JP3045857B2 - Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device - Google Patents

Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device

Info

Publication number
JP3045857B2
JP3045857B2 JP93292A JP93292A JP3045857B2 JP 3045857 B2 JP3045857 B2 JP 3045857B2 JP 93292 A JP93292 A JP 93292A JP 93292 A JP93292 A JP 93292A JP 3045857 B2 JP3045857 B2 JP 3045857B2
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide
deflector
light
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP93292A
Other languages
Japanese (ja)
Other versions
JPH05181027A (en
Inventor
淳 高浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP93292A priority Critical patent/JP3045857B2/en
Publication of JPH05181027A publication Critical patent/JPH05181027A/en
Application granted granted Critical
Publication of JP3045857B2 publication Critical patent/JP3045857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光導波路中の導波光の
光束巾や集光、反射等の制御に用いられる光導波路型偏
向器及びその光導波路型偏向器による導波光制御方法及
び光導波路素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type deflector used for controlling the light flux width, condensing, reflection, etc. of guided light in an optical waveguide, a method for controlling a guided light by the optical waveguide type deflector, and an optical waveguide. It relates to a waveguide element.

【0002】[0002]

【従来の技術】薄膜光導波路素子に集光器や光入出力系
を一体化した光集積導波路素子が提案されている。近
年、前記光集積導波路素子の小型化に伴い、入力光は狭
ビーム化する傾向にあり、これを良好に集光させるため
には集光系の高NA化が必須となるが、作製プロセス上
用いられるパターン転写マスクはパターンジェネレータ
を用いて作製されるため、前記パターンジェネレータの
描画性能、すなわち、位置及び角度の分解能の上限によ
り、集光系の形状、大きさ等が制約を受ける。上記の技
術背景から、狭ビーム入射を用いて導波路層内にて良好
なる導波光の集光制御を実現するにおいては、前記入射
光巾を導波路層内にて拡大することが前記技術的制約を
回避するに適した手段となる。この場合、集積化の利点
としてのデバイスの小型化を維持するためには、簡略な
る構成による光路巾の変換用素子の提案が望まれる。ま
た光路巾制御と集光制御を兼備した素子も集積化の上で
有用となりうる。
2. Description of the Related Art There has been proposed an optical integrated waveguide device in which a condenser and an optical input / output system are integrated with a thin film optical waveguide device. In recent years, with the miniaturization of the optical integrated waveguide device, the input light tends to be narrowed, and in order to converge the light well, it is necessary to increase the NA of the light condensing system. Since the pattern transfer mask used above is manufactured using a pattern generator, the drawing performance of the pattern generator, that is, the upper limit of the position and angle resolution limits the shape and size of the light collection system. From the above technical background, in order to realize good control of condensing guided light in a waveguide layer using narrow beam incidence, it is necessary to enlarge the incident light width in the waveguide layer. This is a suitable means for avoiding restrictions. In this case, in order to maintain the miniaturization of the device as an advantage of integration, it is desired to propose an optical path width conversion element with a simple configuration. An element having both optical path width control and light collection control may be useful in integration.

【0003】[0003]

【発明が解決しようとする課題】従来、光導波路内で光
路巾の変換を行なうものとしては、正・負のパワーを有
する複数枚数の曲面(反射面、屈折面)を組み合わせて
なるエキスパンダーあるいはコンプレッサによる光束巾
制御方法があるが、この場合、複数の曲面を配置するた
めのスペースや正確な位置合わせが必要であり、光集積
導波路素子の小型化、簡略化が図りにくい。また、光導
波路反射素子として、スラブ導波路上に、反射面を、該
導波層の厚さ方向に対し非平行なる緩いテーパー状の構
造とし、導波光の反射を高効率にて実現するものが提案
されている("Integrated optics and new wave phenom
enain optical waveguides”P.K.Tien,Reviews of Mod
ern Physics,Vol.49,No.2,April 1977,PP.378-37
9)。しかし、この反射素子は反射機能のみを有するも
のであって、光路巾の変換を行なうためには、上記正・
負のパワーを有する曲面と組み合わせる必要があり、や
はり光集積導波路素子の小型化、簡略化が図りにくい。
Conventionally, an optical path width is converted in an optical waveguide by using an expander or a compressor formed by combining a plurality of curved surfaces (reflection surfaces and refraction surfaces) having positive and negative powers. In this case, a space for arranging a plurality of curved surfaces and accurate positioning are required, and it is difficult to reduce the size and simplification of the optical integrated waveguide device. In addition, as an optical waveguide reflection element, a reflection surface is formed on a slab waveguide with a gentle tapered structure that is non-parallel to the thickness direction of the waveguide layer, thereby realizing highly efficient reflection of guided light. ("Integrated optics and new wave phenom
enain optical waveguides ”PKTien, Reviews of Mod
ern Physics, Vol.49, No.2, April 1977, PP.378-37
9). However, this reflecting element has only a reflecting function.
It is necessary to combine with a curved surface having a negative power, and it is also difficult to miniaturize and simplify the optical integrated waveguide device.

【0004】本発明は上記事情に鑑みてなされたもので
あって、光導波路層内を伝搬する導波光の光束巾を、簡
単な構成からなる反射部を用いて変化させうる光導波路
型偏向器、及びその光導波路型偏向器により、光導波路
層内を伝搬する導波光の偏向、集光(あるいは発散)制
御と光束巾制御を同時に行ないうる導波光制御方法及び
光導波路素子を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is an optical waveguide type deflector capable of changing the light flux width of guided light propagating in an optical waveguide layer by using a reflecting portion having a simple structure. And a waveguide light control method and an optical waveguide element capable of simultaneously controlling deflection, collection (or divergence) and control of light beam width of guided light propagating in an optical waveguide layer by the optical waveguide deflector. Aim.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明による光導波路型偏向器は、導
波路層端に設けた端面が該導波路に対し非垂直なるテー
パー面であって、前記テーパー面の傾き(テーパー角
φ)が、該テーパー面内において前記導波路層に対し平
行かつテーパー形成方向に対し垂直なる方向に連続的に
変化して成ることを特徴とする。請求項2記載の発明に
よる光導波路型偏向器は、導波路層端に設けた端面が該
導波路に対し非垂直なる曲率rを有するテーパー面であ
り、前記テーパー面の傾き(テーパー角φ)が、該テー
パー面内において前記導波路層に対し平行かつテーパー
形成方向に対し垂直なる方向に連続的に変化して成るこ
とを特徴とする。
To achieve the above object, an optical waveguide type deflector according to the present invention has a tapered surface whose end face provided at an end of a waveguide layer is non-perpendicular to the waveguide. The inclination (taper angle φ) of the tapered surface continuously changes in a direction parallel to the waveguide layer and perpendicular to the taper forming direction in the tapered surface. In the optical waveguide deflector according to the second aspect of the present invention, the end face provided at the end of the waveguide layer is a tapered surface having a curvature r that is non-perpendicular to the waveguide, and the inclination of the tapered surface (taper angle φ). Are continuously changed in a direction parallel to the waveguide layer and perpendicular to the taper forming direction in the tapered plane.

【0006】請求項3記載の発明は請求項1記載の光導
波路型偏向器による導波光制御方法であって、導波路層
端に設けたテーパー面の傾き(テーパー角φ)が、該テ
ーパー面内において連続的に変化して成る光導波路型偏
向器のテーパー部へ、非ゼロなる入射角を以って導波光
を入射させ、導波光の偏向及び光束巾を制御することを
特徴とする。請求項4記載の発明は請求項2記載の光導
波路型偏向器による導波光制御方法であって、導波路層
端に設けた曲率を有するテーパー面の傾き(テーパー角
φ)が、該テーパー面内において連続的に変化して成る
光導波路型偏向器のテーパー部へ導波光を入射させ、導
波光の集光、偏向及び光束巾を制御することを特徴とす
る。請求項5記載の発明による光導波路素子は、少なく
とも請求項1記載の光導波路型偏向器もしくは請求項2
記載の光導波路型偏向器を具備して成ることを特徴とす
る。
According to a third aspect of the present invention, there is provided the waveguide light control method using the optical waveguide type deflector according to the first aspect, wherein the inclination (taper angle φ) of the tapered surface provided at the end of the waveguide layer is controlled by the tapered surface. The waveguide light is incident on the tapered portion of the optical waveguide deflector continuously changing at a non-zero incident angle to control the deflection of the guided light and the beam width. According to a fourth aspect of the present invention, there is provided the waveguide light control method using the optical waveguide type deflector according to the second aspect, wherein the inclination (taper angle φ) of the tapered surface having a curvature provided at the end of the waveguide layer is reduced. In this method, guided light is made incident on a tapered portion of an optical waveguide deflector continuously changing in the inside, and condensing, deflecting, and a light beam width of the guided light are controlled. An optical waveguide device according to the invention of claim 5 is at least an optical waveguide deflector according to claim 1 or claim 2.
An optical waveguide type deflector as described above is provided.

【0007】[0007]

【作用】請求項1記載の光導波路型偏向器は、テーパー
構造による等価屈折率分布を有する層内の光路伝搬方向
の偏向を原理としているため、偏向効率が高いという利
点を有するに加え、光束の巾を制御する機能をも有す
る。請求項2記載の光導波路型偏向器は、テーパー構造
による等価屈折率分布を有する層内の光路伝搬方向の偏
向を原理としているため、偏向効率が高いという利点を
有するに加え、光束の巾を制御する機能をも有し、さら
にテーパー面が曲面のため、曲面反射に伴う集光(ある
いは発散)作用を備える。
The optical waveguide deflector according to the first aspect is based on the principle of deflecting in the direction of propagation of the optical path in a layer having an equivalent refractive index distribution by a tapered structure. It also has the function of controlling the width of The optical waveguide type deflector according to claim 2 is based on the principle of deflection in the optical path propagation direction in a layer having an equivalent refractive index distribution due to a tapered structure, and thus has the advantage of high deflection efficiency and the width of a light beam. It also has a function of controlling, and further has a condensing (or diverging) action accompanying the reflection of the curved surface because the tapered surface is a curved surface.

【0008】請求項3記載の導波光制御方法によれば、
コンパクトなスペースにて導波光の偏向と光束巾制御を
同時に実現することができる。請求項4記載の導波光制
御方法によれば、コンパクトなスペースにて導波光の集
光(発散)、偏向、光束巾制御を同時に実現することが
できる。請求項5記載の光導波路素子によれば、簡単な
構成で導波光の偏向、光束巾制御を実現でき、素子の小
型化を図れる。
According to the waveguide light control method of the third aspect,
The deflection of the guided light and the control of the light beam width can be simultaneously realized in a compact space. According to the guided light control method of the fourth aspect, it is possible to simultaneously realize the condensing (diverging), the deflection, and the light beam width control of the guided light in a compact space. According to the optical waveguide device of the fifth aspect, the deflection of the guided light and the control of the light beam width can be realized with a simple configuration, and the device can be miniaturized.

【0009】[0009]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。図1は請求項1記載の発明の一実施例を示
す図であって、導波路層端に設けた光導波路偏向器の反
射部形状の立体模式図を表している。図1において、反
射部の形状は、X軸方向へのテーパー比の連続的増加を
以って成るテーパー面1となっている。すなわち、図1
においてテーパー面1の傾き(テーパー角φ)がφ1
φ2となっている。上記構成を有する反射部の作用を、
図2に示す上面図を用いて以下に示す。先ず、図2にお
いて、巾d1なる導波光が、入射角θにて前記反射部(テ
ーパー部)へ入射した場合について述べる。前記入射光
を規定するマージナル光線L1,L2の比較において、L1
入射位置A1におけるテーパー巾は、L2の入射位置A2にお
けるテーパー巾に比べ短くなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a view showing an embodiment of the first aspect of the present invention, and is a three-dimensional schematic diagram of a shape of a reflecting portion of an optical waveguide deflector provided at an end of a waveguide layer. In FIG. 1, the shape of the reflecting portion is a tapered surface 1 having a continuously increasing taper ratio in the X-axis direction. That is, FIG.
And the inclination of the tapered surface 1 (taper angle φ) is φ 1 >
It has become a φ 2. The operation of the reflector having the above configuration,
This is described below using the top view shown in FIG. First, in FIG. 2, a case where a guided light beam having a width d 1 is incident on the reflecting portion (taper portion) at an incident angle θ will be described. In the comparison between the marginal rays L 1 and L 2 that define the incident light, the taper width at the incident position A 1 of L 1 is shorter than the taper width at the incident position A 2 of L 2 .

【0010】ここで、テーパー内における光の導波につ
いて簡単に述べる。図3(a)に表すようなテーパー巾
が一定なるテーパー部への入射光は、前記テーパー構造
に因る等価屈折率分布(図3(b)参照)の影響を受け
て、X−Y面内の伝搬方向を変えながら伝搬する。ま
た、側面方向の伝搬状態は、図4に示すように、テーパ
ー構造内において点Aより次第に境界面での入・反射角
を増加させながら点Bへ至り、点Bより点Cへ至る光の
導波状態は前記のA→Bと逆になる。この場合におい
て、境界面の反射時にグースヘンシェンシフトが生じて
いる。また、前記のテーパー角度が緩い程、等価屈折率
の変化率が緩くなるため、前記の入射光の伝搬方向の変
化率も小さくなり、入射点A〜射出点Cの間隔が拡がる
傾向を示す。前述の側面方向(Y−Z面)の伝搬状態に
おいては、境界面における反射は全反射条件によってい
る。従って、前記のテーパーの角度は、前記の点Bにお
ける境界面の入・反射角が、全反射角以下であることが
必要であり、前記条件からはずれた場合、光線は放射モ
ードとなり、導波路層外へ放射されてしまう。
[0010] Here, the waveguide of light in the taper will be briefly described. The light incident on the tapered portion having a constant taper width as shown in FIG. 3A is affected by the equivalent refractive index distribution (see FIG. 3B) caused by the tapered structure, and is affected by the XY plane. While propagating in different directions. In addition, as shown in FIG. 4, the propagation state of the light in the side direction reaches the point B while gradually increasing the incident / reflection angle at the boundary surface from the point A in the taper structure, and the light traveling from the point B to the point C in the taper structure. The waveguide state is reversed from A → B. In this case, a Goos-Henschen shift occurs at the time of reflection at the boundary surface. Further, as the taper angle becomes smaller, the rate of change of the equivalent refractive index becomes smaller, so that the rate of change in the propagation direction of the incident light also becomes smaller, and the interval between the incident point A and the exit point C tends to increase. In the above-described propagation state in the lateral direction (YZ plane), reflection at the boundary surface depends on the total reflection condition. Therefore, the angle of the taper is required that the angle of incidence / reflection of the boundary surface at the point B is equal to or less than the total reflection angle. Radiated out of the layer.

【0011】上述の導波特性に基づき、図1、図2に示
すテーパー部における前記L1,L2の光路伝搬の比較を行
なうと、前記L1,L2の入射点A1,A2におけるテーパー巾
m1,m2はm1<m2となる。従って、前記L1のテーパー面内
の伝搬光路上の等価屈折率分布が、L2のテーパー面内の
伝搬光路上の等価屈折率分布に比べ、分布変化率が大き
いため、伝搬方向の変化も大きくなる。このため、上記
の伝搬光路差により、前記L1とL2の前記テーパー面射出
点C1,C2により規定される射出光巾|C1−C2|は、先に
規定した入射光巾|A1−A2|に比べて大きくなる。尚、
上述の構成原理より、次のことも明らかである。すなわ
ち、図5に示す実施例では、テーパー面1の傾きの変化
を図2とは逆にした例であるが、この場合には、入射光
に対し、射出光の光束巾を小さくすることができる。従
って、同一の構成から成る反射部でも、テーパー角の変
化を小→大、大→小とすることで光束巾を小さくするこ
とも大きくすることもできる。また、同一構成のテーパ
ー面でも、入射方向と射出方向を逆にすれば、光束巾を
小さくすることも大きくすることもできる。以上のよう
に、請求項1の光導波路偏向器においては、簡単な構成
で導波光の反射と光束巾の制御を同時に行なうことがで
きる。
Based on the above-described waveguide characteristics, a comparison of the optical path propagation of L 1 and L 2 in the tapered portion shown in FIGS. 1 and 2 reveals that the incident points A 1 and A 1 of L 1 and L 2. Taper width at 2
m 1 and m 2 satisfy m 1 <m 2 . Therefore, the equivalent refractive index distribution of the propagation light path in the tapered surface of the L 1 is compared with the equivalent refractive index distribution of the propagation light path in the tapered surface of the L 2, since a large distribution rate of change, even the change in the propagation direction growing. Therefore, the emission light width | C 1 −C 2 | defined by the tapered surface emission points C 1 and C 2 of L 1 and L 2 is equal to the previously defined incident light width due to the propagation optical path difference. | A 1 −A 2 |. still,
The following is also clear from the above configuration principle. That is, in the embodiment shown in FIG. 5, the change in the inclination of the tapered surface 1 is reversed from that in FIG. 2, but in this case, it is necessary to reduce the luminous flux width of the emitted light with respect to the incident light. it can. Therefore, even in the reflecting portion having the same configuration, the light flux width can be reduced or increased by changing the change of the taper angle from small to large and large to small. Further, even with the same configuration of the tapered surface, the light beam width can be reduced or increased by reversing the incident direction and the exit direction. As described above, in the optical waveguide deflector of the first aspect, the reflection of the guided light and the control of the light beam width can be performed simultaneously with a simple configuration.

【0012】次に、請求項2の実施例について図6、図
7を用いて説明する。図6は請求項2記載の発明の一実
施例を示す図であって、導波路層端に設けた光導波路偏
向器の反射部形状の立体模式図を表している。図6にお
いて、反射部は凹面方向の負の曲率を有すると共に、X
軸方向へのテーパー比の連続的減少を以って成るテーパ
ー面1となっている。すなわち、図6においてテーパー
面1は曲率半径rの曲率を有し、かつテーパー面の傾き
(テーパー角φ)がφ1<φ2となっている。
Next, a second embodiment will be described with reference to FIGS. FIG. 6 is a view showing one embodiment of the invention according to claim 2, and is a three-dimensional schematic view of the shape of the reflecting portion of the optical waveguide deflector provided at the end of the waveguide layer. In FIG. 6, the reflecting portion has a negative curvature in the concave direction, and X
The taper surface 1 has a taper ratio that is continuously reduced in the axial direction. That is, in FIG. 6, the tapered surface 1 has a curvature with a radius of curvature r, and the inclination (taper angle φ) of the tapered surface is φ 12 .

【0013】上記構成を有する反射部の作用を、図7に
示す上面図を用いて以下に示す。先ず図7において、巾
d1なる平行光が前記反射部(テーパー部)に入射した場
合について述べる。上記入射光束のマージナル光線L1
L2について見ると、上述のようにテーパー面1は曲率を
有することから、該テーパー面1への入射角をθ1,θ2
と表すと、θ1>θ2であることが明らかである。さらに
前記入射光線L1,L2の、テーパー内における光路伝搬に
ついて見ると、前記L1の伝搬光路内における等価屈折率
分布は、前記L2の伝搬光路内における等価屈折率分布と
比べて分布が緩やかであるため、入射点A(A1,A2)と
射出点C(C1,C2)のズレ量は、L1の方がL2よりも大き
くなる(但し、テーパー比が一定の場合は、前記ズレ量
は等しい)。従って、射出光束は、集光されると共に光
束の巾d2が従来よりも圧縮される。以上のように、請求
項2の光導波路偏向器においては、簡単な構成で導波光
の反射、集光、光束巾の制御を同時に行なうことができ
る。尚、図示の実施例では、テーパー面1は曲率半径r
の円弧状の曲面としたが、この他、放物面や双曲面等の
曲面であっても良い。また、導波路層2側から見て凹面
としたが、導波路側に凸の曲面とすれば、射出光(反射
光)を発散光とすることができる。
The operation of the reflecting section having the above configuration will be described below with reference to a top view shown in FIG. First, in FIG.
It describes the case where d 1 becomes parallel light is incident on the reflecting portion (tapered portion). The marginal rays L 1 ,
As for L 2 , since the tapered surface 1 has a curvature as described above, the angles of incidence on the tapered surface 1 are θ 1 , θ 2
, It is clear that θ 1 > θ 2 . Looking further at the optical path propagation in the taper of the incident light beams L 1 and L 2 , the equivalent refractive index distribution in the L 1 propagating optical path is smaller than the equivalent refractive index distribution in the L 2 propagating optical path. Is small, the deviation between the incident point A (A 1 , A 2 ) and the exit point C (C 1 , C 2 ) is larger for L 1 than for L 2 (however, the taper ratio is constant) In the case of the above, the displacement amounts are equal). Therefore, the light flux is width d 2 of the light flux is compressed than before while being converged. As described above, in the optical waveguide deflector of the second aspect, the reflection, collection, and control of the light beam width of the guided light can be simultaneously performed with a simple configuration. In the illustrated embodiment, the tapered surface 1 has a radius of curvature r.
However, other curved surfaces such as a paraboloid or a hyperboloid may be used. In addition, although the concave surface is seen from the waveguide layer 2 side, the emitted light (reflected light) can be divergent light if the convex surface is formed on the waveguide side.

【0014】次に、請求項3記載の光導波路型偏向器に
よる導波光制御方法の実施例について以下に示す。図
1、図2に示した光導波路型偏向器において、テーパー
面abcdは、図1中、X軸方向へのテーパー角φの連
続的減少を以って構成される。このとき、テーパー部に
おける等価屈折率は膜厚の減少に伴い減少することか
ら、図中−Y方向への屈折率の連続的減少を与えられる
と共に、同図中、+X方向への前記等価屈折率の変化率
の減少を以ってなる。従って、前記構成を与えることに
より、光束の入射位置により、偏向作用の異なる光導波
路型偏向手段を得ることができる。すなわち、図2にお
いて、入射光束の+X側のマージナル光線L2の前記テー
パー部入射点A2におけるテーパー長は、同一入射光束の
−X側マージナル光線L1の前記テーパー部入射点A1にお
けるテーパー長に比べて長く、等価屈折率の変化が緩や
かであり、該テーパー部内の光路伝搬において、前記L2
は前記L1に比べ、偏向作用が緩やかに行なわれる結果、
テーパー部射出点の前記入射点からのズレ量は、前記L2
の方が前記L1よりも大きくなる。すなわち、射出光束の
巾が拡張される。また、同一の構成において、入射光束
の方向を逆にすれば、射出光束巾が圧縮される。以上の
ように、図1、図2に示す構成の光導波路型偏向器を用
い、導波光の入射方向、入射位置、入射角を調整するこ
とにより、導波光の偏向及び光束巾を容易に制御するこ
とができる。
Next, an embodiment of a guided light control method using an optical waveguide deflector according to the third aspect will be described. In the optical waveguide deflector shown in FIGS. 1 and 2, the tapered surface abcd has a continuous taper angle φ in the X-axis direction in FIG. At this time, since the equivalent refractive index in the tapered portion decreases as the film thickness decreases, a continuous decrease in the refractive index in the -Y direction in the figure is given, and the equivalent refractive index in the + X direction in the figure is given. With a decrease in rate of change. Therefore, by providing the above configuration, it is possible to obtain an optical waveguide type deflecting means having different deflecting effects depending on the incident position of the light beam. That is, in FIG. 2, the taper length in the tapered portion incident point A 2 of the marginal ray L 2 of the + X side of the incident light beam is tapered in the tapered portion incident point A 1 of the -X side marginal ray L 1 of the same incident light beam Longer than the length, the equivalent refractive index changes slowly, and in the optical path propagation in the tapered portion, the L 2
The results of comparison with the L 1, deflection action takes place slowly,
The amount of deviation of the exit point of the tapered portion from the incident point is L 2
It is larger than that of the L 1 of. That is, the width of the emitted light beam is extended. In the same configuration, if the direction of the incident light beam is reversed, the width of the emitted light beam is compressed. As described above, by using the optical waveguide deflector having the configuration shown in FIGS. 1 and 2 and adjusting the incident direction, the incident position, and the incident angle of the guided light, the deflection of the guided light and the beam width can be easily controlled. can do.

【0015】次に、請求項4記載の光導波路型偏向器に
よる導波光制御方法の実施例について以下に示す。図
6、図7に示した光導波路型偏向器において、テーパー
面abcdは曲率を有すると共に、図6中、+X軸方向
へのテーパー角φの連続的増加を以って構成される。こ
のとき、テーパー部における等価屈折率は膜厚の減少に
伴い減少することから、図中−Y方向への屈折率の連続
的減少を有すると共に、同図中、+X方向への等価屈折
率の変化率の増加を伴う。従って、上記構成の特徴を有
するテーパー面1への入射光は、前述の曲率による入射
角の差をもって集光されると共に、テーパー部内の光路
伝搬における、等価屈折率分布の緩急の差から射出光束
巾が入射光束巾に対して圧縮される。尚、同一構成にお
いて、入射光束の方向を逆にすれば、入射光束巾に比し
て射出光束巾が拡張され、かつ光束は発散光となる。以
上のように、図6、図7に示す構成の光導波路型偏向器
を用い、導波光の入射方向、入射位置、入射角を調整す
ることにより、導波光の偏向、集光(発散)及び光束巾
を容易に制御することができる。
Next, an embodiment of a guided light control method using an optical waveguide deflector according to claim 4 will be described below. In the optical waveguide type deflector shown in FIGS. 6 and 7, the tapered surface abcd has a curvature and has a continuous increase in the taper angle φ in the + X axis direction in FIG. At this time, since the equivalent refractive index in the tapered portion decreases as the film thickness decreases, it has a continuous decrease in the refractive index in the -Y direction in the figure, and also has the equivalent refractive index in the + X direction in the figure. With an increase in the rate of change. Accordingly, the light incident on the tapered surface 1 having the above-described features is collected with the difference in the incident angle due to the above-mentioned curvature, and the emitted light flux is obtained from the gradual difference in the equivalent refractive index distribution in the optical path propagation in the tapered portion. The width is compressed against the incident beam width. In the same configuration, if the direction of the incident light beam is reversed, the output light beam width is expanded as compared with the incident light beam width, and the light beam becomes divergent light. As described above, by using the optical waveguide deflector having the configuration shown in FIGS. 6 and 7 and adjusting the incident direction, the incident position, and the incident angle of the guided light, the deflection, collection (divergence), and The light beam width can be easily controlled.

【0016】次に、請求項5記載の光導波路素子の実施
例について説明する。請求項5記載の光導波路素子は、
図1、図2に示した請求項1記載の光導波路型偏向器、
もしくは図6、図7に示した請求項2記載の光導波路型
偏向器を具備してなり、素子構成の簡略化が図られてい
る。ここで、従来例として、図8に光導波路素子の一例
を示すが、同図において、カプラ・プリズムにより光導
波路のコアに結合された導波光の光束を拡張するため
に、従来は、正の曲率を有する反射器(a) と負の曲率を
有する反射器(b) からなるエクスパンダを配置してい
た。これに対して、本発明では、図9に示す実施例のよ
うに、光導波路に図1、図2に示す構成の光導波路型偏
向器(c) を設ければ、容易に光束巾の変換(拡張)を実
現できる。このように、請求項5記載の光導波路素子に
おいては、従来のものより少ない素子構成で導波光の偏
向、光束巾制御を実現でき、素子の小型化を図れる。
Next, an embodiment of the optical waveguide device according to the fifth aspect will be described. The optical waveguide device according to claim 5,
2. The optical waveguide deflector according to claim 1, shown in FIGS.
Alternatively, an optical waveguide deflector according to claim 2 shown in FIGS. 6 and 7 is provided to simplify the element configuration. Here, as a conventional example, FIG. 8 shows an example of an optical waveguide element. In FIG. 8, in order to expand a light flux of guided light coupled to a core of the optical waveguide by a coupler / prism, a conventional positive An expander consisting of a reflector (a) having a curvature and a reflector (b) having a negative curvature was arranged. On the other hand, according to the present invention, if the optical waveguide is provided with the optical waveguide type deflector (c) having the configuration shown in FIGS. 1 and 2 as in the embodiment shown in FIG. (Extension) can be realized. As described above, in the optical waveguide device according to the fifth aspect, the deflection of the guided light and the control of the luminous flux width can be realized with a smaller device configuration than the conventional one, and the device can be downsized.

【0017】[0017]

【発明の効果】以上、図示の実施例に基づいて説明した
ように、請求項1記載の光導波路型偏向器は、テーパー
構造による等価屈折率分布を有する層内の光路伝搬方向
の偏向を原理としているため、偏向効率が高いという利
点を有するに加え、光束の巾を制御する機能をも有す
る。これにより、従来の正・負のパワーを有する複数枚
数の曲面からなるエクスパンダーあるいはコンプレッサ
による光束巾制御方法に比べ、素子の小型・簡略化が図
られる。請求項2記載の光導波路型偏向器は、テーパー
構造による等価屈折率分布を有する導波路層内の光路伝
搬方向の偏向を原理としているため、偏向効率が高く反
射損失が少ないという利点を有するに加え、テーパー面
が曲面のため、曲面反射に伴う集光(あるいは発散)作
用を備えると共に、テーパー比の差によるテーパー構造
内の伝搬光路長差を用いて射出光束巾を制御する機能を
兼ね備えているので、同一の制御を、従来に比べて簡単
なる構成で行なうことができ、素子の集積化・小型化の
上で有用となる。
As described above with reference to the illustrated embodiment, the optical waveguide type deflector according to the first aspect deflects in the optical path propagation direction in a layer having an equivalent refractive index distribution by a tapered structure. Therefore, in addition to the advantage that the deflection efficiency is high, it also has a function of controlling the width of the light beam. As a result, the size and simplification of the device can be achieved as compared with the conventional light beam width control method using an expander or a compressor having a plurality of curved surfaces having positive and negative powers. The optical waveguide type deflector according to claim 2 is based on the principle of deflection in the optical path propagation direction in the waveguide layer having an equivalent refractive index distribution by a tapered structure, and therefore has the advantage of high deflection efficiency and low reflection loss. In addition, since the tapered surface is a curved surface, it has a function of condensing (or diverging) due to the reflection of the curved surface, and also has a function of controlling the emission light beam width using the difference in the propagation optical path length in the tapered structure due to the difference in the taper ratio. Therefore, the same control can be performed with a simpler configuration than in the past, which is useful in integrating and miniaturizing elements.

【0018】請求項3記載の導波光制御方法によれば、
コンパクトなスペースにて導波光の偏向と光束巾制御を
同時に実現することができ、これにより、光集積デバイ
スの集積度を向上できる。請求項4記載の導波光制御方
法によれば、コンパクトなスペースにて導波光の集光
(発散)、偏向、光束巾の同時制御が可能となり、光集
積デバイスの集積度を向上できる。請求項5記載の光導
波路素子によれば、従来よりコンパクトなスペースで且
つ簡単な構成で導波光の偏向、光束巾制御を実現でき、
素子の小型化を図れる。従って、従来と同じ大きさで、
より高機能なデバイスの作製が可能となる。
According to the waveguide light control method of the third aspect,
The deflection of the guided light and the control of the light beam width can be simultaneously realized in a compact space, thereby improving the degree of integration of the optical integrated device. According to the waveguide light control method of the fourth aspect, it is possible to simultaneously control (diverge), deflect, and luminous flux the guided light in a compact space, thereby improving the degree of integration of the optical integrated device. According to the optical waveguide device of the fifth aspect, the deflection of the guided light and the control of the light beam width can be realized with a more compact space and a simple configuration than before.
The element can be reduced in size. Therefore, with the same size as before,
A more sophisticated device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の一実施例を示す図であっ
て、導波路層端に設けた光導波路偏向器の反射部(テー
パー部)形状の立体模式図である。
FIG. 1 is a view showing one embodiment of the invention described in claim 1, and is a three-dimensional schematic view of a reflecting portion (tapered portion) of an optical waveguide deflector provided at an end of a waveguide layer.

【図2】図1に示す反射部(テーパー部)をZ方向から
見た上面図である。
FIG. 2 is a top view of the reflecting portion (tapered portion) shown in FIG. 1 as viewed from a Z direction.

【図3】(a)はテーパー巾が一定な場合の反射部(テ
ーパー部)の上面図であり、(b)はそのテーパー部の
等価屈折率分布を示す図である。
FIG. 3A is a top view of a reflecting portion (tapered portion) when a taper width is constant, and FIG. 3B is a diagram showing an equivalent refractive index distribution of the tapered portion.

【図4】図3(a)の反射部(テーパー部)をX方向か
ら見たときの側面図であって、側面方向の導波光の伝搬
状態を示す図である。
FIG. 4 is a side view of the reflection section (tapered section) of FIG. 3A when viewed from the X direction, and is a diagram showing a propagation state of guided light in the side direction.

【図5】テーパー面の傾きの変化を図2とは逆にした場
合の反射部(テーパー部)の上面図である。
FIG. 5 is a top view of the reflection portion (taper portion) when the change in the inclination of the tapered surface is reversed from that in FIG.

【図6】請求項2記載の発明の一実施例を示す図であっ
て、導波路層端に設けた光導波路偏向器の反射部(テー
パー部)形状の立体模式図である。
FIG. 6 is a view showing an embodiment of the invention described in claim 2, and is a three-dimensional schematic view of a reflecting portion (tapered portion) of an optical waveguide deflector provided at an end of a waveguide layer.

【図7】図6に示す反射部(テーパー部)をZ方向から
見た上面図である。
FIG. 7 is a top view of the reflecting portion (tapered portion) shown in FIG. 6 as viewed from the Z direction.

【図8】従来の光導波路素子の一例を示す図であって、
(a)は平面図、(b)は側断面図である。
FIG. 8 is a diagram showing an example of a conventional optical waveguide element,
(A) is a plan view, (b) is a side sectional view.

【図9】請求項5記載の発明の一実施例を示す光導波路
素子の平面図である。
FIG. 9 is a plan view of an optical waveguide device showing an embodiment of the invention described in claim 5;

【符号の説明】[Explanation of symbols]

1 テーパー面 2 導波路層 1 tapered surface 2 waveguide layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/138 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/12-6/138

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導波路層端に設けた端面が該導波路に対し
非垂直なるテーパー面であって、前記テーパー面の傾き
(テーパー角φ)が、該テーパー面内において前記導波
路層に対し平行かつテーパー形成方向に対し垂直なる方
向に連続的に変化して成ることを特徴とする光導波路型
偏向器。
1. An end face provided at an end of a waveguide layer is a tapered surface which is non-perpendicular to the waveguide, and the inclination (taper angle φ) of the tapered surface is equal to the thickness of the waveguide layer within the tapered surface. An optical waveguide deflector characterized by being continuously changed in a direction parallel to and perpendicular to a taper forming direction.
【請求項2】導波路層端に設けた端面が該導波路に対し
非垂直なる曲率rを有するテーパー面であり、前記テー
パー面の傾き(テーパー角φ)が、該テーパー面内にお
いて前記導波路層に対し平行かつテーパー形成方向に対
し垂直なる方向に連続的に変化して成ることを特徴とす
る光導波路型偏向器。
2. An end face provided at an end of a waveguide layer is a tapered face having a curvature r which is non-perpendicular to the waveguide, and the inclination (taper angle φ) of the tapered face is such that the guide is formed within the tapered face. An optical waveguide type deflector characterized by being continuously changed in a direction parallel to a waveguide layer and perpendicular to a taper forming direction.
【請求項3】請求項1記載の光導波路型偏向器による導
波光制御方法であって、導波路層端に設けたテーパー面
の傾き(テーパー角φ)が、該テーパー面内において連
続的に変化して成る光導波路型偏向器のテーパー部へ、
非ゼロなる入射角を以って導波光を入射させ、導波光の
偏向及び光束巾を制御することを特徴とする光導波路型
偏向器による導波光制御方法。
3. The method for controlling guided light by an optical waveguide deflector according to claim 1, wherein the inclination (taper angle φ) of the tapered surface provided at the end of the waveguide layer is continuously within the tapered surface. To the tapered part of the optical waveguide deflector that changes
A guided light control method using an optical waveguide deflector, wherein guided light is incident at a non-zero incident angle, and deflection and luminous flux width of the guided light are controlled.
【請求項4】請求項2記載の光導波路型偏向器による導
波光制御方法であって、導波路層端に設けた曲率を有す
るテーパー面の傾き(テーパー角φ)が、該テーパー面
内において連続的に変化して成る光導波路型偏向器のテ
ーパー部へ導波光を入射させ、導波光の集光、偏向及び
光束巾を制御することを特徴とする光導波路型偏向器に
よる導波光制御方法。
4. The method of controlling guided light by an optical waveguide deflector according to claim 2, wherein the inclination (taper angle φ) of the tapered surface having a curvature provided at the end of the waveguide layer is within the tapered surface. A waveguide light control method using an optical waveguide type deflector, wherein a waveguide light is made incident on a tapered portion of an optical waveguide type deflector which is continuously changed, and condensing, deflection and light beam width of the waveguide light are controlled. .
【請求項5】少なくとも請求項1記載の光導波路型偏向
器もしくは請求項2記載の光導波路型偏向器を具備して
成ることを特徴とする光導波路素子。
5. An optical waveguide device comprising at least the optical waveguide deflector according to claim 1 or the optical waveguide deflector according to claim 2.
JP93292A 1992-01-07 1992-01-07 Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device Expired - Fee Related JP3045857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP93292A JP3045857B2 (en) 1992-01-07 1992-01-07 Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP93292A JP3045857B2 (en) 1992-01-07 1992-01-07 Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device

Publications (2)

Publication Number Publication Date
JPH05181027A JPH05181027A (en) 1993-07-23
JP3045857B2 true JP3045857B2 (en) 2000-05-29

Family

ID=11487459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP93292A Expired - Fee Related JP3045857B2 (en) 1992-01-07 1992-01-07 Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device

Country Status (1)

Country Link
JP (1) JP3045857B2 (en)

Also Published As

Publication number Publication date
JPH05181027A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
US8538208B2 (en) Apparatus for coupling light between input and output waveguides
US5285318A (en) Illumination system having an aspherical lens
US4490020A (en) Coupling system for output light of semiconductor laser
US5710847A (en) Semiconductor optical functional device
US5734766A (en) High efficiency fiber optic coupler that reduces beam divergence
US7660499B2 (en) Optical spot displacement apparatus
US7643719B1 (en) Superlens and a method for making the same
JP2000056146A (en) Light self-guide optical circuit
US7046879B2 (en) Optical via for three dimensional interconnection
JP3045857B2 (en) Optical waveguide deflector, guided light control method using the optical waveguide deflector, and optical waveguide device
JPH01307707A (en) Optical coupling circuit
CN208488564U (en) A kind of on piece integration section reflector based on fractional transmission formula corner reflection microscope group
US20030223680A1 (en) Multiple optical switches using refractive optics
EP1241501A1 (en) An optical system
JPH0720359A (en) Optical device
US3996527A (en) Gas laser optical system
JPS62124510A (en) Grating optical coupler
JP4047612B2 (en) Light switch
JP2002107566A (en) Optical functional module
JPS5851244B2 (en) Shuyuusekihikarihanshiyasouchi
CA2233190C (en) A device for the conversion of a plurality of light beams into a more compact arrangement of light beams
JPH07169088A (en) Beam shaping optical element
JPH0973026A (en) Integrated type optical connecting structure
JPH0261005B2 (en)
CN115000811A (en) Laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees