JP3048418B2 - Infrared total reflection absorption measuring device and crystal - Google Patents

Infrared total reflection absorption measuring device and crystal

Info

Publication number
JP3048418B2
JP3048418B2 JP17711791A JP17711791A JP3048418B2 JP 3048418 B2 JP3048418 B2 JP 3048418B2 JP 17711791 A JP17711791 A JP 17711791A JP 17711791 A JP17711791 A JP 17711791A JP 3048418 B2 JP3048418 B2 JP 3048418B2
Authority
JP
Japan
Prior art keywords
crystal
total reflection
sample
infrared
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17711791A
Other languages
Japanese (ja)
Other versions
JPH04348257A (en
Inventor
泰雄 江崎
恭子 横川
年美 荒賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP17711791A priority Critical patent/JP3048418B2/en
Priority to DE4122149A priority patent/DE4122149A1/en
Priority to US07/726,332 priority patent/US5216244A/en
Publication of JPH04348257A publication Critical patent/JPH04348257A/en
Application granted granted Critical
Publication of JP3048418B2 publication Critical patent/JP3048418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、赤外線を用いた試料表
面の局所分析あるいは線分析、面分析に利用し得る赤外
線全反射吸収測定装置および結晶体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared total reflection absorption measuring apparatus and a crystal which can be used for local analysis, line analysis, and surface analysis of a sample surface using infrared rays.

【0002】[0002]

【従来の技術】[Prior art]

(背景)相対屈折率(その物の屈折率を空気の屈折率で
割ったもの。以後、単に「屈折率」という。)の高い結
晶体と屈折率の低い被測定用試料を密着させ、この界面
に結晶体側から赤外光を臨界角以上の角度で入射する
と、界面で赤外光はある深さだけ試料側に入り込んでか
ら全反射するため、試料に赤外線を吸収する性質がある
場合には、その吸収の強さに応じて全反射光の強度が落
ちる。この全反射光を分光し検出することによって、試
料固有の赤外線全反射スペクトルが観測される。赤外線
全反射吸収測定装置は、このようなスペクトルを解析す
ることによって、試料の表面から数μm層の化学組成に
関する情報を得るものであり、比較的屈折率の低い高分
子材料(ゴム、塗膜、プラスチック等)の表面分析に広
く利用されている。
(Background) A crystalline material having a high relative refractive index (the refractive index of the substance divided by the refractive index of air; hereinafter simply referred to as “refractive index”) is brought into close contact with a sample to be measured having a low refractive index. When infrared light is incident on the interface from the crystal side at an angle greater than the critical angle, the infrared light enters the sample side at a certain depth at the interface and is totally reflected, so if the sample has the property of absorbing infrared light The intensity of the total reflected light decreases according to the intensity of the absorption. By spectrally detecting and detecting this total reflection light, an infrared total reflection spectrum unique to the sample is observed. The infrared total reflection absorption measuring device obtains information on the chemical composition of a few μm layer from the surface of the sample by analyzing such a spectrum, and obtains a polymer material (rubber, coating film, etc.) having a relatively low refractive index. , Plastic, etc.) are widely used for surface analysis.

【0003】(従来技術)従来の赤外線全反射吸収測定
装置の代表的なものに、図17に示す多重全反射方式の
赤外線全反射吸収測定装置がある。この装置は、赤外光
を集光鏡1によって全反射用の結晶体2における入射面
3上に集光して入射させ、結晶体2の内部で多重全反射
させる過程で結晶体2の全反射面4に密着させた被測定
用の試料5と結晶体2との界面で複数回の赤外線全反射
を行わせて表面分析感度の向上を図り、次いで出射面6
から出射された赤外光を対物鏡7を介して図示省略の検
出器へ送り込むものである。
(Prior Art) A typical example of a conventional infrared total reflection absorption measuring apparatus is a multiple total reflection type infrared total reflection absorption measuring apparatus shown in FIG. In this apparatus, infrared light is condensed by a condenser mirror 1 on an incident surface 3 of a crystal 2 for total reflection and made incident, and the total reflection of the crystal 2 is performed in the process of multiple total reflection inside the crystal 2. A plurality of infrared total reflections are performed at the interface between the sample 5 to be measured and the crystal body 2 adhered to the reflection surface 4 to improve the surface analysis sensitivity.
Is transmitted to a detector (not shown) via the objective mirror 7.

【0004】一方、従来の赤外線全反射吸収測定装置に
は図16(1)〜(3)に示すように断面形状が平行四
辺形、台形等の全反射用結晶体が用いられている。
On the other hand, in a conventional infrared total reflection absorption measuring apparatus, as shown in FIGS. 16 (1) to 16 (3), a total reflection crystal having a parallelogram or trapezoidal cross section is used.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(従来技術の問題点)ところで、近年における試料のミ
クロ分析の要求は厳しく、例えば試料面上の10μmオ
ーダーの微小エリアの表面分析が求められるようになっ
て来ている。
(Problems of the prior art) By the way, the demand for micro-analysis of a sample in recent years is severe, and for example, a surface analysis of a minute area on the order of 10 μm on a sample surface has been required.

【0006】しかし、上記の多重反射方式の赤外線全
反射吸収測定装置では、結晶体の入射面に集光した赤外
光が結晶体内部で発散すること、試料面上に赤外光を効
率的に収束させ難いこと等から、測定しようとする微小
エリアにおける光利用率を高め難いため、100μm
オーダーの微小試料の分析が限界である。そして、仮に
スリットによって特定の10μmオーダーの試料面エリ
アからの赤外光を選別しても、光量利用率不足に基づく
当該料面エリアの赤外光強度の不足から有効な赤外線
全反射スペクトルを得ることができず、その試料面エリ
アの分析を行うことができない。
[0006] However, in the above-mentioned multiple total reflection type infrared total reflection absorption measuring apparatus, the infrared light condensed on the incident surface of the crystal diverges inside the crystal, and the infrared light is efficiently reflected on the sample surface. from such that hardly is converged manner, since it is difficult enhanced light quantity utilization in a micro area to be measured, 100 [mu] m
Analysis of small samples of the order is the limit. Then, even provisionally selected infrared light from a sample surface area of the particular 10μm order by a slit, an effective infrared total reflection spectra lack of infrared light intensity of the specimen surface area based on a lack of light quantity utilization Cannot be obtained, and the analysis of the sample surface area cannot be performed.

【0007】次に、上記したミクロ分析の要求に伴い、
例えば帯状の試料面エリアについて10μmオーダーの
微小エリア毎に分けた線分析を行いたいという要求も出
てくるが、従来の赤外線全反射吸収測定装置は前記のよ
うに分析能力の面でこのような要求に対応できないこと
のほか、多重全反射方式がもともと複数回の赤外光全反
射に対応した複数の試料面エリアの平均的分析値を得る
ものであるため、本質的に上記の線分析の要求とは相容
れない。
Next, in accordance with the above-mentioned requirement of micro analysis,
For example, there is a demand to perform a line analysis divided into minute areas of the order of 10 μm on a band-shaped sample surface area. However, the conventional infrared total reflection absorption measurement apparatus has such a problem in terms of analysis capability as described above. In addition to the inability to meet the requirements, the multiple total reflection method originally obtains an average analysis value of multiple sample surface areas corresponding to multiple infrared total reflections. It is incompatible with the request.

【0008】更に、一定の広さの試料面エリアについて
10μmオーダーの微小エリア毎に分けた面分析の要求
も出てくるが、線分析の場合と同じ理由から、従来の赤
外線全反射吸収測定装置はこのような要求にも対応する
ことができない。
Further, there is a demand for a surface analysis in which a sample surface area of a fixed area is divided into small areas of the order of 10 μm. For the same reason as in the case of line analysis, a conventional infrared total reflection absorption measuring apparatus is used. Cannot respond to such demands.

【0009】また、従来の多重全反射式赤外線全反射吸
収測定装置では、最も強い赤外線情報を得るために、対
物鏡の焦点を結晶体の出射面に合わせておくのが通常で
ある。従って対物鏡により特定の測定点を目視観察しな
がら点分析、線分析、面分析を行うことはできず、対物
鏡による目視観察機能を付与しても、実質的に意味がな
かった。
In the conventional multiple total reflection type infrared total reflection absorption measuring apparatus, the focus of the objective mirror is usually set to the exit surface of the crystal in order to obtain the strongest infrared information. Therefore, point analysis, line analysis, and surface analysis cannot be performed while visually observing a specific measurement point using an objective mirror, and even if a visual observation function using an objective mirror is provided, it has no meaning.

【0010】また、従来の全反射用結晶体では、図16
中に破線で示すように入射光と出射光との光軸にズレを
生ずる。従って、集光鏡1と対物鏡7とを同一軸線上に
配置できない(図17参照)ため、従来多用されている
集光鏡と対物鏡とを同一軸線上に配置した集光光学系を
有する赤外顕微鏡を利用できないという不便がある。
In the conventional total reflection crystal, FIG.
As shown by a broken line therein, a shift occurs in the optical axis between the incident light and the outgoing light. Therefore, since the converging mirror 1 and the objective mirror 7 cannot be arranged on the same axis (see FIG. 17), a condensing optical system in which the condensing mirror and the objective mirror, which are conventionally frequently used, are arranged on the same axis is provided. There is the inconvenience that an infrared microscope cannot be used.

【0011】(第一の課題)そこで本願発明の第一の課
題は、対物鏡による目視観察のもとで10μmオーダー
の微小エリアの表面分析が可能な赤外線全反射吸収測定
装置を提供することである。
(First problem) A first problem of the present invention is to provide an infrared total reflection absorption measuring apparatus capable of analyzing the surface of a minute area of the order of 10 μm under visual observation with an objective mirror. is there.

【0012】(第二の課題)本願発明の第二の課題は、
対物鏡による目視観察のもとで試料面における10μm
オーダーの微小エリア毎に分けた線分析を容易に行うこ
とができる赤外線全反射吸収測定装置を提供することで
ある。
(Second Problem) A second problem of the present invention is as follows.
10 μm on the sample surface under visual observation with an objective mirror
An object of the present invention is to provide an infrared total reflection absorption measuring apparatus that can easily perform line analysis divided for each minute area of order.

【0013】(第三の課題)本願発明の第三の課題は、
対物鏡による目視観察のもとで試料面における10μm
オーダーの微小エリア毎に分けた面分析を行うことがで
きる赤外線全反射吸収測定装置を提供することである。
(Third Problem) A third problem of the present invention is as follows.
10 μm on the sample surface under visual observation with an objective mirror
An object of the present invention is to provide an infrared total reflection absorption measuring device capable of performing a surface analysis divided for each minute area of an order.

【0014】(第四の課題)本願発明の第四の課題は、
従来多用されている集光鏡と対物鏡とを同一軸線上に配
置した集光光学系を有する赤外顕微鏡を簡易に利用して
赤外線全反射吸収測定装置を構成し得るような全反射用
の結晶体を提供することである。
(Fourth Problem) A fourth problem of the present invention is as follows.
For the total reflection such that an infrared microscope having a condensing optical system in which a condensing mirror and an objective mirror, which are widely used in the past, are arranged on the same axis can be easily used to constitute an infrared total reflection absorption measuring apparatus. It is to provide a crystal.

【0015】(第五の課題)本願発明の第五の課題は、
上記の結晶体を上記の微小エリアの分析が可能な赤外線
全反射吸収測定装置に適用することにより、前記第一〜
第四の全ての課題に対応できる赤外線全反射吸収測定装
置を提供することである。
(Fifth Problem) The fifth problem of the present invention is as follows.
By applying the crystal to the infrared total reflection absorption measurement apparatus capable of analyzing the micro area, the first to
An object of the present invention is to provide an infrared total reflection absorption measuring device that can respond to all the fourth problems.

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

(着眼点)本願発明者は、最新の赤外光検出器における
感度と、試料面上で収束させ得る赤外光の強度とを実験
的に厳しく見極めた結果、赤外線全反射吸収測定におい
て、赤外光の利用率を有効に高めることにより、唯一回
の全反射にて10μmオーダーの微小エリアの表面分析
を有効に行う赤外線全反射吸収測定装置を設計可能であ
り、またこのことから、多重全反射方式に基づく前記の
欠点、例えば対物鏡による目視観察機能を活用できない
点等も解消し得る可能性があることを見出した。
(Focusing point) As a result of experimentally and rigorously determining the sensitivity of the latest infrared light detector and the intensity of infrared light that can be converged on the sample surface, the present inventor found that red light was measured in infrared total reflection absorption measurement. By effectively increasing the utilization rate of external light, it is possible to design an infrared total reflection absorption measurement apparatus that effectively performs surface analysis of a small area of the order of 10 μm by only one total reflection. It has been found that the above disadvantages based on the reflection method, such as the inability to utilize the visual observation function using an objective mirror, can be solved.

【0017】(第一の課題の解決手段) 上記第一の課題を解決するための本願第一発明(請求項
1に記載の発明)の構成は、以下の(イ)〜(ホ)の要
素を含み、且つ、赤外光の集光点が(ハ)の結晶体の全
反射面上に位置するようにその光路長が設定されてお
り、且つ、集光鏡と対物鏡の光軸が、同一軸線上に配置
されていることを特徴とする。 (イ)赤外光を集光する集光鏡 (ロ)被測定用料を保持する試料保持部 (ハ)前記試料保持部に載置され、集光鏡からの赤外光
が入射する入射面と、前記被測定用試料を当接させて赤
外光の全反射測定を一回だけ行うための全反射面と、赤
外光が最終的に出射する出射面と有する結晶体 (二)前記結晶体の出射面に対向して配置され、全反射
面に当接させた前記被測定用試料の測定点に焦点を合わ
せ得る対物鏡 (ホ)出射面より出射した赤外光を選別するスリット
(Means for Solving the First Problem) The configuration of the first invention of the present application (the invention described in claim 1) for solving the above first problem has the following elements (a) to (e): And the optical path length is set such that the focal point of the infrared light is located on the total reflection surface of the crystal of (c), and the optical axis of the condenser mirror and the objective mirror is , Are arranged on the same axis. (B) placed on the collector mirror for focusing infrared light (b) a sample holder for holding the measurement specimen (c) the sample holding portion, the infrared light from the focusing mirror is incident A crystal body having an incident surface, a total reflection surface for bringing the sample to be measured into contact with the sample to perform total reflection measurement of infrared light only once, and an emission surface from which infrared light is finally emitted. A) an objective mirror which is arranged to face the emission surface of the crystal and is capable of focusing on the measurement point of the sample to be measured brought into contact with the total reflection surface; e) selecting infrared light emitted from the emission surface. Slit

【0018】(第二の課題の解決手段)上記第二の課題
を解決するための本願第二発明(請求項2に記載の発
明)の構成は、前記第一発明において、(ハ)の結晶体
が、その入射面、全反射面および出射面を柱軸に平行な
平面として形成した柱状体であって出射光軸に対する直
角方向を指向して設けられ、且つ、(ロ)の試料保持部
が少なくとも結晶体の柱軸方向に沿って結晶体を平行移
動させ得る駆動機構を有する赤外線全反射吸収測定装置
である。
(Means for Solving the Second Problem) The structure of the second invention of the present application (the invention of claim 2) for solving the above second problem is the same as that of the first invention, except that The sample holding unit of (b) is a columnar body whose input surface, total reflection surface and output surface are formed as planes parallel to the column axis, and are provided in a direction perpendicular to the output optical axis. Is an infrared total reflection absorption measurement apparatus having a drive mechanism capable of moving the crystal in parallel along at least the column axis direction of the crystal.

【0019】(第三の課題の解決手段)上記第三の課題
を解決するための本願第三発明(請求項3に記載の発
明)の構成は、前記第一発明において、(ハ)の結晶体
が、前記入射面、全反射面および出射面を柱軸に平行な
平面として形成した柱状体であって出射光軸に対する直
角方向を指向して設けられ、且つ(ロ)の試料保持部が
前記結晶体を3次元方向へ任意に平行移動させ得る駆動
機構を有し、更にこの駆動機構は、結晶体が柱軸方向と
異なる方向へ平行移動する際の測定点の焦点からのズレ
を予測演算する手段と、次いでこの予測値に基づき前記
ズレを解消するに必要な出射光軸線沿いの修正移動量を
演算する手段と、これらの演算結果に従って駆動機構を
駆動させる制御手段とからなる制御システムを備えてい
る赤外線全反射吸収測定装置である。
(Means for Solving the Third Problem) The structure of the third invention of the present application (the invention according to claim 3) for solving the above third problem is the same as that of the first invention, except that The body is a columnar body in which the incident surface, the total reflection surface, and the emission surface are formed as planes parallel to the column axis, and is provided so as to be oriented in a direction perpendicular to the emission optical axis. It has a drive mechanism that can arbitrarily translate the crystal in a three-dimensional direction, and this drive mechanism predicts a deviation from the focal point of a measurement point when the crystal is translated in a direction different from the column axis direction. A control system comprising: means for calculating; then means for calculating a correction movement amount along the emission optical axis required to eliminate the deviation based on the predicted value; and control means for driving the drive mechanism in accordance with the results of these calculations. Has infrared total reflection absorption A constant apparatus.

【0020】(第四の課題の解決手段)上記第四の課題
を解決するための本願第四発明(請求項4に記載の発
明)の構成は、赤外線全反射吸収測定装置において被測
定用試料を保持する試料保持部に載置される結晶体であ
って、集光鏡からの赤外光が入射する入射面と、前記被
測定用試料を当接させて赤外光の全反射測定を行うため
の全反射面と、入射光の方向を変更する少なくとも3個
の反射面(前記全反射面を含む)と、赤外光が最終的に
出射する出射面とを有し、前記入射光の光軸と出射光の
光軸とが一致するように各反射面の相互の角度が構成さ
れている結晶体である。
(Means for Solving the Fourth Problem) The structure of the fourth invention (the invention described in claim 4) for solving the fourth problem is that a sample to be measured is provided in an infrared total reflection absorption measuring apparatus. A crystal placed on a sample holding unit for holding the sample, the incident surface on which the infrared light from the condenser mirror is incident, and the sample to be measured are brought into contact with each other to perform a total reflection measurement of the infrared light. A total reflection surface for performing the operation, at least three reflection surfaces (including the total reflection surface) for changing the direction of incident light, and an emission surface from which infrared light is finally emitted; Is a crystal in which the mutual angles of the respective reflection surfaces are configured so that the optical axis of the light beam and the optical axis of the emitted light coincide with each other.

【0021】(第五の課題の解決手段)上記第五の課題
を解決するための本願第五発明(請求項5に記載の発
明)の構成は、前記第一発明〜第三発明のいずれかに記
載された赤外線全反射吸収測定装置のうち、集光鏡と対
物鏡が同一軸線上に配置された赤外線全反射吸収測定装
置であって、該装置中に用いられている結晶体が、前記
第四発明における結晶体のうち、その入射面、全反射面
および出射面を柱軸に平行な平面として形成した柱状体
であって出射光軸に対する直角方向を指向して設けられ
ている赤外線全反射吸収測定装置である。
(Means for Solving the Fifth Problem) The structure of the fifth invention (the invention described in claim 5) for solving the fifth problem is one of the first invention to the third invention. Among the infrared total reflection absorption measurement apparatus described in, the infrared total reflection absorption measurement apparatus in which the converging mirror and the objective mirror are arranged on the same axis, the crystal used in the apparatus, In the crystal according to the fourth aspect of the present invention, a columnar body whose incident surface, total reflection surface, and emission surface are formed as planes parallel to the column axis, and which is provided so as to be directed in a direction perpendicular to the emission optical axis. It is a reflection absorption measurement device.

【0022】[0022]

【作用】[Action]

(第一発明の作用)第一発明においては、集光鏡を経た
赤外光を結晶体の入射面から結晶体内に入射させ、これ
を被測定用試料を当接した全反射面上で集光して一回だ
け全反射させる。しかる後、出射面から出射する赤外光
のうち試料面上の測定点から全反射される出射光のみを
スリットにより選別して取り出し、これによって被測定
用試料面の赤外線全反射吸収スペクトルの測定を行う。
また、本発明の方式では対物鏡の焦点を最も強い赤外線
情報が得られる点、即ち試料面上の測定点に合わせてお
くことが合理的であり、従ってかかる対物鏡によってそ
のまま試料面の目視観察を並行して行うことができる。
(Operation of the First Invention) In the first invention, infrared light having passed through the condenser mirror is incident on the crystal from the incident surface of the crystal, and the infrared light is collected on the total reflection surface in contact with the sample to be measured. Light and totally reflected once. Thereafter, of the infrared light emitted from the emission surface, only the emission light that is totally reflected from the measurement point on the sample surface is selected and taken out by the slit, thereby measuring the infrared total reflection absorption spectrum of the sample surface to be measured. I do.
Further, in the method of the present invention, it is reasonable to keep the focus of the objective mirror at the point where the strongest infrared information can be obtained, that is, at the measurement point on the sample surface. Can be performed in parallel.

【0023】出射面から出射する赤外光のうち試料面の
10μmオーダーの測定点から全反射される出射光のみ
をスリットにより選別して取り出しても、試料面に対す
る多重全反射を行わないために結晶体内部での赤外光の
発散が少ない点、全反射面上に赤外光を集光させる点等
から試料面の単位面積当たりの光量利用率が高いため、
現在の赤外光検出器のレベルでも赤外線全反射吸収スペ
クトルの測定を有効に行い得る。
Even if only the outgoing light that is totally reflected from the measuring point of the order of 10 μm on the sample surface out of the infrared light emitted from the outgoing surface is selected and extracted by the slit, multiple total reflection on the sample surface is not performed. Because the divergence of infrared light inside the crystal body is small, and the infrared light is collected on the total reflection surface, etc., the utilization rate of light per unit area of the sample surface is high,
Even at the current level of the infrared light detector, the measurement of the infrared total reflection absorption spectrum can be effectively performed.

【0024】(第二発明の作用)第二発明において、被
測定用試料を当接させた結晶体をその柱軸方向へ平行移
動させることにより、移動方向に沿って、10μmオー
ダーの極微小エリア毎に分けた線分析が行われる。この
際、結晶体内部における赤外光の光路長および結晶体の
全反射面の相対的な位置は全く変化しないため、赤外光
の集光点は常に結晶体の全反射面上に位置する。即ち、
結晶体を柱軸方向へ平行移動しても全反射条件が一定で
あるため、精度の良い線分析が達成される。線分析に当
たり、対物鏡による試料面の観察を並行して行うと良
い。
(Function of the Second Invention) In the second invention, by moving the crystal in contact with the sample to be measured in parallel in the column axis direction, an extremely small area of the order of 10 μm is formed along the moving direction. A separate line analysis is performed. At this time, since the optical path length of the infrared light inside the crystal and the relative position of the total reflection surface of the crystal do not change at all, the focal point of the infrared light is always located on the total reflection surface of the crystal. . That is,
Since the total reflection condition is constant even when the crystal is moved in parallel in the column axis direction, accurate line analysis is achieved. In the line analysis, observation of the sample surface with an objective mirror may be performed in parallel.

【0025】(第三発明の作用)第三発明において、被
測定用試料を当接させた結晶体をその柱軸方向へ平行移
動させるときには、前記第二発明と同じ作用が起こる。
また、結晶体の平行移動が柱軸に対する直角方向への移
動量を含むときには、対物鏡及び集光鏡の開口数並びに
結晶体の屈折率に応じて測定点からの焦点のズレが起こ
るが、移動予定値を指令された制御システムがこのズレ
を予測演算し、次いでズレの解消に必要な出射光軸沿い
の修正移動量を演算して、演算結果に従い測定点からの
焦点のズレが起こらないように結晶体を移動させるべ
く、駆動機構を駆動させる。上記の修正移動は出射光軸
沿いのものであるため、測定点のズレを伴わない。これ
によって、試料面の自動面分析が可能になる。また、面
分析に当たり対物鏡の焦点が常に測定点に合致している
ので 、対物鏡による試料面の観察を並行して行うと良
い。
(Operation of the Third Invention) In the third invention, when the crystal body in contact with the sample to be measured is moved in parallel in the column axis direction, the same operation as in the second invention occurs.
Also, when the parallel movement of the crystal includes the amount of movement in the direction perpendicular to the column axis, a focus shift from the measurement point occurs according to the numerical aperture of the objective mirror and the focusing mirror and the refractive index of the crystal. The control system instructed with the expected movement value predicts and calculates this deviation, and then calculates the corrected movement amount along the emission optical axis necessary for eliminating the deviation, and the focal point does not deviate from the measurement point according to the calculation result. Drive mechanism to move the crystal as described above. Since the above-described correction movement is along the emission optical axis, there is no displacement of the measurement point. This enables automatic surface analysis of the sample surface. In addition, since the focal point of the objective mirror always coincides with the measurement point in the surface analysis, observation of the sample surface by the objective mirror may be performed in parallel.

【0026】(第四発明の作用)第四発明において、赤
外入射光は、特定の角度の関係をもって構成された少な
くとも3個の反射面(被測定用試料を当接させた全反射
面を含む。)で最低限3回反射されることにより入射光
と同軸上で出射される。
(Operation of the Fourth Invention) In the fourth invention, the infrared incident light is irradiated on at least three reflection surfaces (total reflection surfaces with which the sample to be measured is brought into contact) formed with a specific angle relationship. ), And is emitted coaxially with the incident light by being reflected at least three times.

【0027】(第五発明の作用)第五発明においては、
第一発明〜第四発明の特徴を全て備えているので、上記
第一発明〜第四発明の全ての作用を行う。
(Operation of the fifth invention) In the fifth invention,
Since all the features of the first to fourth inventions are provided, all the functions of the first to fourth inventions are performed.

【0028】[0028]

【発明の効果】【The invention's effect】

(第一発明の効果)第一発明によれば、試料面における
10μmオーダーの微小エリアの表面分析を、対物鏡に
よる目視観察のもとに行うことができる。
(Effect of the First Invention) According to the first invention, the surface analysis of a minute area of the order of 10 μm on the sample surface can be performed under visual observation with an objective mirror.

【0029】(第二発明の効果)第二発明によれば、被
測定用試料を当接した結晶体をその柱軸方向に沿って移
動させるという簡単な操作により、試料面における10
μmオーダーの微小エリア毎に分けた線分析を対物鏡に
よる目視観察のもとに行うことができる。
(Effects of the Second Invention) According to the second invention, the crystal in contact with the sample to be measured is moved along the axis of the column by a simple operation to move the crystal on the sample surface.
Line analysis divided into micro areas on the order of μm can be performed under visual observation with an objective mirror.

【0030】(第三発明の効果)第三発明によれば、被
測定用試料の試料面における測定点からの対物鏡焦点の
ズレを伴うことなく、試料面における10μmオーダー
の微小エリア毎に分けた線分析および面分析を対物鏡に
よる目視観察のもとに行うことができる。
(Effects of the Third Invention) According to the third invention, the sample to be measured is divided into small areas of the order of 10 μm on the sample surface without deviation of the focal point of the objective mirror from the measurement point on the sample surface. Line analysis and surface analysis can be performed under visual observation with an objective mirror.

【0031】(第四発明の効果)第四発明に係る結晶体
を用いるだけで入射光と出射光との光軸の一致が確保さ
れるので、従来多用されている集光鏡と対物鏡とを同一
軸線上に配置した集光光学系を有する赤外顕微鏡をその
まま利用して、赤外線全反射吸収測定装置を構成するこ
とができる。
(Effect of the Fourth Invention) Since the coincidence of the optical axes of the incident light and the outgoing light can be ensured only by using the crystal according to the fourth invention, the converging mirror and the objective mirror which have been frequently used in the prior art can be used. Can be used as it is to use an infrared microscope having a converging optical system in which the infrared ray is arranged on the same axis, to configure an infrared total reflection absorption measuring apparatus.

【0032】(第五発明の効果)第五発明によれば、上
記第一発明〜第四発明の全ての効果を同時に得ることが
できる。
(Effect of Fifth Invention) According to the fifth invention, all the effects of the first to fourth inventions can be obtained simultaneously.

【0033】[0033]

〔実施態様1〕[Embodiment 1]

(実施態様1の構成)本実施態様は、前記第四発明の一
実施態様である。図1(a)〜(d)に入射光の光軸と
出射光の光軸とが一致するように構成された柱状の結晶
体の例を示す。図1(c)は柱軸方向から見た形状が5
角柱のものを示し、同図の破線の矢印で赤外光の光路を
示すように、入射面と、被測定用試料を当接させる全反
射面を含んだ3個の反射面と、出射面とを有している。
反射面の一つには光反射用処理膜11が形成されてい
る。次に図1(d)は柱軸方向から見た形状が6角柱の
ものを示し、同図の破線の矢印で赤外光の進行方向を示
すように、入射面と、被測定用試料を当接させる全反射
面を含んだ4個の反射面と、出射面とを有している。ま
た図1(c)および図1(d)における図中の数字は結
晶体の各辺の長さの比率を示す。図1(c)および図1
(d)における入射面、反射面および出射面はいずれも
柱軸に平行な平面として形成されている。これらの結晶
体では、破線の光路に示すように入射光は結晶体内部で
3回および4回反射を繰り返し、入射光と同じ光軸上で
出射する。なお、図1(c)または図1(d)におい
て、各反射面のうちいずれを試料を当接させる全反射面
として用いるかは、赤外線全反射吸収測定装置の全体構
成との関係等に応じて、任意に選択できる。
(Structure of Embodiment 1) This embodiment is one embodiment of the fourth invention. FIGS. 1A to 1D show examples of columnar crystals configured so that the optical axis of incident light and the optical axis of outgoing light coincide with each other. FIG. 1C shows that the shape viewed from the column axis direction is 5.
As shown in the figure, an incident surface, three reflecting surfaces including a total reflecting surface to which the sample to be measured is brought into contact, and an emitting surface, as shown in FIG. And
A light reflection processing film 11 is formed on one of the reflection surfaces. Next, FIG. 1 (d) shows a hexagonal prism having a shape viewed from the column axis direction, and the incident surface and the sample to be measured are indicated by broken arrows in FIG. It has four reflecting surfaces including a total reflecting surface to be brought into contact, and an emitting surface. The numbers in FIGS. 1C and 1D indicate the ratio of the length of each side of the crystal. FIG. 1 (c) and FIG.
The incident surface, the reflecting surface and the emitting surface in (d) are all formed as planes parallel to the column axis. In these crystals, the incident light is reflected three times and four times inside the crystal as shown by the broken optical path, and is emitted on the same optical axis as the incident light. In FIG. 1 (c) or FIG. 1 (d), which one of the reflecting surfaces is used as the total reflecting surface for contacting the sample depends on the relationship with the overall configuration of the infrared ray total reflection absorption measuring device and the like. And can be arbitrarily selected.

【0034】更に、入射光と出射光が同軸上にある光学
系に、その内部における反射回数が4回である任意の形
状を有する結晶を配置した場合の一般式を示す。図1
(a)には結晶体の入射面8と出射面13が互いに平行
であり、かつ入射光の光軸に対して垂直に配置した場合
の光路を示す。ここで、結晶体内部における各反射面を
入射面側から反射面9,10,11および12とし、そ
れぞれの反射面における入射光と反射光のなす角度を
α、β、γ、δとすると、結晶の形状は以下の式を満足
する結晶体内部の4つの反射面および入、出射面から構
成される。
Further, a general formula is shown in the case where a crystal having an arbitrary shape whose number of reflections is four in the optical system is arranged in an optical system in which incident light and outgoing light are coaxial. FIG.
(A) shows an optical path when the incident surface 8 and the outgoing surface 13 of the crystal are parallel to each other and arranged perpendicular to the optical axis of the incident light. Here, assuming that the respective reflecting surfaces inside the crystal body are reflecting surfaces 9, 10, 11 and 12 from the incident surface side, and the angles between the incident light and the reflected light on the respective reflecting surfaces are α, β, γ and δ. The shape of the crystal is composed of four reflecting surfaces and an input and output surface inside the crystal satisfying the following formula.

【0035】α+δ=β+γ ・・・(1) 但し、α、β、γおよびδの中で少なくとも一つの角度
は臨界角の2倍以上であり、全反射条件を満たす。一
方、図1(b)のように、結晶体の入射面8と出射面1
3が互いに平行ではなく、入射光の光軸に対して任意の
傾きを有する場合は、(1)式の左辺を入・出射面にお
ける入射角と屈折角の項で補正することによって、
(2)式のように表すことができる。即ち、この場合の
結晶の形状は、入・出射面における入・出射角と結晶体
の屈折率を規定すれば、(2)式を満足する結晶体内部
の4つの反射面によって決まる。
Α + δ = β + γ (1) However, at least one of α, β, γ and δ is at least twice the critical angle and satisfies the condition of total reflection. On the other hand, as shown in FIG.
3 are not parallel to each other and have an arbitrary inclination with respect to the optical axis of the incident light, the left side of the equation (1) is corrected by the terms of the incident angle and the refraction angle at the entrance / exit surfaces.
It can be expressed as in equation (2). That is, the shape of the crystal in this case is determined by the four reflection surfaces inside the crystal satisfying the expression (2), provided that the input / output angles at the input / output surfaces and the refractive index of the crystal are defined.

【0036】 (α±θI )+(δ±θE )=β+γ ・・・(2) 但し、ここで θI =θIi−θIr θE =θEr−θEi θIi:入射面8への入射角 θIr:入射面8からの屈折角 θEr:出射面13からの屈折角 θEi:出射面13への入射角 である。(Α ± θ I ) + (δ ± θ E ) = β + γ (2) where θ I = θ Ii −θ Ir θ E = θ Er −θ Ei θ Ii : incidence surface 8 Θ Ir : refraction angle from the incident surface 8 θ Er : refraction angle from the exit surface 13 θ Ei : incident angle on the exit surface 13.

【0037】また、(2)式、左辺のカッコ内の項は、
第1反射光の光軸および第3反射光の光軸と入・出射軸
のなす角度をそれぞれθa およびθb とすると、 α>θa のとき、(α−θI ) α<θa のとき、(α+θI ) δ>θb のとき、(δ−θE ) δ<θb のとき、(δ+θE ) である。
In equation (2), the terms in parentheses on the left side are:
When each theta a and theta b optical axis and a third angle between the optical axis and the incident and emitting axis of the reflected light of the first reflected light, when α> θ a, (α- θ I) α <θ a when a case of (α + θ I) δ> θ b, when the (δ-θ E) δ < θ b, (δ + θ E).

【0038】以上、結晶体内部で4回反射する場合を例
にとり、結晶体内部に入射した入射光が同軸上で360
°の方向に出射する条件を理論的に説明したが、3回反
射および5回反射以上の場合についても同様に求めるこ
とができる。なお、以上の結晶体の入射面と反射面は、
それぞれの面における光の反射損失を抑えるために、入
射光と反射光の光軸に対して垂直な面であることが望ま
しい。更に、このような結晶体の形状は、結晶体内部で
容易に全反射条件が得られ、かつ結晶体の製作が容易で
あるような単純な構造が望ましく、このため結晶体の入
射面と第一反射面および出射面と最終反射面のなす角度
が30°から60°であり、しかも結晶体内部における
反射面はできるだけ少ないことが望ましい。
As described above, taking the case where the light is reflected four times inside the crystal as an example, the incident light that has entered the inside of the crystal is 360
Although the conditions for emitting light in the direction of ° have been theoretically described, the same can be obtained for the case of three or more reflections. The incident surface and the reflective surface of the above crystal are
In order to suppress the reflection loss of light on each surface, it is desirable that the surfaces are perpendicular to the optical axes of the incident light and the reflected light. Further, the shape of such a crystal is desirably a simple structure such that total reflection conditions can be easily obtained inside the crystal and the crystal can be easily manufactured. It is desirable that the angle formed between the one reflecting surface and the exit surface and the final reflecting surface is 30 ° to 60 °, and that the number of reflecting surfaces inside the crystal be as small as possible.

【0039】(実施態様1の作用)次に、結晶体内部で
4回反射し、そのうちの最終反射面を全反射面とする場
合の作用を図1(a)に基づいて説明すると、入射面を
通して結晶体内部に入射した赤外光は、まず第一反射面
において反射角α/2で反射し、反射光は結晶体内部を
伝播して、更に第二反射面において反射角β/2で反射
する。次いでこの赤外光は第三反射面において反射角γ
/2で反射をし、最終反射面に達する。最終反射面に入
射する赤外光は入射角30〜60°の全反射条件を満た
しており、反射角δ/2で全反射する。また、全反射し
た赤外光は入射光と光軸が一致し、結晶体内部へ入射し
た入射光に対して360°の方向へ出射する。このと
き、試料の被測定面を最終反射面の全反射面に密着させ
ることにより、赤外線全反射吸収測定が可能となる。
(Operation of Embodiment 1) Next, the operation in the case where the light is reflected four times inside the crystal body and the final reflection surface is the total reflection surface will be described with reference to FIG. The infrared light incident on the inside of the crystal through the reflector is first reflected on the first reflection surface at a reflection angle α / 2, the reflected light propagates inside the crystal body, and further reflected on the second reflection surface at a reflection angle β / 2. reflect. Next, this infrared light is reflected by the third reflection surface at a reflection angle γ.
/ 2, and reaches the final reflection surface. The infrared light incident on the final reflection surface satisfies the condition of total reflection at an incident angle of 30 to 60 °, and is totally reflected at a reflection angle δ / 2. The infrared light totally reflected has the optical axis coincident with the incident light, and is emitted in a direction of 360 ° with respect to the incident light having entered the inside of the crystal. At this time, by bringing the measured surface of the sample into close contact with the total reflection surface of the final reflection surface, infrared total reflection absorption measurement can be performed.

【0040】(実施態様1の効果)本実施態様の結晶体
を用いれば、結晶体に入射した赤外光を、その光軸と同
じ軸上で出射させることができる。このため、従来多用
されている集光鏡と対物鏡とを同一軸線上に配置した集
光光学系を有する赤外顕微鏡をそのまま利用して、赤外
線全反射吸収測定装置を構成することができる。
(Effect of Embodiment 1) By using the crystal of the present embodiment, infrared light incident on the crystal can be emitted on the same axis as its optical axis. For this reason, an infrared total reflection absorption measuring apparatus can be configured by using, as it is, an infrared microscope having a condensing optical system in which a condensing mirror and an objective mirror, which are conventionally frequently used, are arranged on the same axis.

【0041】〔実施態様2〕 (実施態様2の構成)本実施態様は、前記第四発明の結
晶体を前記第一発明に適用した場合の一実施態様であ
る。上記実施態様1の結晶体を用いて構成した赤外線全
反射吸収測定装置の例を図2、図3(a)、図3(b)
に示す。結晶体14は前記した図1(d)に示したもの
であり、略「く」の字形に屈曲した断面形状を持つ六角
形の柱状体である。結晶体14は入射面8、第1反射面
9、最終反射面12および出射面13を備え、最終反射
面12には試料押さえ15によって被測定用の試料16
が当接されている。
[Embodiment 2] (Structure of Embodiment 2) This embodiment is one embodiment in which the crystal of the fourth invention is applied to the first invention. FIGS. 2, 3 (a) and 3 (b) show examples of the infrared total reflection absorption measuring device constituted by using the crystal of the first embodiment.
Shown in The crystal body 14 is the one shown in FIG. 1D described above and is a hexagonal columnar body having a cross-sectional shape bent in a substantially “<” shape. The crystal body 14 has an entrance surface 8, a first reflection surface 9, a final reflection surface 12, and an exit surface 13, and the final reflection surface 12 has a sample holder 16 to be measured by a sample holder 15.
Is abutted.

【0042】かかる結晶体14をホルダー(図示省略)
に取りつけ、赤外顕微鏡に配置したものを図3(a)、
図3(b)に示す。ホルダーに取りつけた結晶体14が
試料保持部を構成する試料台17(3次元ステージ)上
に配置され、その上部には対物鏡18が、また下部には
集光鏡19が同一軸線上に設けられている。対物鏡18
の焦点は最終反射面12に合わせてあり、また結晶体1
4の各辺の長さは、赤外顕微鏡に取りつけた際に、集光
鏡の集光点と対物鏡の焦点が一致するよう調整されてい
る。試料台17は固定式のものでも良く、あるいは配置
した結晶体の柱軸方向〔図3(a)または図3(b)に
おける奥行き方向〕に沿って可動のものや、任意の3次
元方向へ可動のものでも良い。また、赤外顕微鏡には可
動のスリット20が付属していて、試料面上の被測定部
から反射する光のみを赤外顕微鏡に付属した検出器に送
り込むことができるようになっている。なお、図示は省
略するが、集光鏡19に対しては、切替え用の可動の反
射鏡を介して、赤外光又は可視光のいずれかを任意に照
射できるようになっている。
The crystal body 14 is placed in a holder (not shown).
Fig. 3 (a)
It is shown in FIG. The crystal 14 attached to the holder is placed on a sample stage 17 (three-dimensional stage) constituting a sample holding unit, and an objective mirror 18 is provided on the upper part thereof, and a condensing mirror 19 is provided on the lower part thereof on the same axis. Have been. Objective mirror 18
Are focused on the final reflecting surface 12 and the crystal 1
The length of each side of 4 is adjusted so that the focal point of the condenser mirror coincides with the focal point of the objective mirror when attached to the infrared microscope. The sample stage 17 may be a fixed type, a movable type along the column axis direction (depth direction in FIG. 3 (a) or FIG. 3 (b)) of the arranged crystal, or an arbitrary three-dimensional direction. It may be movable. The infrared microscope is provided with a movable slit 20 so that only light reflected from a measured portion on the sample surface can be sent to a detector attached to the infrared microscope. Although not shown, the condenser mirror 19 can be arbitrarily irradiated with either infrared light or visible light via a movable reflecting mirror for switching.

【0043】(実施態様2の作用)結晶体14の全反射
面のいずれかの一面(本実施態様では最終反射面12)
に試料16を密着させ、入射面8に集光鏡19から赤外
光を照射する。入射光は図2に示すように結晶体14内
部で反射して、最終反射面12上で集光され、ある深さ
だけ試料側に入り込んでから全反射する。この全反射光
をスリットで選別することにより試料16における10
μmオーダーの微小エリアの赤外線全反射吸収スペクト
ルが測定される。このスペクトルを解析することによっ
て試料面の微小エリアの分析が行われる。
(Effect of Embodiment 2) Any one of the total reflection surfaces of the crystal 14 (the final reflection surface 12 in this embodiment)
The sample 16 is brought into close contact with the sample, and the incident surface 8 is irradiated with infrared light from a condenser mirror 19. The incident light is reflected inside the crystal body 14 as shown in FIG. 2 and is condensed on the final reflection surface 12, enters the sample side to a certain depth, and is totally reflected. The total reflection light is sorted by a slit to obtain 10
An infrared total reflection absorption spectrum of a micro area on the order of μm is measured. By analyzing this spectrum, a minute area on the sample surface is analyzed.

【0044】本実施態様において、試料台17を駆動さ
せて結晶体14を平行移動させることにより試料面の赤
外線全反射吸収スペクトルを連続的に測定し、試料面上
の線分析、面分析を行うこともできる。線分析を結晶体
14の柱軸方向沿いに行う場合には、対物鏡18の焦点
が測定点からズレない。その他の方向への線分析や面分
析を行う場合には、対物鏡18の焦点が測定点からズレ
るので、このズレの修正のために試料台17の移動を適
宜調整する。また、この調整移動に伴い、必要な場合に
は、対物鏡18の焦点も調整する。対物鏡18による試
料面の観察を並行して行えば、線分析や面分析のための
試料16の移動をより迅速、正確に行うことができる。
なお、この観察において、試料16の結晶体14に対す
る密着性が良く、且つ試料16の可視光に対する吸収係
数が高い程、鮮明な像が観察される。
In this embodiment, the sample table 17 is driven to move the crystal 14 in parallel, so that the infrared total reflection absorption spectrum of the sample surface is continuously measured, and line analysis and surface analysis on the sample surface are performed. You can also. When the line analysis is performed along the column axis direction of the crystal 14, the focal point of the objective 18 does not deviate from the measurement point. When performing line analysis or surface analysis in other directions, the focus of the objective mirror 18 deviates from the measurement point. Therefore, the movement of the sample stage 17 is appropriately adjusted to correct the deviation. In addition, with the adjustment movement, the focus of the objective mirror 18 is adjusted if necessary. If the observation of the sample surface by the objective mirror 18 is performed in parallel, the movement of the sample 16 for line analysis or surface analysis can be performed more quickly and accurately.
In this observation, a clearer image is observed as the adhesion of the sample 16 to the crystal 14 is better and the absorption coefficient of the sample 16 for visible light is higher.

【0045】(実施態様2の効果)被測定用試料におけ
る10μmオーダーの微小エリアの赤外線全反射吸収ス
ペクトルを測定することができる。赤外線全反射吸収測
定装置によって得られる情報は、化学結合の伸縮振動、
変角振動に基づく赤外線の吸収スペクトルであり、これ
によって表面層の化学組成や成分の化学変化を特定で
き、表面の経時変化や劣化を解析できる。また、線分
析、面分析によって試料表面の部位毎の化学組成や成分
の化学変化の違いを分析できるので、部位による経時変
化や劣化の受け方の違い、あるいは影響の受け方の違い
を分析して、製品や素材の開発、改良の有効な手段とし
て応用できる。
(Effect of Second Embodiment) The infrared total reflection absorption spectrum of a small area of the order of 10 μm in the sample to be measured can be measured. The information obtained by the infrared total reflection absorption measurement device is
This is an infrared absorption spectrum based on the bending vibration, whereby a chemical change of a chemical composition or a component of a surface layer can be specified, and a temporal change or deterioration of a surface can be analyzed. In addition, since the difference in chemical composition and chemical change of each component on the sample surface can be analyzed by line analysis and surface analysis, the difference in the way of time-dependent change and deterioration or the way of influence by the part can be analyzed. It can be applied as an effective means of developing and improving products and materials.

【0046】〔参考例1〕 (参考例1の構成) 参考例は、前記第一発明において、集光鏡と対物鏡と
を同一軸線上に配置しなくても良い場合の2,3の実施
態様に関する。これらの説明において、対物鏡18、集
光鏡19、試料台17については前記実施態様2の場合
と同様なので詳しい説明を省略する。
[0046][Reference Example 1] (Configuration of Reference Example 1)  BookReference exampleIn the first invention, the converging mirror and the objective mirror
Of two or three cases where it is not necessary to arrange on the same axis
For aspects. In these descriptions, the objective 18, the collection
The optical mirror 19 and the sample stage 17 are in the case of the second embodiment.
Therefore, detailed description is omitted.

【0047】図4(a)〜(c)に示す実施態様におい
ては、断面形状が平行四辺形を示す柱状の結晶体14
a,14b,14cをそれぞれ用いる。各結晶体14
a,14b,14cはそれぞれ1個の入射面8a,8
b,8c、1個の第1反射面10a,10b,10c、
1個の最終反射面12a,12b,12cおよび1個の
出射面13a,13b,13cを備えている。図に略示
する集光鏡および対物鏡はそれぞれ矢印で示す光路上、
即ち平行であるが互いにずれた軸線上に配置されてい
る。被測定用試料16は図示のように最終反射面12
a,12b,12cに当接する場合のほか、第一反射面
10a,10b,10cに当接して測定することもでき
る。各結晶体14a,14b,14cの断面形状の平行
四辺形における内角のうち鋭角の角度は各反射面10
a,10b,10c、12a,12b,12cにおける
入射角度と反射角度に相当し、全反射条件を満たす上で
は、図4(a)に示す30°〜図4(c)に示す60°
の範囲で任意の角度のものを利用できるが、図4(b)
に示す45°前後のものが望ましい。
In the embodiment shown in FIGS. 4A to 4C, the columnar crystal 14 having a parallelogram cross section is shown.
a, 14b, and 14c are used, respectively. Each crystal 14
a, 14b and 14c are one incident surface 8a and 8 respectively.
b, 8c, one first reflecting surface 10a, 10b, 10c,
It has one final reflection surface 12a, 12b, 12c and one emission surface 13a, 13b, 13c. The focusing mirror and the objective mirror schematically shown in the figure are respectively on the optical path indicated by the arrow,
That is, they are arranged on axes that are parallel but offset from each other. The sample 16 to be measured is placed on the final reflection surface 12 as shown in FIG.
In addition to the case of contact with the first reflective surfaces a, 12b, and 12c, the measurement can be performed by contacting the first reflective surfaces 10a, 10b, and 10c. The acute angle among the internal angles in the parallelogram of the cross-sectional shape of each crystal body 14a, 14b, 14c
a, 10b, 10c, 12a, 12b, and 12c, which correspond to the incident angle and the reflection angle, and satisfying the total reflection condition, from 30 ° shown in FIG. 4A to 60 ° shown in FIG.
Any angle can be used in the range of FIG.
Of about 45 ° shown in FIG.

【0048】図5(a)に示す参考例においては、断面
形状が直角三角形を示す柱状の結晶体14dを用いる。
この結晶体14dは1個の入射面8d、1個の全反射面
12dおよび1個の出射面13dを備えている。結晶体
14dの形状に対応して、図に略示する集光鏡および対
物鏡は互いに直角をなす軸線上に配置されている。試料
16は全反射面12dに当接して測定に供される。
In the reference example shown in FIG. 5A, a columnar crystal 14d having a right-angled triangular cross section is used.
The crystal 14d has one incident surface 8d, one total reflection surface 12d, and one exit surface 13d. According to the shape of the crystal 14d, the condenser mirror and the objective mirror, which are schematically shown in the figure, are arranged on axes perpendicular to each other. The sample 16 is brought into contact with the total reflection surface 12d for measurement.

【0049】図5(b)に示す参考例においては、断面
形状が直角三角形を示す柱状の前結晶体14dを用いる
と共に、その全反射面12dと平衡に、赤外光反射用の
平面鏡21を配置しており、且つ平面鏡21は適当な連
結手段(図示省略)によって結晶体14dと一体に構成
されている。従って、この平面鏡21は実質的に前記結
晶体14bにおける第一反射面10bに相当し、本参考
は前記した図4(b)の参考例と実質的に等しい。
In the reference example shown in FIG. 5 (b), a columnar precrystal 14d having a right-angled triangle in cross section is used, and a plane mirror 21 for reflecting infrared light is equilibrated with the total reflection surface 12d. The plane mirror 21 is arranged, and is integrally formed with the crystal 14d by a suitable connecting means (not shown). Therefore, this plane mirror 21 corresponds to the first reflective surface 10b in substantially the crystals 14b, this reference
The example is substantially the same as the above-described reference example of FIG.

【0050】(参考例1の作用) 参考例の作用は前記実施態様2のものと基本的に同様
である。但し、結晶体内部における反射回数が1回また
は2回だけである点、入射光軸と反射光軸がずれている
点が異なる。面分析や一定の方向への線分析を行う場合
における反射面上からの集光点のズレ、このズレの修正
のためにする試料台17の調整移動、この調整移動に伴
う対物鏡18の焦点調整の必要性についても実施態様2
の場合と同様である。
[0050](Operation of Reference Example 1)  BookReference exampleIs basically the same as that of the second embodiment.
It is. However, if the number of reflections inside the crystal is one or
Is only twice, the incident optical axis and the reflected optical axis are shifted
The points are different. When performing surface analysis or line analysis in a certain direction
Of the focal point from the reflective surface at
Movement of the sample stage 17 for
Embodiment 2 also describes the necessity of adjusting the focus of the objective mirror 18.
Is the same as

【0051】(参考例1の効果) 参考例の効果は、前記実施態様2の効果と基本的に同
様である。なお、比較的簡単な断面形状の柱状結晶体を
用いて、全反射条件(赤外光の入射角度)を変化させる
ことなく試料面上の任意の部位へ赤外光を導くことがで
きるという利点がある。
[0051](Effect of Reference Example 1)  BookReference exampleIs basically the same as the effect of the second embodiment.
It is like. Note that a columnar crystal with a relatively simple cross-section
To change the total reflection condition (incident angle of infrared light)
Infrared light can be guided to any part of the sample surface without
There is an advantage that can be.

【0052】〔実施態様〕 (実施態様3の構成) 本実施態様は、第三発明の一実施態様である。前記実施
態様2の赤外線全反射吸収測定装置における試料台17
の駆動機構に次の制御システムを付加し、線分析あるい
は面分析において試料台17の移動の調整を自動化する
ことができる。参考例1の赤外線全反射吸収測定装置に
対しても、詳しくは述べないが、同様に適用できる。こ
のシステムは、結晶体14を任意の方向へ平行移動させ
た際の測定点からの対物鏡18の焦点のズレを予測演算
し、次いでこの予測値に基づき前記ズレを解消するに必
要な出射光軸沿いの修正移動量を演算し、これらの演算
結果に従って駆動機構を駆動させるものである。
[Embodiment 3 ] (Structure of Embodiment 3) This embodiment is one embodiment of the third invention. Sample table 17 in the infrared total reflection absorption measuring apparatus of the second embodiment.
The following control system can be added to the drive mechanism described above to automatically adjust the movement of the sample stage 17 in line analysis or surface analysis. Although not described in detail, the infrared total reflection reflection measuring apparatus of Reference Example 1 can be similarly applied. This system predicts and calculates the shift of the focal point of the objective mirror 18 from the measurement point when the crystal 14 is translated in an arbitrary direction, and then calculates the outgoing light necessary to eliminate the shift based on the predicted value. The correction movement amount along the axis is calculated, and the drive mechanism is driven according to the calculation results.

【0053】上記制御システムは具体的には、例えば、
測定点を移動し、移動後の測定点に焦点を合わせて行う
赤外線全反射吸収測定において、柱状結晶体の屈折率と
全反射面で反射した光束の空気中における出射開口角
(結晶から出射する光束の対物鏡に張る角度)とから前
記光束の前記結晶体中における出射開口角を演算する第
1の演算手段と、全反射面における法線と該全反射面に
おける全反射光の出射光軸とのなす角度を記憶する第1
の記憶手段と、前記全反射光の出射光軸方向をz軸方
向、該z軸方向に直交する前記結晶体の柱軸方向をy軸
方向、該y軸方向および前記z軸方向に直交する方向を
x軸方向とした時の移動前の測定点から移動後の測定点
までのベクトルのx成分を記憶する第2の記憶手段と、
前記空気中および結晶体中における出射開口角および前
記ベクトルのx成分に基づき前記結晶体を前記z軸方向
に移動させる距離を演算する第2の演算手段と、前記ベ
クトルのx成分およびz軸方向の移動に基づき試料保持
部の駆動を制御する手段とからなる。
The above control system is specifically, for example,
In the infrared total reflection absorption measurement performed by moving the measurement point and focusing on the moved measurement point, the refractive index of the columnar crystal and the exit aperture angle in the air of the luminous flux reflected by the total reflection surface (exit from the crystal First calculating means for calculating the exit aperture angle of the light beam in the crystal body from the angle of the light beam to the objective mirror), the normal line on the total reflection surface, and the emission optical axis of the total reflection light on the total reflection surface The first to memorize the angle made with
The storage optical means, and the emission optical axis direction of the total reflection light is the z-axis direction, and the column direction of the crystal body that is orthogonal to the z-axis direction is the y-axis direction, and is orthogonal to the y-axis direction and the z-axis direction. Second storage means for storing an x component of a vector from a measurement point before movement to a measurement point after movement when the direction is the x-axis direction;
Second calculating means for calculating a distance by which the crystal is moved in the z-axis direction based on an exit aperture angle in the air and the crystal and an x-component of the vector, and an x-component of the vector and a z-axis direction Means for controlling the driving of the sample holder based on the movement of the sample holder.

【0054】さらに上記制御システムは、例えば、上記
の構成に記載した移動前の測定点から移動後の測定点ま
でのベクトルのy成分(結晶体14の柱軸方向の成分)
を記憶する第3の記憶手段を付加した構成としても良
い。
Further, the above-mentioned control system may include, for example, the y component of the vector from the measurement point before the movement to the measurement point after the movement described above (the component in the column axis direction of the crystal 14).
May be added to a third storage means for storing the information.

【0055】(実施態様の作用) 前記図2に示した結晶体14を用いて図6に示すように
x−z面上で測定点をずらして試料表面の赤外線全反射
吸収測定を行う場合を考える。結晶体14を矢印22方
向へ平行移動させることにより試料16における測定点
をずらすと、赤外光の結晶体への入射位置も変わるた
め、移動前の光束23が移動後は光束24で示す位置へ
移り、集光鏡の焦光点(対物鏡の焦点)が全反射面12
に合わなくなる。このズレは結晶体14をz軸方向へ必
要な距離だけ平行移動させることにより解消させること
ができる。
(Effect of Embodiment 3 ) In the case where the measurement point is shifted on the xz plane as shown in FIG. 6 using the crystal 14 shown in FIG. think of. When the measurement point on the sample 16 is shifted by moving the crystal body 14 in the direction of the arrow 22 in parallel, the incident position of the infrared light on the crystal body also changes, so that the light beam 23 before the movement is indicated by the light beam 24 after the movement. To the focal point of the condenser mirror (the focal point of the objective mirror)
Will not fit. This displacement can be eliminated by moving the crystal 14 in parallel in the z-axis direction by a required distance.

【0056】このズレを解消するため、第1の演算手段
は結晶体の屈折率と全反射面で反射した光束の空気中に
おける出射開口角とを用いた演算を行い前記光束の結晶
体内における出射開口角を求め、これを第2の演算手段
へ出力する。また、第1の記憶手段は試料測定用の全反
射面における法線と該全反射面における全反射光の出射
光軸とのなす角度(反射角)を記憶しており、これを第
2の演算手段へ出力する。さらに、第2の記憶手段は移
動前の測定点から移動後の測定点までのベクトルのx成
分を記憶しており、これを第2の演算手段へ出力する。
第2の演算手段ではこれら3つの値を用いて演算を行
い、移動後の測定点に集光鏡の集光点(対物鏡の焦点)
を一致させるために必要なz軸方向の移動距離を求め、
試料保持部の駆動を制御する手段へ出力する。
In order to eliminate this deviation, the first calculating means performs a calculation using the refractive index of the crystal and the exit aperture angle of the light beam reflected by the total reflection surface in the air, and outputs the light beam in the crystal. The aperture angle is obtained and output to the second calculating means. The first storage means stores an angle (reflection angle) between a normal line on the sample-measuring total reflection surface and an emission optical axis of the total reflection light on the total reflection surface, and stores the angle in the second storage device. Output to arithmetic means. Further, the second storage means stores the x component of the vector from the measurement point before movement to the measurement point after movement, and outputs this to the second calculation means.
The second calculating means performs a calculation using these three values, and sets the converging point of the converging mirror (focal point of the objective mirror) at the measurement point after the movement.
Find the moving distance in the z-axis direction necessary to match
Output to means for controlling the driving of the sample holding unit.

【0057】上記の第3の記憶手段を付加した構成とし
た場合、この記憶手段がy軸方向の移動距離を記憶し
て、試料保持部の駆動を制御する手段へ出力する。
In the case where the above-mentioned third storage means is added, this storage means stores the moving distance in the y-axis direction and outputs it to the means for controlling the driving of the sample holding unit.

【0058】(実施態様の効果) 本実施態様によれば、測定点を結晶体の柱軸方向以外
の方向へずらせた時の集光鏡の集光点(対物鏡の焦点)
のズレを試料保持部の移動によって自動的に解消するこ
とができる。よって、前記実施様態2の項の、線分析を
結晶体14の柱軸方向沿いに行う場合と併せ、赤外線全
反射吸収による試料面上の任意の方向への線分析や、こ
れら線分析の組み合わせとしての試料面上の任意のエリ
アの面分析を簡易、迅速に行うことができる。
(Effect of Third Embodiment) According to the third embodiment, the light-collecting point of the light-collecting mirror (the focal point of the objective mirror) when the measurement point is displaced in a direction other than the column axis direction of the crystal body.
Can be automatically eliminated by moving the sample holder. Therefore, in addition to the case where the line analysis is performed along the column axis direction of the crystal body 14 in the section of the second embodiment, the line analysis in an arbitrary direction on the sample surface by the infrared total reflection absorption or a combination of these line analysis is performed. Surface analysis of an arbitrary area on the sample surface can be performed simply and quickly.

【0059】〔実施態様〕 本実施態様は、第一発明〜第五発明における反射用結晶
体の材料や赤外光の光路長の設計等に関する。
[Embodiment 4 ] This embodiment relates to the design of the material of the reflecting crystal and the design of the optical path length of infrared light in the first to fifth inventions.

【0060】結晶体は、これに入射した赤外光の光量の
減少を防ぐため、被測定用試料を当接しない反射面をア
ルミニウムや金等の表面処理膜(例えば前記光反射用処
理膜11)で被覆しても良い。これによって反射面にお
ける反射率の低下を防止でき、結晶外への赤外光の散逸
が抑えられるため、光束の利用率を高めることができ
る。
In order to prevent a decrease in the amount of infrared light incident on the crystal, a reflection surface that does not come into contact with the sample to be measured is coated with a surface treatment film such as aluminum or gold (for example, the light reflection treatment film 11). ). As a result, it is possible to prevent a decrease in the reflectance on the reflection surface, and to suppress the dissipation of the infrared light to the outside of the crystal.

【0061】結晶体の材料としては、赤外線を透過し、
且つ屈折率が2以上のもの、例えば一般的に赤外線全反
射吸収測定用に用いられるセレン化亜鉛、KRS−5、
ゲルマニウム、シリコン等を利用できるが、試料の肉眼
による観察を可能にするため、可視光に対する透過性が
良好なセレン化亜鉛やKRS−5が特に望ましい。
As a material of the crystal, infrared rays are transmitted,
And those having a refractive index of 2 or more, for example, zinc selenide, KRS-5, which is generally used for infrared total reflection absorption measurement,
Although germanium, silicon, or the like can be used, zinc selenide or KRS-5, which has good transparency to visible light, is particularly preferable in order to enable the observation of the sample with the naked eye.

【0062】赤外光が全反射面上で集光するような光路
長の設定は、屈折率を指標とする結晶体構成材料の選
択、結晶体の形状やサイズの設定、入射開口角(入射す
る光束の集光鏡に張る角度)と出射開口角の設定、結晶
体と集光鏡および対物鏡の相対位置の設定等の種々のフ
ァクターを適当に組み合わせることで、任意に行うこと
ができる。その一例として、結晶体の断面形状が平行四
辺形でその鋭角が45°であり、また入射開口角と出射
開口角が各々60°で該結晶体の光軸方向の厚さと屈折
率が各々6mmと2.4である場合、結晶体内部におけ
るその適切な光路長を求めると16.3mmとなる。
The setting of the optical path length so that the infrared light is focused on the total reflection surface is performed by selecting the crystal constituting material using the refractive index as an index, setting the shape and size of the crystal, and setting the incident aperture angle (incident angle). The angle can be arbitrarily determined by appropriately combining various factors such as setting of the angle of the light beam to be focused on the condenser mirror and the exit aperture angle, and setting of the relative positions of the crystal, the condenser mirror, and the objective mirror. As an example, the cross section of the crystal is a parallelogram, the acute angle of which is 45 °, the entrance aperture angle and the exit aperture angle are each 60 °, and the thickness and the refractive index of the crystal in the optical axis direction are each 6 mm. And 2.4, the appropriate optical path length inside the crystal is 16.3 mm.

【0063】〔実施例1〕本実施例では、セレン化亜鉛
から成り、前記図2に示した断面形状を持つ結晶体を用
いた。この断面形状において、中央の屈曲部の屈曲角を
90°、結晶の縦方向の全長を6mm、底辺および頂辺
の長さを5.15mm、柱軸方向の長さを15mmとし
た。かかる結晶体を図示省略のホルダーに取りつけて前
記図3に示すように赤外顕微鏡の光学系に配置し、且つ
図示の通りに被測定用試料を全反射面に当接させた状態
に保持して、この全反射面に対物鏡の焦点を合わせた。
なお、本実施例における入射開口角と出射開口角は各々
60°であり、全反射面上に集光鏡の集光点と対物鏡の
焦点とが位置するように結晶体内部での光路長が設定さ
れている。
Example 1 In this example, a crystal made of zinc selenide and having the sectional shape shown in FIG. 2 was used. In this cross-sectional shape, the bending angle of the central bending portion was 90 °, the total length in the vertical direction of the crystal was 6 mm, the lengths of the bottom and top sides were 5.15 mm, and the lengths in the column axis direction were 15 mm. The crystal is attached to a holder (not shown) and placed in an optical system of an infrared microscope as shown in FIG. 3, and the sample to be measured is held in a state of being in contact with the total reflection surface as shown in the figure. The objective mirror was focused on this total reflection surface.
In this embodiment, the entrance aperture angle and the exit aperture angle are each 60 °, and the optical path length inside the crystal is set so that the focal point of the condenser mirror and the focal point of the objective mirror are located on the total reflection surface. Is set.

【0064】上記の被測定用試料として、厚さ12μm
のポリフッ化ビニリデンフィルムの断面を使用し、断面
側を結晶体に密着させて10μm角の視野から反射する
赤外光の赤外全反射吸収スペクトルを測定した。測定結
果を図7に示すが、前記の12μm幅の切片について明
瞭な赤外全反射吸収スペクトルが測定されており、10
μmオーダーの極微小エリアの測定が十分に可能である
ことを示している。
The sample to be measured has a thickness of 12 μm
A cross section of the polyvinylidene fluoride film was used, and the cross section was brought into close contact with the crystal to measure the infrared total reflection absorption spectrum of infrared light reflected from a 10 μm square visual field. FIG. 7 shows the measurement results. A clear infrared total reflection absorption spectrum was measured for the section having a width of 12 μm.
This shows that measurement of an extremely small area on the order of μm is sufficiently possible.

【0065】〔実施例2〕図8に示すように、実施例1
と同じ結晶体14を用い、同じ全反射面にアスベスト、
レジンおよびカシューダストからなる複合材の表面を被
測定用の試料16として密着させて図の矢印方向への線
分析を行ない、順次160枚の赤外全反射吸収スペクト
ルの線図を得た。これよりアスベスト、レジンおよびカ
シューダストの各成分に固有の特性吸収帯を選び出し、
その吸収強度を測定位置に対してプロットした。その結
果を図9に示す。図中25(点線のグラフ)はレジン、
26(実線のグラフ)はアスベスト、27(破線のグラ
フ)はカシューダストの試料面上での分布を示す。この
ように、複合材表面における各成分の分布状態を明瞭に
判別できた。
[Embodiment 2] As shown in FIG.
Asbestos on the same total reflection surface using the same crystal 14 as
The surface of the composite material composed of resin and cashew dust was brought into close contact with a sample 16 to be measured, and line analysis was performed in the direction of the arrow in the figure, to thereby obtain 160 infrared total reflection absorption spectrum diagrams sequentially. From this, select the characteristic absorption band specific to each component of asbestos, resin and cashew dust,
The absorption intensity was plotted against the measurement position. FIG. 9 shows the result. In the figure, 25 (dotted line graph) is a resin,
26 (solid line graph) shows asbestos distribution, and 27 (dashed line graph) shows cashew dust distribution on the sample surface. Thus, the distribution state of each component on the composite material surface could be clearly discriminated.

【0066】〔実施例3〕実施例1と同じ結晶を用い、
同じ全反射面に赤インクの微粒子を塗布して赤外顕微鏡
にて目視観察した。観察面が45°だけ傾いているため
該インク粒子の像は偏平化してはいたが、明瞭に観察で
き、そのままの状態でインク粒子の赤外全反射吸収スペ
クトルを測定できた。このように、対物鏡の焦点を全反
射面上に合わせることにより、極めて微小な対象を観察
しながら赤外全反射吸収スペクトルを測定することがで
きる。
Example 3 Using the same crystal as in Example 1,
Fine particles of red ink were applied to the same total reflection surface and visually observed with an infrared microscope. Although the image of the ink particles was flattened because the observation surface was inclined by 45 °, the image was clearly observed, and the infrared total reflection absorption spectrum of the ink particles could be measured as it was. As described above, by focusing the objective mirror on the total reflection surface, the infrared total reflection absorption spectrum can be measured while observing an extremely small object.

【0067】〔実施例4〕実施例1の赤外線全反射吸収
測定装置において、線分析、面分析を自動的に行うため
の駆動機構制御手段として、図10に示す制御システム
を付加した。この制御システムは、屈折率nを記憶する
手段28、全反射した光束の空気中における出射開口角
の半分の角度iを記憶する第1の記憶手段29、試料面
における法線と出射光軸とのなす角度θを記憶する手段
30、全反射した光束の結晶体内における出射開口角の
半分の角度rを演算する第1の演算手段31、x軸方向
への移動距離lxを記憶する第2の記憶手段32、z軸
方向への移動距離lzを演算する第2の演算手段33、
試料保持部の制御手段34、試料保持部の駆動用モータ
35を含んでいる。なお、図10でいうx,y,z軸方
向は、前記図6の場合と一致している。
[Embodiment 4] In the infrared total reflection absorption measuring apparatus of Embodiment 1, a control system shown in FIG. 10 was added as a drive mechanism control means for automatically performing line analysis and surface analysis. The control system includes a means 28 for storing a refractive index n, a first storage means 29 for storing an angle i of a half of the exit aperture angle of the totally reflected light beam in the air, a normal line on the sample surface, an output optical axis, Means 30 for calculating an angle r of a half of the exit aperture angle of the totally reflected light beam in the crystal body, and second means for storing a moving distance lx in the x-axis direction. A storage means 32, a second calculation means 33 for calculating a moving distance lz in the z-axis direction,
It includes a control unit 34 for the sample holding unit and a motor 35 for driving the sample holding unit. The x-, y-, and z-axis directions in FIG. 10 correspond to those in FIG.

【0068】第2の演算手段33で行うz方向への移動
距離lzの計算は次のように行う。図11に示すよう
に、赤外光の集光点と対物鏡の焦点とが全反射面12上
に位置しつつ、測定点移動前の対物鏡への反射光束36
が、測定点移動後の対物鏡への反射光束37へ移行した
場合、測定点移動前後の出射面13から対物鏡の空気中
における焦点までの距離をlzb1 ,lza1 、測定点移動
前後の出射面13から対物鏡の結晶体中における焦点ま
での距離をlzb2 ,lza2 とすると、移動前の対物鏡の
焦点を移動後の全反射面12上の測定点に合わせるため
にはlzb1 −lza1 =lz だけ試料保持部をz軸方向へ
移動させれば良い。
The calculation of the moving distance lz in the z direction performed by the second calculating means 33 is performed as follows. As shown in FIG. 11, while the focal point of the infrared light and the focal point of the objective mirror are located on the total reflection surface 12, the reflected light flux 36 to the objective mirror before the measurement point is moved.
However, when the reflected light flux 37 to the objective mirror after the movement of the measurement point is shifted, the distance from the emission surface 13 before and after the movement of the measurement point to the focal point of the objective mirror in the air is l zb1 , l za1 , and the distance before and after the movement of the measurement point. Assuming that the distances from the exit surface 13 to the focal point in the crystal of the objective mirror are l zb2 and l za2 , it is necessary to set l zb1 to adjust the focal point of the objective mirror before the movement to the measurement point on the total reflection surface 12 after the movement. The sample holder may be moved in the z-axis direction by −l za1 = l z .

【0069】そして、図11の関係を式で示すと、 lza1 ・tan i=lza2 ・tan r (3) lzb1 ・tan i=lzb2 ・tan r (4) lzb2 −lza2 =lx ・tan θ (5) n=sin i/sin r (6)Then, the relationship of FIG. 11 is expressed by an equation: l za1 · tan i = l za2 · tan r (3) l zb1 · tan i = l zb2 · tan r (4) l zb2 -l za2 = l x · tan θ (5) n = sin i / sin r (6)

【0070】求めたいz軸方向の移動距離lz =lzb1
−lza1 に(3)式および(4)式を代入すると、 lz =(lzb2 −lza2 )・tan r/tan i これに(5)式を代入して、 lz =lx ・tan θ・tan r/tani tan rはiが与えられれば(6)式から求まるので、l
z はθ,i,nが与えられれば決定できる。
The moving distance l z = l zb1 in the z -axis direction to be obtained
Substituting (3) and (4) the -l za1, by substituting l z = (l zb2 -l za2 ) · tan r / tan i This equation (5), l z = l x · tan θ · tan r / tani tan r is given by equation (6) if i is given.
z can be determined if θ, i, and n are given.

【0071】本実施例では空気中における出射開口角が
60°の対物鏡、および屈折率2.4で全反射面におけ
る法線と出射光軸とのなす角度45°の結晶体を用いた
ので、x軸方向の測定点の移動距離lx を100μmと
したとき、演算によりz軸方向の測定点の移動距離lz
として、37μmが求められた。この数値に基づき試料
保持部が駆動され、x軸方向の線分析が行われた。
In this embodiment, an objective mirror having an exit aperture angle of 60 ° in air and a crystal having a refractive index of 2.4 and an angle of 45 ° between the normal to the total reflection surface and the exit optical axis are used. , When the moving distance l x of the measuring point in the x-axis direction is 100 μm, the moving distance l z of the measuring point in the z-axis direction is calculated.
Was determined as 37 μm. The sample holding unit was driven based on this numerical value, and a line analysis in the x-axis direction was performed.

【0072】〔実施例5〕上記実施例4における図10
のシステムにy軸方向の移動距離ly を記憶する第3の
記憶手段38を付加した(図12参照)。本システムに
よって任意の方向の線分析、面分析が可能になった。ま
た、試料保持部の制御手段34と試料保持部の駆動用モ
ータ35との間にアクチュエータコントローラ39を配
置し、さらに移動距離を感知する位置センサ40を試料
保持部に設けている。アクチュエータコントローラ39
は試料保持部の制御手段34の指令に基づいて試料保持
部の駆動用モータ35を駆動することができ、測定点の
移動距離を直接入力することによって駆動用モータ35
を駆動することもできる。また、位置センサ40の信号
を試料保持部の制御手段34あるいはアクチュエータコ
ントローラ39にフィードバックすることによって試料
保持部の移動を正確に行っても良い。本実施例によれば
各測定点における焦点のズレが殆どない高精度の自動シ
ステムを構成できる。
[Embodiment 5] FIG.
It was added a third storage means 38 for storing the moving distance l y in the y-axis direction of the system (see Figure 12). This system enables line analysis and surface analysis in any direction. Further, an actuator controller 39 is arranged between the control means 34 of the sample holding unit and the driving motor 35 of the sample holding unit, and a position sensor 40 for detecting a moving distance is provided in the sample holding unit. Actuator controller 39
Can drive the drive motor 35 of the sample holder based on the command of the control means 34 of the sample holder. The drive motor 35 can be driven by directly inputting the moving distance of the measurement point.
Can also be driven. Further, the signal of the position sensor 40 may be fed back to the control unit 34 of the sample holding unit or the actuator controller 39 to move the sample holding unit accurately. According to this embodiment, it is possible to configure a high-precision automatic system with almost no focus shift at each measurement point.

【0073】〔参考例2〕 本参考例では、セレン化亜鉛から成り、図13に示す平
行四辺形の断面形状を持つ柱状の結晶体41を用いた。
この断面形状において、鋭角部の角度を45°、結晶の
縦方向の全長を6mm、底辺および長辺の長さを10.
3mm、柱軸方向の長さを15mmとした。かかる結晶
体を図示省略のホルダーに取りつけて前記図3に示した
場合と同様に赤外顕微鏡の光学系に配置した(図示省
略)。なお、集光鏡の光軸は対物鏡の光軸に対して1
0.3mmずらした。そして、この全反射面に対物鏡の
焦点を合わせた。なお、この光学系における入射開口角
と出射開口角は各々60°であり、全反射面上に集光鏡
の集光点と対物鏡の焦点とが位置するように設定してお
いた。
Reference Example 2 In this reference example , a columnar crystal 41 made of zinc selenide and having a parallelogram cross-sectional shape shown in FIG. 13 was used.
In this cross-sectional shape, the angle of the acute angle portion is 45 °, the total length in the vertical direction of the crystal is 6 mm, and the lengths of the base and long sides are 10.
3 mm, and the length in the column axis direction was 15 mm. Such a crystal was attached to a holder (not shown) and arranged in an optical system of an infrared microscope (not shown) as in the case shown in FIG. Note that the optical axis of the focusing mirror is 1 ° with respect to the optical axis of the objective mirror.
It was shifted by 0.3 mm. Then, the objective mirror was focused on this total reflection surface. Note that the entrance aperture angle and the exit aperture angle in this optical system were each set to 60 °, and the focal point of the condenser mirror and the focal point of the objective mirror were set on the total reflection surface.

【0074】上記の試料16として、直径50μmの赤
インクの微粒子を図14に示すように結晶体41の全反
射面に塗布した。この微粒子の10μm角の視野から反
射する赤外線をスリットで絞って検出器に送り込み、赤
外全反射吸収スペクトルを測定した。測定結果を図15
に示すが、明瞭な赤外全反射吸収スペクトルが測定され
ており、10μmオーダーの微小エリアの測定が十分に
可能であることを示している。
As the sample 16, fine particles of red ink having a diameter of 50 μm were applied to the total reflection surface of the crystal 41 as shown in FIG. Infrared light reflected from a 10 μm square field of view of the fine particles was narrowed by a slit and sent to a detector, and an infrared total reflection absorption spectrum was measured. Fig. 15 shows the measurement results.
As shown in the figure, a clear infrared total reflection absorption spectrum was measured, indicating that measurement of a small area of the order of 10 μm was sufficiently possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a),図1(b)は結晶体の形状を決め
るための反射角度の説明図、図1(c)および図1
(d)は結晶体の例示図である。
FIGS. 1 (a) and 1 (b) are explanatory diagrams of a reflection angle for determining the shape of a crystal, FIGS. 1 (c) and 1 (b).
(D) is an illustration of a crystal.

【図2】結晶体の使用状態を示す要部図である。FIG. 2 is a main part view showing a use state of a crystal.

【図3】図3(a),図3(b)は結晶体の使用状態を
示す全体図である。
FIGS. 3 (a) and 3 (b) are overall views showing a use state of a crystal.

【図4】図4(a)〜(c)は結晶体の他の例示図であ
る。
FIGS. 4 (a) to 4 (c) are other exemplary views of a crystal.

【図5】図5(a),図5(b)は断面形状が直角三角
形である柱状結晶体の使用状態を示す図である。
FIGS. 5 (a) and 5 (b) are views showing a use state of a columnar crystal having a right triangular cross section.

【図6】結晶体をx軸方向へ移動させた時の集光点のズ
レを示す図である。
FIG. 6 is a diagram showing a shift of a converging point when the crystal is moved in the x-axis direction.

【図7】実施例のポリフッ化ビニリデンの赤外線全反射
吸収スペクトル図である。
FIG. 7 is an infrared total reflection absorption spectrum of polyvinylidene fluoride of Example.

【図8】複合材を当接させた結晶体の斜視図である。FIG. 8 is a perspective view of a crystal body in contact with a composite material.

【図9】複合材の赤外線全反射吸収測定の結果を示す線
図である。
FIG. 9 is a diagram showing the results of infrared total reflection absorption measurement of a composite material.

【図10】制御システムを示すブロック図である。FIG. 10 is a block diagram showing a control system.

【図11】制御システム内で行われる演算を説明するた
めの図である。
FIG. 11 is a diagram for explaining calculations performed in the control system.

【図12】制御システムの他の例を示すブロック図であ
る。
FIG. 12 is a block diagram showing another example of the control system.

【図13】結晶体の使用状態を示す要部図である。FIG. 13 is a main part view showing a use state of the crystal.

【図14】被測定用試料としての赤インクを塗布した結
晶体の斜視図である。
FIG. 14 is a perspective view of a crystal to which a red ink as a sample to be measured is applied.

【図15】赤インクの微粒子の赤外線全反射吸収測定の
結果を示す線図である。
FIG. 15 is a diagram showing the results of infrared total reflection absorption measurement of fine particles of red ink.

【図16】図16(1)〜(3)は従来の結晶体と、そ
の使用方法を示す図である。
16 (1) to 16 (3) are views showing a conventional crystal and a method of using the same.

【図17】従来例における赤外線全反射吸収測定の方法
を示す図である。
FIG. 17 is a diagram showing a method of measuring total infrared reflection absorption in a conventional example.

【符号の説明】[Explanation of symbols]

8 入射面 9 反射面 10 反射面 11 反射面 12 反射面 13 出射面 14 結晶体 16 試料 17 試料台 18 対物鏡 19 集光鏡 20 スリット Reference Signs List 8 entrance surface 9 reflection surface 10 reflection surface 11 reflection surface 12 reflection surface 13 emission surface 14 crystal 16 sample 17 sample stage 18 objective mirror 19 focusing mirror 20 slit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/00-21/61

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 以下の(イ)〜(ホ)の要素を含み、且
つ、赤外光の集光点が(ハ)の結晶体の全反射面上に位
置するようにその光路長が設定されており、且つ、集光
鏡と対物鏡の光軸が、同一軸線上に配置されていること
を特徴とする赤外線全反射吸収測定装置。 (イ)赤外光を集光する集光鏡 (ロ)被測定用料を保持する試料保持部 (ハ)前記試料保持部に載置され、集光鏡からの赤外光
が入射する入射面と、前記被測定用試料を当接させて赤
外光の全反射測定を一回だけ行うための全反射面と、赤
外光が最終的に出射する出射面とを有する結晶体 (二)前記結晶体の出射面に対向して配置され、全反射
面に当接させた前記被測定用試料の測定点に焦点を合わ
せ得る対物鏡 (ホ)出射面より出射した赤外光を選別するスリット
An optical path length is set so that the following light-emitting point is located on the total reflection surface of the crystal of (c), including the following elements (a) to (e): Wherein the optical axes of the condenser mirror and the objective mirror are arranged on the same axis. (B) placed on the collector mirror for focusing infrared light (b) a sample holder for holding the measurement specimen (c) the sample holding portion, the infrared light from the focusing mirror is incident A crystal body having an incident surface, a total reflection surface for bringing the sample to be measured in contact with the sample to perform total infrared reflection measurement only once, and an emission surface from which infrared light is finally emitted ( (2) an objective mirror that is arranged to face the emission surface of the crystal and is capable of focusing on a measurement point of the sample to be measured that is in contact with the total reflection surface; Slit to sort
【請求項2】 前記(ハ)の結晶体が、前記入射面、全
反射面および出射面を柱軸に平行な平面として形成した
柱状体であって出射光軸に対する直角方向を指向して設
けられ、且つ、前記(ロ)の試料保持部が少なくとも結
晶体の柱軸方向に沿って結晶体を平行移動させ得る駆動
機構を有することを特徴とする請求項1に記載の赤外線
全反射吸収測定装置。
2. The crystal of (c) is a columnar body in which the incident surface, the total reflection surface and the exit surface are formed as planes parallel to the column axis, and is provided in a direction perpendicular to the exit optical axis. 2. The infrared total reflection absorption measurement according to claim 1, wherein the sample holder of (b) has a driving mechanism capable of moving the crystal in parallel along at least the column axis direction of the crystal. apparatus.
【請求項3】 前記(ハ)の結晶体が、前記入射面、全
反射面および出射面を柱軸に平行な平面として形成した
柱状体であって出射光軸に対する直角方向を指向して設
けられ、且つ、前記(ロ)の試料保持部が前記(ハ)の
結晶体を3次元方向へ任意に平行移動させ得る駆動機構
を有し、更にこの駆動機構は、結晶体が柱軸方向と異な
る方向へ平行移動する際の測定点の焦点からのズレを予
測演算する手段と、次いでこの予測値に基づき前記ズレ
を解消するに必要な出射光軸線沿いの修正移動量を演算
する手段と、これらの演算結果に従って駆動機構を駆動
させる制御手段とからなる制御システムを備えているこ
とを特徴とする請求項1に記載の赤外線全反射吸収測定
装置。
3. The crystal of (c) is a columnar body in which the incident surface, the total reflection surface and the exit surface are formed as planes parallel to the column axis, and is provided in a direction perpendicular to the exit optical axis. And the sample holder of (b) has a drive mechanism capable of arbitrarily translating the crystal of (c) in a three-dimensional direction, and the drive mechanism further comprises: Means for predicting and calculating the deviation from the focal point of the measurement point when moving in parallel in different directions, and means for calculating a corrected movement amount along the emission optical axis required to eliminate the deviation based on the predicted value; The infrared total reflection absorption measuring apparatus according to claim 1, further comprising a control system including a control unit configured to drive the driving mechanism according to a result of the calculation.
【請求項4】 赤外線全反射吸収測定装置において被測
定用試料を保持する試料保持部に載置される結晶体であ
って、集光鏡からの赤外光が入射する入射面と、前記被
測定用試料を当接させて赤外光の全反射測定を行うため
の全反射面と、入射光の方向を変更する少なくとも3個
の反射面(前記全反射面を含む)と、赤外光が最終的に
出射する出射面とを有し、前記入射光の光軸と出射光の
光軸とが一致するように各反射面の相互の角度が構成さ
れていることを特徴とする結晶体。
4. A crystal body mounted on a sample holder for holding a sample to be measured in the infrared total reflection absorption measuring apparatus, wherein an incident surface on which infrared light from a condenser mirror is incident is provided. A total reflection surface for performing total reflection measurement of infrared light by bringing a measurement sample into contact with the sample, at least three reflection surfaces (including the total reflection surface) for changing the direction of incident light, and infrared light Has a light exit surface that finally emits light, and the mutual angle of each reflection surface is configured so that the optical axis of the incident light coincides with the light axis of the output light. .
【請求項5】 請求項4に記載の結晶体が、前記入射
面、全反射面および出射面を柱軸に平行な平面として形
成した柱状体であって、請求項1〜3のいずれかに記載
された赤外線全反射吸収測定装置のうち集光鏡と対物鏡
が同一軸線上に配置された赤外線全反射吸収測定装置に
おける前記結晶体として用いられていることを特徴とす
る請求項1〜3に記載の赤外線全反射吸収測定装置。
5. The columnar body according to claim 1, wherein the crystal according to claim 4 is a columnar body in which the incident surface, the total reflection surface, and the exit surface are formed as planes parallel to a column axis. 4. A method as claimed in claim 1, wherein the converging mirror and the objective mirror are used as the crystal in the infrared total reflection absorption measuring apparatus in which the converging mirror and the objective mirror are arranged on the same axis. 2. The infrared total reflection absorption measurement device according to 1.
JP17711791A 1990-07-06 1991-06-20 Infrared total reflection absorption measuring device and crystal Expired - Lifetime JP3048418B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17711791A JP3048418B2 (en) 1990-07-06 1991-06-20 Infrared total reflection absorption measuring device and crystal
DE4122149A DE4122149A1 (en) 1990-07-06 1991-07-04 ACCESSORIES AND CRYSTAL ELEMENT FOR INFRARED SPECTROSCOPY WITH DAMPERED TOTAL REFLECTION
US07/726,332 US5216244A (en) 1990-07-06 1991-07-05 Accessory and crystalline element for attenuated total reflection infrared spectroscopy

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18028190 1990-07-06
JP2-180281 1990-07-06
JP2-418424 1990-12-26
JP41842490 1990-12-26
JP17711791A JP3048418B2 (en) 1990-07-06 1991-06-20 Infrared total reflection absorption measuring device and crystal

Publications (2)

Publication Number Publication Date
JPH04348257A JPH04348257A (en) 1992-12-03
JP3048418B2 true JP3048418B2 (en) 2000-06-05

Family

ID=27324368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17711791A Expired - Lifetime JP3048418B2 (en) 1990-07-06 1991-06-20 Infrared total reflection absorption measuring device and crystal

Country Status (1)

Country Link
JP (1) JP3048418B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159311A (en) * 1993-12-06 1995-06-23 Toto Ltd Biosensor
JP2002286637A (en) 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Plastic discriminating device
WO2003038412A1 (en) * 2001-10-29 2003-05-08 Matsushita Eco Technology Center Co., Ltd. Device and method for identifying plastic
CN1524178B (en) * 2001-11-28 2011-11-23 株式会社松下回音技术中心 Plastic identifying method
JP2007225326A (en) * 2006-02-21 2007-09-06 Kansai Electric Power Co Inc:The Diagnostic method of diagnosing deterioration of polymer insulation material for power cable
GB0608258D0 (en) * 2006-04-26 2006-06-07 Perkinelmer Singapore Pte Ltd Spectroscopy using attenuated total internal reflectance (ATR)
JP5115584B2 (en) * 2010-05-20 2013-01-09 住友電気工業株式会社 Sample cross-section formation method, fixing jig, and measurement method
JP6014432B2 (en) * 2012-09-14 2016-10-25 東急建設株式会社 Specific substance detection method

Also Published As

Publication number Publication date
JPH04348257A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US5822073A (en) Optical lightpipe sensor based on surface plasmon resonance
US5943134A (en) Method of measuring thickness and refractive indices of component layers of laminated structure and measuring apparatus for carrying out the same
US7864317B2 (en) Compact catadioptric spectrometer
US5581085A (en) Infrared microspectrometer accessory
JP3919749B2 (en) Configuration and method of optical apparatus for differential refractive index measurement
US20070263220A1 (en) Optical Measurement System with Simultaneous Multiple Wavelengths, Multiple Angles of Incidence and Angles of Azimuth
JPS63500263A (en) automatic refractometer
KR20100033487A (en) Optical property sensor
JP3048418B2 (en) Infrared total reflection absorption measuring device and crystal
US20020005953A1 (en) SPR sensor plate and immune reaction measuring instrument using the same
US5216244A (en) Accessory and crystalline element for attenuated total reflection infrared spectroscopy
US6495812B1 (en) Apparatus and method for analyzing an object of interest having a pivotably movable source and detector
CA2575131A1 (en) Objective lens reference system and method
EP1030160A1 (en) Optical position sensor
JPH0650882A (en) Optical measuring device
US4527898A (en) Distinctness of image meter
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
US6873412B2 (en) Method and device for suppressing multiple scattering when examining turbid media by means of three-dimensional cross-correlation technique
US20040036881A1 (en) Optical configuration for SPR measurement
US20070242267A1 (en) Optical Focusing Devices
JPS5876809A (en) Optical scanner
EP4160195A1 (en) Thin film characteristic measuring apparatus
JP2597515Y2 (en) Total reflection absorption spectrum measurement device
JPH0510872A (en) Micro infrared rays atr measuring device
US20100118308A1 (en) Composite Optical Focusing Devices

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12