing the on-resistance and increasing the breakdown voltage,
An additional efficiency of 60% or more can be obtained even for a power supply of 3.6V or less.

【0014】図3は、本発明の第三の実施例の高出力G
aAsFETの概略断面図であり、このFETは、LD
D構造の中間濃度層が、半導体表面の垂直方向で半導体
表面より凸部を成す方向に活性層より厚い構造とし、活
性層のゲート金属直下部分のみ厚さの薄い構造を持つ。
図中の符号1、2はソース、ドレインの各電極で、Au
Ge金属を用いたオーミック金属で構成する。3はゲー
トであり、このゲートにはアルミニウムとチタンを用い
たゲート長1μmのものが用いられる。GaAs基板4
には、イオン注入を用いて活性層5とコンタクト層6お
よび、これら両者の間に中間濃度層7を形成する。この
とき、高耐圧を得るためゲート金属直下のみ薄くした活
性層5をドライ系のエッチング法を用いて形成する。こ
の活性層5はゲート電極3の直下のみ、さらに薄くし
て、半導体表面の影響を受けにくくなしたので、トラッ
プの影響を受けにくく、パワー出力の向上が可能にな
る。また、ゲート電極3以外の部分の活性層5は、活性
層の厚みを少し増やせるので、オン抵抗も若干の向上が
可能になる。LDD構造により、耐圧が向上し、容易に
12V以上の耐圧を実現できる。そのうえ、中間濃度層
の一部以外に、活性層全体をエッチングするので、例え
ば180keVの高加速電圧の注入プロセスを行うこと
が出来るようになり、表面濃度を下げられるのでゲート
リーク電流を減らすことが可能になる。この時、FET
に抵抗でバイアスを与えると、このリーク電流でバイア
ス点が浅い方に動くことが避けられ、B級動作時よりA
級動作に近くなり付加効率が悪化することが避けられ
る。半導体表面方向に厚い中間濃度層7を用いることに
より、オン抵抗を下げることができ、3オーム/mm以
下を実現することが可能になる。これらゲートリーク電
流の低減とオン抵抗の低減と高耐圧化を同時に実現でき
ることによって、3.6V以下の電源に対しても、60
%以上の付加効率を得ることが可能になる。
FIG. 3 shows a high power G according to a third embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of an aAsFET.
The intermediate concentration layer of the D structure has a structure that is thicker than the active layer in a direction perpendicular to the semiconductor surface and forms a projection from the semiconductor surface, and has a structure in which only the portion of the active layer immediately below the gate metal is thin.
Reference numerals 1 and 2 in the figure denote source and drain electrodes, respectively.
It is composed of an ohmic metal using Ge metal. Reference numeral 3 denotes a gate having a gate length of 1 μm using aluminum and titanium. GaAs substrate 4
Then, the active layer 5 and the contact layer 6 are formed by ion implantation, and the intermediate concentration layer 7 is formed between them. At this time, in order to obtain a high breakdown voltage, the active layer 5 which is thinned just below the gate metal is formed by using a dry etching method. The active layer 5 is made thinner just below the gate electrode 3 so as to be less affected by the semiconductor surface. Therefore, the active layer 5 is less affected by the trap and the power output can be improved. In addition, since the thickness of the active layer 5 other than the gate electrode 3 can be slightly increased, the on-resistance can be slightly improved. With the LDD structure, the breakdown voltage is improved, and a breakdown voltage of 12 V or more can be easily realized. In addition, since the entire active layer is etched except for a part of the intermediate concentration layer, an implantation process of a high acceleration voltage of, for example, 180 keV can be performed, and the surface concentration can be reduced, so that the gate leakage current can be reduced. Will be possible. At this time, FET
, A bias point is prevented from moving to a shallower side by this leak current, and A
It can be avoided that the efficiency is close to the class operation and the addition efficiency is deteriorated. By using the thick intermediate concentration layer 7 in the semiconductor surface direction, the on-resistance can be reduced, and it is possible to realize 3 ohm / mm or less. By simultaneously realizing the reduction of the gate leak current, the reduction of the on-resistance, and the increase in the withstand voltage, the power supply of 3.6 V or less can be used.
% Or more can be obtained.

【0015】図4は、本発明の第四の実施例の高出力G
aAsFETの概略断面図である。このFETは、LD
D構造の中間濃度層が、半導体表面の垂直方向で半導体
表面より凸部を成す方向に活性層より厚い構造を持ち、
中間濃度層とゲートの間隔がソース側よりドレイン側の
方が長い。図中の符号1、2はソース、ドレインであ
り、AuGe金属を用いたオーミック金属で構成する。
3はゲートであり、アルミニウムとチタンを用いて、ゲ
ート長1μmに形成される。GaAs基板4には、イオ
ン注入を用いて、活性層5とコンタクト層6、およびこ
れらの間に中間濃度層7を形成する。このとき、ドレイ
ン側の中間濃度層7とゲート電極3との距離をソース側
の中間濃度層7とゲート電極3との距離より長くとる
と、ゲートドレイン間を高耐圧にすることが可能にな
り、容易に12V以上の耐圧がとれるうえ、ソース抵抗
を小さくすることが可能になる。また、結果としてソー
ス抵抗が低いため、高い利得が期待できるうえ、オン抵
抗を小さくでき、3オーム/mm以下を容易に実現する
ことが可能になる。この例では、中間濃度層7とゲート
電極3との距離は、ソース側で0.3ミクロンに対し
て、ドレイン側0.6ミクロンとした。そのうえ、中間
濃度層7の一部と活性層5の表面全域をエッチングして
表層部を除去するので、例えば、180keVの高加速
電圧のイオン注入プロセスを行うことができるようにな
り、表面濃度を下げられるのでゲートリーク電流を減ら
すことが可能になる。これにより、FETに抵抗でバイ
アスを与えるとき、このリーク電流でバイアス点が浅い
方に動くことが避けられ、B級動作時よりA級動作に近
くなり、付加効率が悪化することが避けられる。これら
ゲートリーク電流の低減とオン抵抗の低減と高耐圧化を
同時に実現できることによって、3.6V以下の電源に
対しても、60%以上の付加効率を容易に得ることが、
可能になる。
FIG. 4 shows a high output G of a fourth embodiment of the present invention.
It is a schematic sectional drawing of aAsFET. This FET is an LD
The intermediate concentration layer of the D structure has a structure that is thicker than the active layer in a direction perpendicular to the semiconductor surface and in a direction forming a protrusion from the semiconductor surface,
The distance between the intermediate concentration layer and the gate is longer on the drain side than on the source side. Reference numerals 1 and 2 in the figure denote a source and a drain, which are made of an ohmic metal using AuGe metal.
Reference numeral 3 denotes a gate, which is formed with a gate length of 1 μm using aluminum and titanium. The active layer 5 and the contact layer 6 and the intermediate concentration layer 7 between them are formed on the GaAs substrate 4 by ion implantation. At this time, if the distance between the drain-side intermediate concentration layer 7 and the gate electrode 3 is longer than the distance between the source-side intermediate concentration layer 7 and the gate electrode 3, it becomes possible to increase the breakdown voltage between the gate and the drain. In addition, a withstand voltage of 12 V or more can be easily obtained, and the source resistance can be reduced. Further, as a result, since the source resistance is low, a high gain can be expected, and the on-resistance can be reduced, so that 3 ohm / mm or less can be easily realized. In this example, the distance between the intermediate concentration layer 7 and the gate electrode 3 was 0.3 μm on the source side and 0.6 μm on the drain side. In addition, since a part of the intermediate concentration layer 7 and the entire surface of the active layer 5 are etched to remove the surface layer, an ion implantation process at a high acceleration voltage of, for example, 180 keV can be performed. Since the gate leakage current can be reduced, the gate leakage current can be reduced. Accordingly, when a bias is applied to the FET with a resistor, the bias point is prevented from moving to a shallower side due to the leak current, and the operation becomes closer to the class A operation than the class B operation, and the additional efficiency is prevented from being deteriorated. By simultaneously realizing the reduction of the gate leak current, the reduction of the on-resistance, and the increase in the withstand voltage, it is possible to easily obtain an additional efficiency of 60% or more even for a power supply of 3.6 V or less.
Will be possible.

【0016】この説明では、矩形型中間濃度層で説明し
たが、湾曲型中間濃度層でも全く同様の効果のあること
は言うまでもない。
In this description, the rectangular intermediate density layer has been described, but it goes without saying that the curved intermediate density layer has exactly the same effect.

【0017】図5は、本発明の第五の実施例の高出力G
aAsFETの概略断面図である。このFETは、LD
D構造の活性層の厚さが、ゲート電極直下で薄く、ソー
ス、ドレイン側で厚い構造を持つ。図中の符号1、2は
ソース、ドレインであり、AuGe金属を用いたオーミ
ック金属で構成する。3はゲートであり、アルミニウム
とチタンを用い、ゲート長1μmに形成される。GaA
s基板4には、イオン注入を用いて活性層5とコンタク
ト層6、およびこれら両者の間に中間濃度層を形成す
る。このとき、高耐圧を得るために、ゲート電極3の直
下周辺で薄くソース・ドレイン側で厚い活性層5を酸系
のエッチング法を用いて形成する。この薄い活性層部分
で、空乏層は横方向に広がるので、距離をかせげて、耐
圧が向上する。また、ゲート電極3以外の部分の活性層
5は、活性層の厚みを増やせるうえ、厚い中間濃度層を
用いることにより、オン抵抗の低減が可能になり、3.
5オーム/mm以下を容易に実現することができる。ま
た、LDD構造により、耐圧が全体として向上し、活性
層の厚さの変わり目で多少耐圧が下がるが、容易に11
V以上の耐圧を実現できる。そのうえ、中間濃度層の一
部以外に、活性層全体をエッチングするので、例えば1
80keVの高加速電圧のイオン注入プロセスを行うこ
とができるようになり、表面濃度を下げられるのでゲー
トリーク電流を減らすことが可能になる。なお、FET
に抵抗でバイアスを与えると、このリーク電流でバイア
ス点が浅い方に動くことが避けられ、B級動作時よりA
級動作に近くなり付加効率が悪化することが避けられ
る。これらゲートリーク電流の低減とオン抵抗の低減と
高耐圧化を同時に実現できることによって、3.6V以
下の電源に対しても、60%以上の付加効率を得ること
が可能になる。
FIG. 5 shows a high output G according to a fifth embodiment of the present invention.
It is a schematic sectional drawing of aAsFET. This FET is an LD
The active layer having the D structure has a thin structure immediately below the gate electrode and a thick structure on the source and drain sides. Reference numerals 1 and 2 in the figure denote a source and a drain, which are made of an ohmic metal using AuGe metal. Reference numeral 3 denotes a gate formed of aluminum and titanium and having a gate length of 1 μm. GaAs
An active layer 5 and a contact layer 6 are formed on the s-substrate 4 by ion implantation, and an intermediate concentration layer is formed between them. At this time, in order to obtain a high withstand voltage, an active layer 5 that is thin immediately under the gate electrode 3 and thick on the source / drain side is formed by using an acid-based etching method. In the thin active layer portion, the depletion layer spreads in the lateral direction, so that the distance is increased and the breakdown voltage is improved. In addition, the active layer 5 in the portion other than the gate electrode 3 can increase the thickness of the active layer and can reduce the on-resistance by using a thick intermediate concentration layer.
5 ohms / mm or less can be easily realized. Also, with the LDD structure, the withstand voltage is improved as a whole, and the withstand voltage slightly decreases at the change of the thickness of the active layer.
Withstand voltage of V or more can be realized. In addition, since the entire active layer is etched except for a part of the intermediate concentration layer, for example, 1
An ion implantation process with a high acceleration voltage of 80 keV can be performed, and the surface concentration can be reduced, so that the gate leakage current can be reduced. In addition, FET
, A bias point is prevented from moving to a shallower side by this leak current, and A
It can be avoided that the efficiency is close to the class operation and the addition efficiency is deteriorated. By simultaneously realizing the reduction of the gate leak current, the reduction of the on-resistance, and the increase of the withstand voltage, it is possible to obtain an additional efficiency of 60% or more even for a power supply of 3.6 V or less.

【0018】[0018]

【発明の効果】本発明により、ゲートの下の活性層表面
を削ることができるため、高加速のイオン注入を用いる
ことができ、ゲートリーク電流が1桁以上下げることが
可能になる。このため、ゲートのバイアス抵抗に流れる
このゲート電流により、B級動作からA級動作に移り、
効率が低下してしまうのを避けることが可能になる。ま
た、従来より厚い中間濃度層を実現することにより、低
オン抵抗で、低電圧動作に適し、非常に高効率な半導体
素子を実現することができる。これにより、オン抵抗
は、従来の5オーム/mm程度に対し、3〜3.5オー
ム/mm以下が可能になり、3.6V以下のドレインバ
イアスに対して、60%の高付加効率を実現することが
可能になる。つまり、電池の3セル化(3.6V)を実
現する上で課題であった4.8V時と同じ高効率を実現
することが可能になり、その実用効果は絶大なものがあ
る。
According to the present invention, since the surface of the active layer under the gate can be shaved, highly accelerated ion implantation can be used, and the gate leakage current can be reduced by one digit or more. For this reason, this gate current flowing through the gate bias resistor shifts from class B operation to class A operation.
It is possible to avoid a decrease in efficiency. Further, by realizing a thicker intermediate concentration layer than in the past, it is possible to realize a semiconductor device with low on-resistance, suitable for low-voltage operation, and very high efficiency. As a result, the on-resistance can be reduced to 3 to 3.5 ohms / mm or less compared to the conventional 5 ohms / mm, and a high added efficiency of 60% is realized for a drain bias of 3.6 V or less. It becomes possible to do. That is, it is possible to realize the same high efficiency as at 4.8 V, which has been a problem in realizing a three-cell battery (3.6 V), and there is a great practical effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例FETの概略断面図FIG. 1 is a schematic sectional view of an FET according to an embodiment of the present invention.

【図2】本発明の第二の実施例FETの概略断面図FIG. 2 is a schematic sectional view of a second embodiment FET of the present invention.

【図3】本発明の第三の実施例FETの概略断面図FIG. 3 is a schematic sectional view of an FET according to a third embodiment of the present invention.

【図4】本発明の第四の実施例FETの技略断面図FIG. 4 is a schematic sectional view of an FET according to a fourth embodiment of the present invention.

【図5】本発明の第五の実施例FETの概略断面図FIG. 5 is a schematic sectional view of a fifth embodiment FET of the present invention.

【図6】従来のFET賀略断面図FIG. 6 is a schematic sectional view of a conventional FET.

【符号の説明】[Explanation of symbols]

1 ソース 2 ドレイン 3 ゲート 4 GaAs基板 5 活性層 6 コンタクト層 7 中間濃度層 DESCRIPTION OF SYMBOLS 1 Source 2 Drain 3 Gate 4 GaAs substrate 5 Active layer 6 Contact layer 7 Intermediate concentration layer

フロントページの続き (56)参考文献 特開 平4−99333(JP,A) 特開 平4−147630(JP,A) 特開 平6−177159(JP,A) 特開 昭62−158366(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/337 - 21/338 H01L 29/80 - 29/812 H01L 29/775- 29/778 Continuation of front page (56) References JP-A-4-99333 (JP, A) JP-A-4-147630 (JP, A) JP-A-6-177159 (JP, A) JP-A-62-158366 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/337-21/338 H01L 29/80-29/812 H01L 29 / 775- 29/778

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層の表面が前記コ
ンタクト層の表面より低く形成され、前記中間濃度層の
前記活性層側の表面と前記活性層の端部表面とが一致
し、前記中間濃度層の前記コンタクト層側の表面と前記
コンタクト層の端部表面とが一致するとともに、前記中
間濃度層の表面に傾斜を設けて前記中間濃度層の厚さが
前記コンタクト層側方向に厚くなることを特徴とする
導体素子。
An active layer, a contact layer, and the active layer
LDD structure having an intermediate concentration layer between
In a FET having a structure, the surface of the active layer is
Formed lower than the surface of the contact layer,
The surface on the active layer side coincides with the end surface of the active layer.
And a surface of the intermediate concentration layer on the contact layer side and the
The end surface of the contact layer coincides with the
The surface of the intermediate concentration layer is provided with a slope so that the thickness of the intermediate concentration layer is reduced.
A semiconductor element, which is thicker in the contact layer side direction .
【請求項2】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層の表面が前記コ
ンタクト層の表面より低く形成され、前記中間濃度層の
前記活性層側の表面と前記活性層の端部表面とが一致
し、前記中間濃度層の前記コンタクト層側の表面と前記
コンタクト層の端部表面とが一致するとともに、前記中
間濃度層の表面に断面が直線状の傾斜を設けて前記中間
濃度層の厚さが前記コンタクト層側方向に厚くなること
を特徴とする半導体素子。
2. An active layer, a contact layer, and the active layer.
LDD structure having an intermediate concentration layer between
In a FET having a structure, the surface of the active layer is
Formed lower than the surface of the contact layer,
The surface on the active layer side coincides with the end surface of the active layer.
And a surface of the intermediate concentration layer on the contact layer side and the
The end surface of the contact layer coincides with the
The cross-section is provided with a linear slope on the surface of the
The thickness of the concentration layer is increased in the contact layer side direction
A semiconductor element characterized by the above-mentioned .
【請求項3】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層の表面が前記コ
ンタクト層の表面より低く形成され、前記中間濃度層の
前記活性層側の表面と前記活性層の端部表面とが一致す
るとともに、前記中間濃度層の表面に断面が湾曲状の傾
斜を設けて前記中間濃度層の厚さが前記コンタクト層側
方向に厚くなることを特徴とする半導体素子。
3. An active layer, a contact layer and the active layer
LDD structure having an intermediate concentration layer between
In a FET having a structure, the surface of the active layer is
Formed lower than the surface of the contact layer,
The surface on the active layer side coincides with the end surface of the active layer.
And the cross-section of the intermediate concentration layer has a curved inclination.
By providing a slope, the thickness of the intermediate concentration layer is closer to the contact layer side.
A semiconductor element characterized by being thicker in a direction .
【請求項4】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層の表面が前記コ
ンタクト層の表面より低く形成され、前記中間濃度層の
前記活性層側の表面と前記活性層の端部表面とが一致
し、前記中間濃度層の表面に傾斜を設けて前記中間濃度
層の厚さが前記コンタクト層側方向に厚くなるととも
に、前記活性層の表面に凹部が設けられ、同凹部の上に
ゲ−ト金属が形成されていることを特徴とする半導体素
子。
4. An active layer, a contact layer and the active layer
LDD structure having an intermediate concentration layer between
In a FET having a structure, the surface of the active layer is
Formed lower than the surface of the contact layer,
The surface on the active layer side coincides with the end surface of the active layer.
The surface of the intermediate concentration layer is provided with an inclination to
When the thickness of the layer increases in the direction of the contact layer,
A concave portion is provided on the surface of the active layer, and the concave portion is provided on the concave portion.
A semiconductor element, wherein a gate metal is formed .
【請求項5】 活性層とコンタクト層および前記活性層
と前記コンタクト層の 間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層の表面が前記コ
ンタクト層の表面より低く形成され、前記中間濃度層の
前記活性層側の表面と前記活性層の端部表面とが一致
し、前記中間濃度層の表面に傾斜を設けて前記中間濃度
層の厚さが前記コンタクト層側方向に厚くなるととも
に、前記中間濃度層とゲートの間隔がソース側よりドレ
イン側の方が長いことを特徴とする半導体素子。
5. An active layer, a contact layer and the active layer
LDD structure of the intermediate density layer is provided between the contact layer
In a FET having a structure, the surface of the active layer is
Formed lower than the surface of the contact layer,
The surface on the active layer side coincides with the end surface of the active layer.
The surface of the intermediate concentration layer is provided with an inclination to
When the thickness of the layer increases in the direction of the contact layer,
A semiconductor element , wherein the distance between the intermediate concentration layer and the gate is longer on the drain side than on the source side.
【請求項6】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記活性層のゲート金属直
下の表面が前記中間濃度層の表面および前記コンタクト
層より低く形成され、前記活性層のゲート金属直下の表
面と前記活性層の前記中間濃度層側の表面との間に傾斜
が設けられていることを特徴とする半導体素子。
6. An active layer, a contact layer and said active layer
LDD structure having an intermediate concentration layer between
In the FET having the structure,
The lower surface is the surface of the intermediate concentration layer and the contact
Layer below the gate metal of the active layer.
Between the surface and the surface of the active layer on the side of the intermediate concentration layer.
A semiconductor element , characterized by comprising:
【請求項7】 活性層とコンタクト層および前記活性層
と前記コンタクト層の間に中間濃度層を設けたLDD構
造を有するFETにおいて、前記中間濃度層とゲートの
間隔がソース側よりドレイン側の方が長いことを特徴と
する半導体素子。
7. An active layer, a contact layer and said active layer
LDD structure having an intermediate concentration layer between
In the FET having the structure, the intermediate concentration layer and the gate
The gap is longer on the drain side than on the source side.
Semiconductor device.
JP4338427A 1992-12-18 1992-12-18 Semiconductor element Expired - Fee Related JP3051273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4338427A JP3051273B2 (en) 1992-12-18 1992-12-18 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4338427A JP3051273B2 (en) 1992-12-18 1992-12-18 Semiconductor element

Publications (2)

Publication Number Publication Date
JPH06188269A JPH06188269A (en) 1994-07-08
JP3051273B2 true JP3051273B2 (en) 2000-06-12

Family

ID=18318052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4338427A Expired - Fee Related JP3051273B2 (en) 1992-12-18 1992-12-18 Semiconductor element

Country Status (1)

Country Link
JP (1) JP3051273B2 (en)

Also Published As

Publication number Publication date
JPH06188269A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
US6586813B2 (en) High-speed compound semiconductor device operable at large output power with minimum leakage current
US5675159A (en) Recessed gate field effect transistor
US8120066B2 (en) Single voltage supply pseudomorphic high electron mobility transistor (PHEMT) power device and process for manufacturing the same
JP2002518843A (en) Lateral thin film SOI device in which the upper oxide film and the drift region are inclined
KR20220170470A (en) Mosfet device and method thereof
US20240014286A1 (en) Power mosfet device with isolated gate structure and manufacturing process thereof
JP4194778B2 (en) Semiconductor device and method for manufacturing enhancement mode semiconductor device
JP2002343960A (en) Semiconductor device
JP3051273B2 (en) Semiconductor element
JPH04208571A (en) Insulated-gate fet
JP2004241711A (en) Semiconductor device
JPH11150124A (en) Field effect transistor and its manufacture
US5905277A (en) Field-effect transistor and method of manufacturing the same
US6946691B2 (en) Field effect transistor
US6025614A (en) Amplifier semiconductor element, method for fabricating the same, and amplifier semiconductor device
JP3438124B2 (en) Semiconductor device
JP3307359B2 (en) Semiconductor device and semiconductor manufacturing method
KR100349368B1 (en) Extremely high frequency semiconductor device and method of manufacturing the same
US6528830B1 (en) Thin film transistor
Bito et al. Single 3.4 V operation power heterojunction FET with 60% efficiency for personal digital cellular phones
JPH0897233A (en) Semiconductor device and power amplifier
CN117878151A (en) GaN HEMT device with high linearity and double gradual change channels and preparation method thereof
JPH0888359A (en) Field effect transistor and its manufacture
JPH05218099A (en) Heterojunction field-effect transistor
JPH1027809A (en) Field-effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees