JP3047916B2 - Intake air preheating device for internal combustion engine - Google Patents

Intake air preheating device for internal combustion engine

Info

Publication number
JP3047916B2
JP3047916B2 JP1253494A JP25349489A JP3047916B2 JP 3047916 B2 JP3047916 B2 JP 3047916B2 JP 1253494 A JP1253494 A JP 1253494A JP 25349489 A JP25349489 A JP 25349489A JP 3047916 B2 JP3047916 B2 JP 3047916B2
Authority
JP
Japan
Prior art keywords
heating element
temperature
resistance
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1253494A
Other languages
Japanese (ja)
Other versions
JPH03114167A (en
Inventor
松岡  功
哲郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1253494A priority Critical patent/JP3047916B2/en
Publication of JPH03114167A publication Critical patent/JPH03114167A/en
Application granted granted Critical
Publication of JP3047916B2 publication Critical patent/JP3047916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関(主にディーゼルエンジン)の吸
気を予熱して、円滑に始動するのに用いる内燃機関の吸
気予熱装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air preheating apparatus for an internal combustion engine (predominantly a diesel engine) used for preheating the intake air and smoothly starting the internal combustion engine.

[従来の技術] 内燃機関(主にディーゼルエンジン)は、冬季など外
気温が低い場合に、始動が困難になる。その対策とし
て、従来のディーゼルエンジン(主に直接噴射式ディー
ゼルエンジン)は、吸気通路に電熱式発熱体を配置し、
吸気を予熱して、高温の空気を燃焼室に送込み、内燃機
関の始動が円滑にできるようにした吸気予熱装置(エア
ーヒータ)等を装着していた。
[Related Art] An internal combustion engine (mainly a diesel engine) is difficult to start when the outside temperature is low such as in winter. As a countermeasure, conventional diesel engines (mainly direct injection diesel engines) have an electric heating element in the intake passage,
An intake air preheating device (air heater) or the like was installed to preheat the intake air and send high-temperature air into the combustion chamber to smoothly start the internal combustion engine.

前記電熱式発熱体で吸気を予熱する場合、輻射熱によ
り近傍の空気を加熱するので、加熱効率を良くするため
には、発熱体自体の温度が高くなり且つ発熱体の表面積
が大きいことが肝要である。また予熱時間を短縮するた
めには、通電初期に大電力が流れ、速やかに所定温度に
昇温するとともに大熱量を発散できることが望ましい。
さらに寒冷時に始動性を向上させるために、予熱時間を
延長する場合には、所定温度に昇温したら電力量が抑制
され、発熱体の温度上昇は適温域に抑制され、したがっ
て、予熱時間の延長によるバッテリーへの負荷が少なく
且つ過昇温による発熱体の破損が防止できることが望ま
しい。
When preheating the intake air with the electrothermal heating element, the nearby air is heated by radiant heat.In order to improve the heating efficiency, it is important that the temperature of the heating element itself be high and the surface area of the heating element is large. is there. Further, in order to shorten the preheating time, it is desirable that a large amount of electric power flows at the beginning of energization, quickly raises the temperature to a predetermined temperature, and radiates a large amount of heat.
In order to further improve the startability in cold weather, if the preheating time is extended, the amount of power is suppressed when the temperature is raised to a predetermined temperature, and the temperature rise of the heating element is suppressed to an appropriate temperature range. It is desirable that the load on the battery due to the heat generation is small and the heating element can be prevented from being damaged due to excessive temperature rise.

従来公知である吸気予熱装置には、(a)ニッケルク
ロムあるいは鉄クロム製の金属発熱体、または(b)PT
Cセラミックヒータ材の発熱体(特開昭57-163841号)を
用いたものが数多くある。
Conventionally known intake preheating devices include (a) a metal heating element made of nickel chromium or iron chromium, or (b) PT
There are many types using a heating element of C ceramic heater material (JP-A-57-163841).

[発明が解決しようとする課題] しかるに、従来の吸気予熱装置では、予熱時間の短縮
と通電時間延長に対する耐久性を両立させる事が困難で
あった。例えば上記(a)ニッケルクロムあるいは鉄ク
ロム製の金属発熱体では、抵抗温度係数(8×10-6/℃
〜450×10-6/℃)が極めて小さく、故に通電を開始し
てからの電力がほぼ一定である為、そのヒータ容量によ
り予熱時間が決定される。予熱時間を短縮する為に、電
力量を増すと、電流量が増し、エンジン始動後のアフタ
ーヒート時にはバッテリーヘの負荷が増し、発熱体への
通電が長時間に及ぶとバッテリー上りになる欠点があっ
た。
[Problems to be Solved by the Invention] However, in the conventional intake air preheating device, it is difficult to achieve both the reduction of the preheating time and the durability against the extension of the energization time. For example, in the case of (a) the metal heating element made of nickel chromium or iron chromium, the temperature coefficient of resistance (8 × 10 −6 / ° C.)
(Approximately 450 × 10 −6 / ° C.), and the electric power after the start of energization is almost constant. Therefore, the preheating time is determined by the heater capacity. When the amount of power is increased to shorten the preheating time, the amount of current increases, and the load on the battery increases during after-heat after the engine is started. there were.

上記欠点の対策として実開昭57-193958号の様な複雑
な制御機構を備えたシステムが考案されているが、シス
テムが複雑になりコスト高になり、また急速加熱側の発
熱体に連続的に定格電圧が印加されると、発熱体が溶損
するトラブルが発生した。
As a countermeasure against the above drawbacks, a system with a complicated control mechanism such as that of Japanese Utility Model Laid-Open No. 57-193958 has been devised, but the system becomes complicated and costly, and the heating element on the rapid heating side is continuously connected. When the rated voltage was applied to the heating element, there was a problem that the heating element was melted and damaged.

また、上記(b)PTCセラミックヒータ材の発熱体で
は、通電時の抵抗値と温度の関係が対数的に変化するた
め、長時間通電してもバッテリー上りが起こらない反
面、予熱時には発熱体自体の温度が150℃程度の為、輻
射熱によるヒータ近傍の空気を加熱する効果は極めて小
さく、故に長時間予熱しても始動性を向上させることが
できない、またその構造により吸気抵抗が大きくなる欠
点がある。
In the case of (b) the heating element made of the PTC ceramic heater material, the relationship between the resistance value and the temperature at the time of energization changes logarithmically. Temperature is about 150 ° C, the effect of heating the air near the heater by radiant heat is extremely small, so it is not possible to improve the startability even if preheating for a long time. is there.

本発明は上記課題の解決を目的とし、通電初期に大電
力が得られ、発熱体を急速に所望温度に昇温させて、予
熱時間が短縮できる、また寒冷時に、始動性を向上させ
るために予熱時間を延長する場合には、昇温とともに電
気抵抗が大きくなる発熱体の自己制御作用により、電力
量が抑制され、複雑な制御機構がなくても発熱体の温度
上昇は適温域に抑制され、したがって、予熱時間の延長
によるバッテリーヘの負荷が少なく且つ過昇温による発
熱体の破損が防止でき、制御機構が簡素化できる内燃機
関の吸気予熱装置を提供することにある。
The present invention has been made to solve the above-described problems, and it is possible to obtain a large amount of electric power in the initial stage of energization, rapidly raise the temperature of the heating element to a desired temperature, shorten the preheating time, and improve the startability in cold weather. When the preheating time is extended, the power consumption is suppressed by the self-control action of the heating element, which increases its electrical resistance as the temperature rises, and the temperature rise of the heating element is suppressed to an appropriate temperature range without a complicated control mechanism. Accordingly, an object of the present invention is to provide an intake preheating device for an internal combustion engine, which can reduce a load on a battery due to extension of a preheating time, prevent a heating element from being damaged by an excessive temperature rise, and simplify a control mechanism.

[課題を解決するための手段] 本発明の内燃機関の吸気予熱装置は、上記課題を解決
するために、内燃機関の吸気通路の一部を構成する枠体
に、帯状または棒状の電気抵抗材を曲げ蛇行状とした電
熱式の発熱体を、電気絶縁して支持させてなる内燃機関
の吸気予熱装置において、 前記発熱体は、ニッケルクロムあるいは鉄クロムを主
体とする抵抗温度係数の小さい第1の発熱体と、ニッケ
ルあるいは鉄を主体とする抵抗温度係数の大きい第2の
発熱体とを電気的に直列接続するとともに、これら第1
の発熱体と第2の発熱体とを被加熱気流に対して前記第
1の発熱体が上流側に配置され、前記第2の発熱体が下
流側に配置されるように直列に2段以上に配したことを
技術的手段とし、 さらに望ましくは、前記第1の発熱体の抵抗温度係数
の範囲を8×10-6/℃〜450×10-6/℃とし、前記第2
の発熱体の抵抗温度係数の範囲を6×10-2/℃〜5×10
-3/℃としたことを技術的手段とする。
Means for Solving the Problems In order to solve the above problems, an intake preheating device for an internal combustion engine according to the present invention includes a frame or a rod-shaped electric resistance material provided on a frame constituting a part of an intake passage of the internal combustion engine. In an intake preheating apparatus for an internal combustion engine, wherein an electric heating element having a bent and meandering shape is electrically insulated and supported, the heating element is mainly composed of nickel chromium or iron chromium having a small temperature coefficient of resistance. And a second heating element mainly composed of nickel or iron and having a large temperature coefficient of resistance.
The heating element and the second heating element are arranged in two or more stages in series such that the first heating element is arranged on the upstream side with respect to the airflow to be heated, and the second heating element is arranged on the downstream side. It is more preferable that the range of the temperature coefficient of resistance of the first heating element is set to 8 × 10 −6 / ° C. to 450 × 10 −6 / ° C.
Range of 6 × 10 -2 / ° C to 5 × 10
-3 / ° C is a technical measure.

[作用および発明の効果] 本発明の請求項1記載の吸気予熱装置は、抵抗温度係
数の小さい第1の発熱体を吸気流の上流側に配置し、抵
抗温度係数の大きい第2の発熱体を下流側に配置したこ
とにより、以下の効果を有する。
[Action and Effect of the Invention] In the intake air preheating apparatus according to claim 1 of the present invention, a first heating element having a small temperature coefficient of resistance is arranged upstream of an intake air flow, and a second heating element having a large temperature coefficient of resistance is arranged. Has the following effects by arranging on the downstream side.

抵抗温度係数の小さい発熱体が上流側に配置されるこ
とで、上流側の第1の発熱体には常に低温の空気が最初
に接触する。第1の発熱体は効率良く空気エネルギーを
伝達するには空気と発熱体の温度差が大きい程良い。こ
のため、第1の発熱体を上流側に配置することで、第1
の発熱体と空気の温度差を大きくすることができ、昇温
特性やエネルギー効率が向上することができる効果を有
する。
Since the heating element having a small resistance temperature coefficient is arranged on the upstream side, low-temperature air always comes into contact with the first heating element on the upstream side first. For the first heating element to efficiently transmit air energy, the larger the temperature difference between the air and the heating element, the better. Therefore, by disposing the first heating element on the upstream side,
This has the effect that the temperature difference between the heating element and the air can be increased, and the temperature rise characteristics and energy efficiency can be improved.

抵抗温度係数の大きい発熱体が下流側に配置されるこ
とで、下流側の第2の発熱体は第1の発熱体によって暖
められた空気流に晒されるので、空気を媒体として第1
の発熱体の温度上昇の影響を強く受けて温度上昇するこ
とになる。第2の発熱体は第1の発熱体が過昇温しない
ように制御する機能を有しているので、第1の発熱体の
温度上昇を早めに検出することが必要である。従って、
第2の発熱体を下流側に配置することは第1の発熱体の
過昇温の防止に効果がある。因みに上流側に第2の発熱
体を配置しても第1の発熱体から受ける輻射熱などで暖
まるため、必ずしも過昇温を検出できない訳ではない
が、第2の発熱体を下流側に配置した場合には第1の発
熱体の温度上昇に対して応答性良く抵抗値が上昇するの
で、より温度に対する制御性が高くでき、予熱時間が短
縮できるとともに、過昇温を防止することができる。
By disposing the heating element having a large resistance temperature coefficient on the downstream side, the second heating element on the downstream side is exposed to the airflow warmed by the first heating element.
The temperature rises strongly due to the temperature rise of the heating element. Since the second heating element has a function of controlling the first heating element so as not to overheat, it is necessary to detect the temperature rise of the first heating element early. Therefore,
Arranging the second heating element on the downstream side is effective in preventing the first heating element from being excessively heated. By the way, even if the second heating element is arranged on the upstream side, it is not always possible to detect an excessive temperature rise because it is heated by the radiant heat received from the first heating element, but the second heating element is arranged on the downstream side. In this case, since the resistance value increases with good responsiveness to the temperature rise of the first heating element, the controllability with respect to the temperature can be improved, the preheating time can be shortened, and the excessive temperature rise can be prevented.

よって、複雑な制御機構を備えなくても長時間の通電
によるバッテリーへの負担が少なく、過昇温による発熱
体の破損が防止できる。したがって、製造コストが低
く、長時間の予熱または長時間のアフターヒートがで
き、低い外気温において始動性の向上を図ることができ
る。
Therefore, even if a complicated control mechanism is not provided, the burden on the battery due to long-time power supply is small, and damage to the heating element due to excessive temperature rise can be prevented. Therefore, the production cost is low, a long preheating or a long afterheating can be performed, and the startability can be improved at a low outside air temperature.

また、請求項2記載の吸気予熱装置は、第1の発熱体
の抵抗温度係数の範囲を8×10-6/℃〜450×10-6/℃
とし、第2の発熱体の抵抗温度係数の範囲を6×10-2
℃〜5×10-3/℃として限定することにより、定格電圧
を印加した場合、通電開始時の電力量(W)に対する60
秒〜90秒後の電力量(W)が0.4倍〜0.6倍に減少するの
で、予熱時間の延長またはアフターヒートする場合、吸
気加熱に必要な温度域を維持し、発熱体の過昇温を防止
するのに実用に適する性能を有する。
Further, in the intake preheating apparatus according to the second aspect, the range of the temperature coefficient of resistance of the first heating element is set to 8 × 10 −6 / ° C. to 450 × 10 −6 / ° C.
And the range of the temperature coefficient of resistance of the second heating element is 6 × 10 −2 /
C. to 5 × 10 −3 / ° C., when the rated voltage is applied, the amount of electric power (W) at the start of energization is 60%.
Since the electric energy (W) after seconds to 90 seconds is reduced to 0.4 to 0.6 times, if the preheating time is extended or after-heated, the temperature range necessary for intake air heating is maintained, and the overheating of the heating element is prevented. Has practically suitable performance to prevent.

以上の如く本発明の内燃機関の吸気予熱装置は、コス
トが低く、予熱時間が短縮でき、発熱体の過昇温を防止
し、始動性の向上を図ることができる。
As described above, the intake preheating device for an internal combustion engine according to the present invention is low in cost, can shorten the preheating time, can prevent excessive heating of the heating element, and can improve startability.

[実施例] 次に本発明にかかる内燃機関の吸気予熱装置の第1実
施例を第1図〜第3図に基づいて説明する。
Next, a first embodiment of an intake preheating device for an internal combustion engine according to the present invention will be described with reference to FIGS.

吸気予熱装置Aにおいて、1は、アルミ合金製のボデ
ー(枠体)である。該ボデー1は、外周に四個の突起を
有する円形をなし、中央に吸気通路を形成する孔1aを有
する。該ボデー1の孔1aには、材質の異なる第1の発熱
体21と、第2の発熱体22が吸気通路方向に直列に配置さ
れ、また対向する対のセラミックインシュレータ31、3
2、ウェーブばね41、42及び金属ブラケット5を介して
挟持されている。
In the intake air preheating device A, 1 is a body (frame) made of an aluminum alloy. The body 1 has a circular shape having four protrusions on the outer periphery, and has a hole 1a that forms an intake passage at the center. In the hole 1a of the body 1, a first heating element 21 and a second heating element 22 of different materials are arranged in series in the direction of the intake passage, and a pair of ceramic insulators 31, 3 facing each other.
2. It is sandwiched between the wave springs 41 and 42 and the metal bracket 5.

前記二つの発熱体のうち発熱体21は吸気流の上流側
に、発熱体22は下流側に配置される。また、発熱体21、
22は、本実施例では断面が方形の薄板材の帯を連続して
湾曲させてなる蛇行形状であり、吸気との接触面積が大
きく、吸気の流通方向の投影面積が小さい。またその屈
曲部21a、22aは、それぞれセラミックインシュレータ3
1、32に埋め込まれている。セラミックインシュレータ3
1、32は、隣接して金属ブラケット5に嵌込まれてい
る。金属ブラケット5は、第1図(a)におけるボデー
1の上下に対向して嵌込まれている。二つの発熱体21、
22は、セラミックインシュレータ31、32と金属ブラケッ
ト5の間のウェーブばね41、42により中心方向に付勢さ
れ、運転時に生ずる振動を抑えている。また第1図
(a)におけるボデー1の両側には、第1の発熱体21の
対向する両端子61a、61bと、第2の発熱体22の対向する
両端子62a、62bが、それぞれ絶縁パッキン7を介して貫
通して取付けられている。二つの発熱体21、22は、電気
的に直列に接続されていて、端子61aと端子62aが接続さ
れ、端子61bは図示しない電源に接続され、端子62bはア
ースされている。8はアース用の接続コードである。
Of the two heating elements, the heating element 21 is arranged on the upstream side of the intake flow, and the heating element 22 is arranged on the downstream side. In addition, the heating element 21,
Reference numeral 22 denotes a meandering shape formed by continuously bending a band of a thin sheet material having a rectangular cross section in the present embodiment, and has a large contact area with the intake air and a small projected area in the flow direction of the intake air. The bent portions 21a and 22a are respectively provided with the ceramic insulator 3
Embedded in 1, 32. Ceramic insulator 3
1 and 32 are fitted into the metal bracket 5 adjacent to each other. The metal bracket 5 is fitted to face the upper and lower sides of the body 1 in FIG. Two heating elements 21,
22 is urged toward the center by wave springs 41 and 42 between the ceramic insulators 31 and 32 and the metal bracket 5 to suppress vibrations generated during operation. On both sides of the body 1 in FIG. 1 (a), opposite terminals 61a and 61b of the first heating element 21 and opposite terminals 62a and 62b of the second heating element 22 are respectively provided with insulating packings. 7 and attached through. The two heating elements 21 and 22 are electrically connected in series, the terminal 61a and the terminal 62a are connected, the terminal 61b is connected to a power source (not shown), and the terminal 62b is grounded. 8 is a connection cord for grounding.

前記第1の発熱体21は、本実施例では鉄クロムを主体
とする発熱材からなり、抵抗温度係数は(8×10-6/℃
〜450×10-6/℃)で小さい。その組成は、鉄(Fe)に
クロム(Cr)17〜26%とアルミニウム(Al)2〜8%と
その他の微量物質(C、Si、P、S)を0.1%以下添加
して形成される。
In this embodiment, the first heating element 21 is made of a heating material mainly composed of iron chromium, and has a temperature coefficient of resistance of (8 × 10 −6 / ° C.).
~ 450 × 10 -6 / ° C). Its composition is formed by adding 17-26% of chromium (Cr), 2-8% of aluminum (Al) and 0.1% or less of other trace substances (C, Si, P, S) to iron (Fe). .

前記第2の発熱体22は、本実施例では鉄(Fe)を主体
とする発熱材からなり、抵抗温度係数は(6×10-2/℃
〜5×10-3/℃)で大きい。その組成は、主体となる鉄
(Fe)に、アルミニウム(Al)、チタン(Ti)をそれぞ
れ0.2〜0.4%添加し、マンガン(Mn)を0.1〜0.3%とそ
の他の微量物質(C、Si、P、S)を0.1%以下添加し
た鉄合金抵抗体の表面に、ニッケル鍍金して形成し、耐
蝕性と通電耐久性を向上させてある。
In the present embodiment, the second heating element 22 is made of a heating material mainly composed of iron (Fe), and has a temperature coefficient of resistance of (6 × 10 −2 / ° C.).
~ 5 × 10 -3 / ° C). Its composition is as follows. Aluminum (Al) and titanium (Ti) are added to iron (Fe), which is the main component, at 0.2-0.4% each, and manganese (Mn) is added at 0.1-0.3%, and other trace substances (C, Si, Nickel plating is applied to the surface of the iron alloy resistor containing 0.1% or less of (P, S) to improve corrosion resistance and electric current durability.

つぎに吸気予熱装置Aを組込んだ直接噴射式ディーゼ
ルエンジンにおける吸気管部分及び燃焼室を断面図で表
す第2図に基づき説明する。
Next, an intake pipe portion and a combustion chamber of a direct injection diesel engine incorporating the intake preheating device A will be described with reference to FIG.

Bは直接噴射式ディーゼルエンジン、10は吸気管、13
は吸入ポート、14は燃料噴射用のインジェクタ、15はオ
メガ型燃焼室16を有するピストン、17は排気ポート、18
は排気バルブである。
B is a direct injection diesel engine, 10 is an intake pipe, 13
Is an intake port, 14 is an injector for fuel injection, 15 is a piston having an omega-type combustion chamber 16, 17 is an exhaust port, 18
Is an exhaust valve.

まず組付け構造を説明する。 First, the assembly structure will be described.

吸気予熱装置Aは、ディーゼルエンジンBの吸気管10
に孔1aを直列にして接続されている。また吸気管10の吸
気端に設けたフランジ部10aとエアークリーナ11の間
に、ボルトナット12を締付けることにより挟持されてい
る。
The intake preheating device A is an intake pipe 10 of the diesel engine B.
The holes 1a are connected in series. Further, a bolt nut 12 is clamped between a flange portion 10 a provided at an intake end of the intake pipe 10 and the air cleaner 11.

つぎに、エンジンの始動および吸気予熱装置Aの作用
を説明する。
Next, the operation of the engine and the operation of the intake air preheating device A will be described.

始動に際し、キーを操作すると予熱用接点が閉鎖さ
れ、二つの発熱体21、22に所定の時間通電され、発熱に
より回りの空気Cが加熱される。二つの発熱体21、22が
始動可能な所定温度になり、キーをスタータ用接点に回
すと、スタータが起動し加熱空気(矢印D)はを吸気管
10から吸入ポート13を介してオメガ型燃焼室16内に吸入
されてエンジンが稼働する。この後、キーを放すと、運
転用接点が閉鎖されて通常の運転が続行される。
At the time of starting, when the key is operated, the preheating contact is closed, the two heating elements 21 and 22 are energized for a predetermined time, and the surrounding air C is heated by the heat generation. When the two heating elements 21 and 22 reach a predetermined temperature at which they can be started, and the key is turned to the contact for the starter, the starter is activated and the heated air (arrow D) flows through the intake pipe.
The engine is operated by being drawn into the omega-type combustion chamber 16 from the intake port 13 through the suction port 13. Thereafter, when the key is released, the operating contact is closed and normal operation is continued.

第1の発熱体21は、上記の組成により、小さな抵抗温
度係数(8×10-6/℃〜450×10-6/℃)を有し、第2
の発熱体22は、上記の組成により大きな抵抗温度係数
(6×10-2/℃〜5×10-3/℃)を有し、以下の如く作
用する。
The first heating element 21 has a small temperature coefficient of resistance (8 × 10 −6 / ° C. to 450 × 10 −6 / ° C.) due to the above composition,
The heating element 22 has a large temperature coefficient of resistance (6 × 10 −2 / ° C. to 5 × 10 −3 / ° C.) due to the above composition, and operates as follows.

通電開始時には発熱していないので抵抗値が小さく、
大電流が流れ、第1の発熱体21は、短時間の経過で急速
発熱して設定温度まで急速発熱する。この急速発熱によ
る昇温に比例して発熱体2の抵抗値が増大するので、電
流量は反比例して急速に減少する。
At the start of energization, there is no heat, so the resistance value is small,
A large current flows, and the first heating element 21 rapidly generates heat in a short time and rapidly generates heat to a set temperature. Since the resistance value of the heating element 2 increases in proportion to the temperature rise due to the rapid heat generation, the amount of current rapidly decreases in inverse proportion.

第3図のグラフに、上記実施例に用いた二つの発熱体
21、22の端子61bと端子62bの間にDC22ボルトを印加した
時の、発熱特性(実線a=発熱温度)および通電特性
(実線b=電流、実線c=第1の発熱体21の電圧、一点
鎖線d=第2の発熱体22の電圧)と、従来例の発熱体
(鉄クロム製)の発熱特性(破線e=発熱温度)および
通電特性(破線f=電流)を示す。
The two heating elements used in the above embodiment are shown in the graph of FIG.
Heating characteristics (solid line a = heated temperature) and energizing characteristics (solid line b = current, solid line c = voltage of the first heating element 21 when 22 VDC is applied between the terminals 61b and 62b of the terminals 21 and 22; The dashed line d = voltage of the second heating element 22), the heating characteristic (dashed line e = heating temperature) and the energization characteristic (dashed line f = current) of the conventional heating element (made of iron chrome) are shown.

通電開始時には発熱していないので抵抗値が小さく、
大電流が流れ、第1の発熱体21は、短時間の経過で急速
発熱して約13秒で800℃に到達する。さらに通電を続け
ると温度はさらに上昇するが、第2の発熱体は、この急
速発熱による昇温に比例して抵抗値が増大するので、電
流量は反比例して急速に減少する。その結果第1の発熱
体21の温度は通電30秒後にピーク(1056℃)に達し、そ
の後ゆっくり下降し、通電60秒後に980℃まで下降して
いる。さらに通電を続け90秒後では935℃となる。その
時、通電電流(実線b)は初期97Aに対し53.5Aまで減少
し、第2の発熱体21の電圧(一点鎖線d)および抵抗値
は初期4.3V(0.044Ω)に対し12.28V(0.23Ω)まで上
昇している。
At the start of energization, there is no heat, so the resistance value is small,
A large current flows, and the first heating element 21 rapidly generates heat in a short time and reaches 800 ° C. in about 13 seconds. The temperature further rises when the energization is further continued, but since the resistance value of the second heating element increases in proportion to the temperature rise due to the rapid heat generation, the amount of current rapidly decreases in inverse proportion. As a result, the temperature of the first heating element 21 reaches a peak (1056 ° C.) 30 seconds after energization, then slowly decreases, and drops to 980 ° C. 60 seconds after energization. The energization is continued and the temperature reaches 935 ° C after 90 seconds. At that time, the energizing current (solid line b) is reduced to 53.5 A from the initial 97 A, and the voltage (dotted line d) and the resistance value of the second heating element 21 are 12.28 V (0.23 Ω) from the initial 4.3 V (0.044 Ω). ).

実施例の効果。 Effect of the embodiment.

予熱時間が短かく、初期の発熱ヒータ温度(約1056
℃)が高いので、始動性が大きく向上する。
The preheating time is short, and the initial heating temperature (about 1056
C) is high, so that the startability is greatly improved.

本発明は上記実施例以外に下記の変型例を含む。 The present invention includes the following modifications in addition to the above embodiments.

前記枠体は、運転時の振動によって発熱体が外れない
ように支持できればよく、枠体の外形は吸気通路を形成
する孔を有する矩形、六角形、楕円形、小判形等でもよ
い。
It is sufficient that the frame body can support the heating element so as not to come off due to vibration during operation, and the outer shape of the frame body may be rectangular, hexagonal, elliptical, oval, or the like having a hole that forms an intake passage.

上記実施例では、発熱体は、第1の発熱体と第2の発
熱体が吸気方向に対し二列の直列に配置されていたが、
第1の発熱体およびまたは第2の発熱体を分割して、三
列以上の直列に配置してもよい。
In the above-described embodiment, the first heating element and the second heating element are arranged in two rows in series in the intake direction.
The first heating element and / or the second heating element may be divided and arranged in three or more rows in series.

発熱体の形状は、吸気との接触面積が大きくしたがっ
て放熱性がよく、また吸気の流通方向の投影面積が小さ
くさたがって吸気抵抗が小さければよく、断面が翼形、
涙滴形等の薄板の帯材を上記実施例同様に湾曲させ連続
する蛇行形状としたものでもよい。
The shape of the heating element is such that the contact area with the intake air is large and therefore the heat dissipation is good, and the projected area in the flow direction of the intake air should be small so that the intake resistance is small.
A thin strip material such as a teardrop shape may be curved and formed into a continuous meandering shape as in the above embodiment.

本実施例以外に、第1の発熱体の材料はニッケルクロ
ムでもよく、また、第2の発熱体の材料はニッケルを主
体とするものを用いてもよい。
In addition to the present embodiment, the material of the first heating element may be nickel chrome, and the material of the second heating element may be mainly nickel.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明にかかる内燃機関の吸気予熱装置
を表す正面図、第1図(b)はその右側面図、第1図
(c)はその左側面図、第2図は直接噴射式ディーゼル
エンジンにおける吸気管部分及び本発明にかかる内燃機
関の吸気予熱装置を表す断面図、第3図は本発明の吸気
予熱装置の特性と従来例の特性を比較するグラフであ
る。 図中、A……吸気予熱装置、B……直接噴射式ディーゼ
ルエンジン、1……ボデー(枠体)、5……金属ブラケ
ット、7……絶縁パッキン、21……第1の発熱体、22…
…第2の発熱体、31、32……セラミックインシュレー
タ、41、42……ウェーブばね、61a、61b、62a、62b……
端子
1 (a) is a front view showing an intake preheating device for an internal combustion engine according to the present invention, FIG. 1 (b) is a right side view thereof, FIG. 1 (c) is a left side view thereof, and FIG. FIG. 3 is a cross-sectional view showing an intake pipe portion of a direct injection diesel engine and an intake preheating device for an internal combustion engine according to the present invention. FIG. 3 is a graph comparing the characteristics of the intake preheating device of the present invention with those of a conventional example. In the figure, A: intake preheating device, B: direct injection type diesel engine, 1: body (frame), 5: metal bracket, 7: insulating packing, 21: first heating element, 22 …
... second heating element, 31, 32 ... ceramic insulator, 41, 42 ... wave spring, 61a, 61b, 62a, 62b ...
Terminal

フロントページの続き (56)参考文献 特開 昭57−26326(JP,A) 特開 昭59−56615(JP,A) 特開 昭63−290327(JP,A) 実開 昭54−176016(JP,U) 実開 昭59−187085(JP,U) 実開 昭61−159657(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05B 3/12 F02M 31/12 301 Continuation of front page (56) References JP-A-57-26326 (JP, A) JP-A-59-56615 (JP, A) JP-A-63-290327 (JP, A) (U) U.S.A. 59-187085 (JP, U) U.S.A. 61-159657 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H05B 3/12 F02M 31/12 301

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の吸気通路の一部を構成する枠体
に、帯状または棒状の電気抵抗材を曲げ蛇行状とした電
熱式の発熱体を、電気絶縁して支持させてなる内燃機関
の吸気予熱装置において、 前記発熱体は、ニッケルクロムあるいは鉄クロムを主体
とする抵抗温度係数の小さい第1の発熱体と、ニッケル
あるいは鉄を主体とする抵抗温度係数の大きい第2の発
熱体とを電気的に直列接続するとともに、これら第1の
発熱体と第2の発熱体とを被加熱気流に対して前記第1
の発熱体が上流側に配置され、前記第2の発熱体が下流
側に配置されるように直列に2段以上に配したことを特
徴とする内燃機関の吸気予熱装置。
1. An internal combustion engine comprising: a frame constituting a part of an intake passage of an internal combustion engine; an electrically heating type heating element in which a band-shaped or rod-shaped electric resistance material is bent and meandered; In the air intake preheating device, the heating element includes a first heating element mainly composed of nickel chromium or iron chrome and having a small temperature coefficient of resistance, and a second heating element mainly composed of nickel or iron having a large temperature coefficient of resistance. Are electrically connected in series, and the first heating element and the second heating element are connected to the heated airflow by the first heating element.
Wherein the second heating element is arranged in two or more stages in series such that the second heating element is arranged on the downstream side.
【請求項2】前記第1の発熱体の抵抗温度係数の範囲を
8×10-6/℃〜450×10-6/℃とし、前記第2の発熱体
の抵抗温度係数の範囲を6×10-2/℃〜5×10-3/℃と
したことを特徴とする請求項1記載の内燃機関の吸気予
熱装置。
2. A range of the temperature coefficient of resistance of the first heating element is set to 8 × 10 −6 / ° C. to 450 × 10 −6 / ° C., and a range of the temperature coefficient of resistance of the second heating element is set to 6 ×. 2. The intake preheating apparatus for an internal combustion engine according to claim 1, wherein the temperature is set to 10 -2 / ° C. to 5 × 10 −3 / ° C.
JP1253494A 1989-09-28 1989-09-28 Intake air preheating device for internal combustion engine Expired - Fee Related JP3047916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1253494A JP3047916B2 (en) 1989-09-28 1989-09-28 Intake air preheating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1253494A JP3047916B2 (en) 1989-09-28 1989-09-28 Intake air preheating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03114167A JPH03114167A (en) 1991-05-15
JP3047916B2 true JP3047916B2 (en) 2000-06-05

Family

ID=17252158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1253494A Expired - Fee Related JP3047916B2 (en) 1989-09-28 1989-09-28 Intake air preheating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3047916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205838A1 (en) * 2020-04-08 2021-10-14 東京コスモス電機株式会社 Method for manufacturing intake pipe heating device, and intake pipe heating device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587081Y2 (en) * 1978-05-31 1983-02-07 株式会社デンソー Electric heater for heating intake air of internal combustion engine
JPS5726326A (en) * 1980-07-22 1982-02-12 Ngk Spark Plug Co Ltd Preheat current controlling type glow plug
JPS5956615A (en) * 1982-09-27 1984-04-02 Jidosha Kiki Co Ltd Connecting method of heat-generating substance of glow plug employed in diesel engine
JPS59187085U (en) * 1983-05-31 1984-12-12 日吉電装株式会社 air heater
JPH0335874Y2 (en) * 1985-03-26 1991-07-30
JPS63290327A (en) * 1988-01-25 1988-11-28 Jidosha Kiki Co Ltd Glow plug for diesel engine

Also Published As

Publication number Publication date
JPH03114167A (en) 1991-05-15

Similar Documents

Publication Publication Date Title
US4141327A (en) Early fuel evaporation carburetion system
US4279234A (en) Early fuel evaporation of carburetion system
CS209467B2 (en) Regulation device for adjusting the choke position
JPS60235047A (en) Method for controlling temperature of oxygen sensor with heater for internal-combustion engine
US3930477A (en) Electric heating means for fuel vaporization in internal combustion engines
US4363958A (en) Preheating apparatus for diesel engines
JPH05195888A (en) Throttle valve unit
JP3047916B2 (en) Intake air preheating device for internal combustion engine
EP0453927B1 (en) Injection internal combustion engine with electric spark ignition
US3760780A (en) Electric heating means for fuel vaporization in internal combustion engines
JPS5922280Y2 (en) Internal combustion engine intake air heating device
US3768453A (en) Exhaust emission control for internal combustion engines utilizing anelectrically heated choke
JPH03110782A (en) Suction air preheating device of internal combustion engine
JP2003201838A (en) Exhaust pressure raising device
JP3735590B2 (en) Heater unit for fuel vaporization promotion device and fuel vaporization promotion device provided with the same
EP0594794A1 (en) Injection combustion engine with fuel heating element.
EP0051925B1 (en) Fuel supply system with automatic choke
JPS622147B2 (en)
JPH09245939A (en) Air heater for internal combustion engine, and control device thereof
JPH11148441A (en) Fuel supply device for internal combustion engine
US4406120A (en) Catalyst over temperature protector
JPS6115259Y2 (en)
JPS6332926Y2 (en)
JPS637256B2 (en)
JPS5937635Y2 (en) Electric intake heater for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees