JP3045166B1 - Current limiting device - Google Patents

Current limiting device

Info

Publication number
JP3045166B1
JP3045166B1 JP11127601A JP12760199A JP3045166B1 JP 3045166 B1 JP3045166 B1 JP 3045166B1 JP 11127601 A JP11127601 A JP 11127601A JP 12760199 A JP12760199 A JP 12760199A JP 3045166 B1 JP3045166 B1 JP 3045166B1
Authority
JP
Japan
Prior art keywords
current limiting
thermal
current
bridge circuit
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11127601A
Other languages
Japanese (ja)
Other versions
JP2000324684A (en
Inventor
正邦 浅野
憲昭 徳田
克夫 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP11127601A priority Critical patent/JP3045166B1/en
Priority to CA002277670A priority patent/CA2277670A1/en
Priority to US09/354,269 priority patent/US6335851B1/en
Application granted granted Critical
Publication of JP3045166B1 publication Critical patent/JP3045166B1/en
Publication of JP2000324684A publication Critical patent/JP2000324684A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

【要約】 【課題】 整流ブリッジ回路の交流側に複数個の熱限流
素子を直列に接続した場合、各熱限流素子に特性のばら
つきがあっても、高抵抗化した熱限流素子に発熱電力や
過電圧が集中してその熱限流素子が破壊することを未然
に防止する。 【解決手段】 整流ブリッジ回路の交流端子を電力系統
と直列に接続し、整流ブリッジ回路の直流端子間に直流
リアクトルを接続すると共に、整流ブリッジ回路の交流
側に、過電流により発熱してその温度上昇で高抵抗化す
る複数個の熱限流素子S1〜Snを直列に接続した限流
装置であって、熱限流素子S1〜Snと同数の巻線A1
〜Anを互いに密に磁気結合させて形成し、各巻線A1
〜Anを各熱限流素子S1〜Snごとに同極性で接続す
ると共に、各巻線A1〜Anを直列に接続した場合の合
成インダクタンス値を限流目標値から定まる最低値に等
しいかそれよりも大きくする。
Abstract: PROBLEM TO BE SOLVED: To connect a plurality of thermal current limiting elements in series on the AC side of a rectifier bridge circuit and to provide a high-resistance thermal current limiting element even if each thermal limiting element has a variation in characteristics. It is possible to prevent the heat-limiting element from being destroyed due to concentrated heat or overvoltage. SOLUTION: An AC terminal of a rectifier bridge circuit is connected in series with an electric power system, a DC reactor is connected between DC terminals of the rectifier bridge circuit, and the temperature of the AC side of the rectifier bridge circuit is increased due to overcurrent. A current limiting device in which a plurality of thermal current limiting elements S1 to Sn that increase resistance by rising are connected in series, and the same number of windings A1 as the thermal current limiting elements S1 to Sn.
To An are tightly magnetically coupled to each other, and each winding A1
To An with the same polarity for each of the thermal current limiting elements S1 to Sn, and when the windings A1 to An are connected in series, the combined inductance value is equal to or lower than the minimum value determined from the current limiting target value. Enlarge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は限流装置に関し、詳
しくは、低圧から超高圧に至る全ての電力系統に適用さ
れ、短絡事故による過電流や負荷投入時のインラッシュ
電流を抑制するための限流装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current limiting device, and more particularly, to a current limiting device, which is applied to all electric power systems from low voltage to very high voltage, and suppresses an overcurrent due to a short circuit accident and an inrush current at the time of load application. It relates to a current limiting device.

【0002】[0002]

【従来の技術】例えば、低圧から超高圧に至る全ての電
力系統では、短絡事故による過電流や負荷投入時のイン
ラッシュ電流を抑制するために限流装置を設け、この限
流装置により遮断器に要求される遮断容量を低減するよ
うにしている。この種の限流装置としては、従来、例え
ば正温度特性(PTC)サーミスタの熱限流素子やダイ
オードで構成された整流ブリッジ回路を用いたものがあ
る。
2. Description of the Related Art For example, in all power systems from low voltage to very high voltage, a current limiting device is provided to suppress an overcurrent due to a short circuit accident and an inrush current at the time of load application, and a circuit breaker is provided by the current limiting device. The required breaking capacity is reduced. Conventionally, as this type of current limiting device, there is a device using a rectifying bridge circuit composed of a thermal current limiting element of a positive temperature characteristic (PTC) thermistor or a diode, for example.

【0003】正温度特性(PTC)サーミスタの熱限流
素子は、ポリマー系材料やチタン酸バリウム系材料を組
成とし、過大な電流を流すことにより発熱してその熱に
より温度が上昇するとある温度から急激に高抵抗化する
もので、構成が簡単で経済的であり、低速応答の限流効
果が必要な場合に好適な素子として賞用されている。
[0003] The thermal limiting element of a positive temperature characteristic (PTC) thermistor is composed of a polymer material or a barium titanate material, and generates heat when an excessive current flows, and the temperature rises due to the heat. It has a rapid increase in resistance, has a simple structure and is economical, and has been awarded as a suitable element when a current limiting effect of low-speed response is required.

【0004】この熱限流素子を利用した限流装置は、図
4に示すように熱限流素子Sを電力系統の系統電源1と
負荷2との間に直列に接続した構成を有する。例えば、
短絡事故aが発生して過電流が流れ、熱限流素子Sが発
熱してその温度上昇で高抵抗化する。この熱限流素子S
の高抵抗化により電力系統に流れる過電流を抑制し、こ
の熱限流素子Sが限流機能を発揮している間に遮断器3
を開放することにより、電力系統の連系を解列する。
The current limiting device using the thermal current limiting element has a configuration in which a thermal limiting element S is connected in series between a system power supply 1 and a load 2 of a power system as shown in FIG. For example,
An overcurrent flows due to the occurrence of the short-circuit accident a, and the thermal current limiting element S generates heat and its resistance increases due to its temperature rise. This thermal limiting element S
The overcurrent flowing in the power system is suppressed by increasing the resistance of the circuit breaker 3 while the thermal current limiting element S exhibits the current limiting function.
To disconnect the grid from the power system.

【0005】また、整流ブリッジ回路を用いた限流装置
は、図5に示すように4つのダイオードD1 〜D4 でブ
リッジ構成された整流ブリッジ回路4の交流端子5,6
を電力系統と直列に接続し、直流端子7,8間に直流リ
アクトル9を接続した構成を有し、高速応答の限流効果
が必要な場合に好適なものとして賞用されている。
[0005] A current limiting device using a rectifying bridge circuit, as shown in FIG. 5, has AC terminals 5 and 6 of a rectifying bridge circuit 4 bridged by four diodes D 1 to D 4.
Is connected in series with a power system, and a DC reactor 9 is connected between the DC terminals 7 and 8, and is awarded as a suitable one when a current limiting effect of high-speed response is required.

【0006】この限流装置では、短絡事故aの発生によ
り交流電流が直流リアクトル9に流れる直流電流を上回
れば、ダイオードD1 とD4 又はダイオードD2 とD3
のペアのいずれかが停止する。これを交流端子5,6か
ら見ると、この間直流リアクトル9が交流回路に直列に
挿入されたことになり、その直流リアクトル9の端子電
圧が発生することにより電力系統に流れる過電流を抑制
する。この整流ブリッジ回路4が限流機能を発揮してい
る間に遮断器3を開放することにより、電力系統の連系
を解列する。
In this current limiting device, if the AC current exceeds the DC current flowing through the DC reactor 9 due to the occurrence of the short circuit accident a, the diodes D 1 and D 4 or the diodes D 2 and D 3
One of the pairs stops. When viewed from the AC terminals 5 and 6, the DC reactor 9 is inserted in series in the AC circuit during this time, and the terminal voltage of the DC reactor 9 is generated, thereby suppressing the overcurrent flowing in the power system. By opening the circuit breaker 3 while the rectifying bridge circuit 4 is performing the current limiting function, the interconnection of the power system is disconnected.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の熱限
流素子Sを有する限流装置と整流ブリッジ回路4を有す
る限流装置についてそれぞれ以下のような問題があっ
た。
The conventional current limiting device having the thermal current limiting element S and the conventional current limiting device having the rectifying bridge circuit 4 have the following problems.

【0008】正温度特性(PTC)サーミスタの熱限流
素子の場合、その熱限流素子自体は構造が簡単で経済的
な電流制限素子であり、短絡事故時などの過電流により
素子の発熱を得て限流作用を発揮させるものであるが、
必然的に数十msecの動作遅れを生じ、突発電流を抑制す
ることができない欠点があった。
[0008] In the case of a thermal limiting element of a positive temperature characteristic (PTC) thermistor, the thermal limiting element itself is an economical current limiting element having a simple structure, and generates heat from the element due to an overcurrent at the time of a short circuit accident or the like. It is to get the current limiting effect.
Inevitably, an operation delay of several tens of milliseconds occurs, and there is a disadvantage that a sudden current cannot be suppressed.

【0009】一方、整流ブリッジ回路4の場合、短絡事
故時の過電流を直流リアクトル9のインダクタンスで限
流効果を的確に発揮できるが、直流リアクトル9に流れ
る直流電流が半サイクルごとに増大するため、ある時間
帯の例えば50〜100msecの間、限流効果を期待する
にはコストも損失も大きくなり、比較的長時間例えば短
絡事故発生から50msec以上の間で限流機能を維持しよ
うとすると、より大きな直流リアクトルを設置しなけれ
ばならず、コスト面で経済的でないという欠点がある。
On the other hand, in the case of the rectifying bridge circuit 4, an overcurrent at the time of a short circuit fault can be accurately exerted by the inductance of the DC reactor 9 with a current limiting effect, but the DC current flowing through the DC reactor 9 increases every half cycle. For example, during a certain time period, for example, 50 to 100 msec, the cost and the loss are large to expect the current limiting effect, and if the current limiting function is to be maintained for a relatively long time, for example, 50 msec or more after the occurrence of a short circuit accident, The disadvantage is that a larger DC reactor must be installed, which is not economical in terms of cost.

【0010】これら両者の欠点を解消するため、熱限流
素子Sと整流ブリッジ回路4とを組み合わせて両者の特
性を相互に補完し、短絡事故aの発生時、突発電流を簡
便な手段により確実に抑制できると共に、比較的長時間
の限流機能を維持し得る経済的な限流装置が提案されて
いる。
In order to solve these two disadvantages, the thermal limiting element S and the rectifying bridge circuit 4 are combined to complement the characteristics of both, so that when a short-circuit accident a occurs, the sudden current can be reliably reduced by simple means. An economical current limiting device has been proposed which can suppress the current limit and maintain the current limiting function for a relatively long time.

【0011】この限流装置は、図6に示すように整流ブ
リッジ回路4の交流端子5,6を電力系統と直列に接続
し、整流ブリッジ回路4の直流端子7,8間に直流リア
クトル9を接続すると共に、整流ブリッジ回路4の交流
側に、過電流により発熱してその温度上昇で高抵抗化す
る熱限流素子Sを直列に接続した構成を有する。
In this current limiting device, as shown in FIG. 6, AC terminals 5 and 6 of a rectifying bridge circuit 4 are connected in series with a power system, and a DC reactor 9 is connected between DC terminals 7 and 8 of the rectifying bridge circuit 4. In addition to the connection, a thermal limiting element S, which generates heat due to an overcurrent and has a high resistance due to a rise in temperature, is connected in series to the AC side of the rectifying bridge circuit 4.

【0012】この限流装置では、熱限流素子Sと整流ブ
リッジ回路4とが相互に補完する機能を発揮し、短絡事
故aの発生時、整流ブリッジ回路4により突発電流を確
実に抑制できて高速応答の限流効果を発揮し、また、熱
限流素子Sにより比較的長時間の限流機能を維持できて
低速応答の限流効果を発揮する。
In this current limiting device, the thermal current limiting element S and the rectifying bridge circuit 4 exhibit a function of complementing each other, and when a short circuit a occurs, the rectifying bridge circuit 4 can surely suppress the sudden current. The current limiting effect of the high-speed response is exhibited, and the current limiting function of the thermal current limiting element S can be maintained for a relatively long time, so that the current limiting effect of the low-speed response is exhibited.

【0013】なお、この限流装置は、連系を解列できる
系統に熱限流素子Sを使用した場合であるが、連系を解
列できない系統に熱限流素子Sを使用する場合もある。
この場合、図7に示すように熱限流素子Sと並列に限流
リアクトル10を接続し、常時は熱限流素子Sに電流を
流し、短絡電流が流れて熱限流素子Sが高抵抗化した際
には限流リアクトル10に電流を転流させると共に、熱
限流素子Sをスイッチ11により系統から遮断して復帰
に備えるようにしている。
Although this current limiting device uses the thermal current limiting element S in a system that can disconnect the interconnection, the thermal current limiting device S may also be used in a system that cannot disconnect the interconnection. is there.
In this case, as shown in FIG. 7, a current limiting reactor 10 is connected in parallel with the thermal current limiting element S, a current always flows through the thermal current limiting element S, a short-circuit current flows, and the thermal current limiting element S has a high resistance. In this case, current is commutated to the current limiting reactor 10 and the thermal current limiting element S is disconnected from the system by the switch 11 to prepare for recovery.

【0014】ところで、整流ブリッジ回路4と組み合わ
される熱限流素子Sでは、部分的な発熱が速やかに熱拡
散して全体が均一に温度上昇する限られた長さの素子し
か使用することができないことから、その定格電圧は素
子1個あたり100V程度である。そのため、例えば2
00V、400Vや6600V等の電力系統に適用しよ
うとすると、限流動作時、系統電圧に相当する電圧を分
担する必要があるため、複数個の熱限流素子を直列に接
続することになる。
By the way, in the thermal current limiting element S combined with the rectifier bridge circuit 4, only an element having a limited length, in which the partial heat is quickly diffused and the temperature rises uniformly as a whole, can be used. Therefore, the rated voltage is about 100 V per element. Therefore, for example, 2
When applying to a power system of 00V, 400V, 6600V, or the like, it is necessary to share a voltage corresponding to the system voltage at the time of the current limiting operation, so that a plurality of thermal current limiting elements are connected in series.

【0015】しかしながら、複数個の熱限流素子を直列
に接続した場合、各熱限流素子に共通の短絡電流が流れ
るので、各熱限流素子に特性のばらつきがあると、複数
個の熱限流素子のうち、一部の熱限流素子のみが先に高
抵抗化し、その熱限流素子に発熱電力が集中して熱的に
破壊したり、過電圧が集中して絶縁破壊するという致命
的な問題があった。
However, when a plurality of thermal current limiting elements are connected in series, a common short-circuit current flows through each of the thermal current limiting elements. Among the current-limiting elements, only some of the thermal current-limiting elements become high resistance first, and the heat generated by the thermal current-limiting element concentrates, causing thermal breakdown, or overvoltage concentrates, causing a fatal failure. Problem.

【0016】そこで、本発明は前述した問題点に鑑みて
提案されたもので、その目的とするところは、整流ブリ
ッジ回路の交流側に複数個の熱限流素子を直列に接続し
た場合、各熱限流素子に特性のばらつきがあっても、高
抵抗化した熱限流素子に発熱電力や過電圧が集中してそ
の熱限流素子が破壊することを未然に防止することにあ
る。
Therefore, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to provide a method in which a plurality of thermal current limiting elements are connected in series on the AC side of a rectifying bridge circuit. An object of the present invention is to prevent the heat-limiting element having high resistance from being damaged by the concentrated heat-generating power or overvoltage even if the thermal-limiting element has a characteristic variation.

【0017】[0017]

【課題を解決するための手段】前述の目的を達成するた
めの技術的手段として、本発明は、整流ブリッジ回路の
交流端子を電力系統と直列に接続し、前記整流ブリッジ
回路の直流端子間に直流リアクトルを接続すると共に、
整流ブリッジ回路の交流側に、過電流により発熱してそ
の温度上昇で高抵抗化する複数個の熱限流素子を直列に
接続した限流装置であって、前記熱限流素子と同数の巻
線を空心コイル構造又はギャップ入りの鉄心構成のリア
クトルにより互いに密に磁気結合させて形成し、各巻線
を各熱限流素子ごとに同極性で並列に接続すると共に、
各巻線を直列に接続した場合の合成インダクタンス値を
限流目標値から定まる最低値に等しいかそれよりも大き
くしたことを特徴とする。
As a technical means for achieving the above-mentioned object, the present invention is to connect an AC terminal of a rectifier bridge circuit in series with a power system, and connect the AC terminal of the rectifier bridge circuit to a DC terminal of the rectifier bridge circuit. Connect the DC reactor and
A current limiting device in which a plurality of thermal current limiting elements, which generate heat due to an overcurrent and have a high resistance due to a rise in temperature thereof, are connected in series on the AC side of the rectifying bridge circuit, and the same number of windings as the thermal limiting elements. Wires with air-core coil structure or gap-shaped iron core rear
The coils are tightly magnetically coupled to each other, and each winding is connected in parallel with the same polarity for each heat-limiting element.
The combined inductance value when each winding is connected in series is equal to or larger than the minimum value determined from the current limit target value.

【0018】本発明の限流装置では、定常状態において
熱限流素子側に電流が流れているが、短絡事故などによ
る過電流が流れて素子特性のばらつきにより複数個の熱
限流素子の一部が高抵抗化すると、その高抵抗化した熱
限流素子と並列に設置された巻線側に短絡電流が転流す
る。
In the current limiting device of the present invention, a current flows to the thermal current limiting device side in a steady state, but an overcurrent flows due to a short circuit accident or the like and one of a plurality of thermal current limiting devices due to variations in device characteristics. When the resistance of the section increases, a short-circuit current commutates to the winding side installed in parallel with the thermal limiting element having the increased resistance.

【0019】この時、各熱限流素子の巻線を互いに密に
磁気結合させて熱限流素子ごとに同極性で接続している
ので、巻線間の相互誘導作用により、高抵抗化した熱限
流素子ではその素子電流が減少する向きに、高抵抗化し
ていない熱限流素子ではその素子電流が逆に増加する向
きに流れるので、高抵抗化した熱限流素子については過
度の発熱を防止し、高抵抗化していない熱限流素子につ
いては素子電流の増加により高抵抗化に至らしめるよう
に作用する。これにより、各熱限流素子に特性のばらつ
きがあっても、各熱限流素子を均等に高抵抗化させるこ
とができる。
At this time, since the windings of each thermal current limiting element are closely magnetically coupled to each other and are connected with the same polarity for each thermal limiting element, the mutual resistance between the windings increases the resistance. In the case of a thermal current limiting element, the element current flows in a direction in which the element current decreases, and in a non-high resistance thermal current limiting element, the element current flows in a direction of increasing the reverse. In the case of a thermal current limiting element that has not been increased in resistance, the element acts to increase the resistance by increasing the element current. This makes it possible to uniformly increase the resistance of each thermal limiting element even if the thermal limiting elements have variations in characteristics.

【0020】尚、連系を解列できない系統に熱限流素子
を使用する場合には、すべての熱限流素子が高抵抗化
し、短絡電流が巻線側に転流されると、これら巻線が直
列接続された状態で限流リアクトルとして機能する。
In the case where the thermal current limiting elements are used in a system in which the interconnection cannot be disconnected, if all the thermal limiting elements have a high resistance and a short-circuit current is commutated to the winding side, these windings will be disconnected. Function as a current limiting reactor in a state of being connected in series.

【0021】[0021]

【発明の実施の形態】本発明に係る限流装置の各実施形
態を以下に詳述する。尚、図4乃至図7と同一又は相当
部分には同一参照符号を付して重複説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the current limiting device according to the present invention will be described in detail below. Note that the same or corresponding parts as those in FIGS. 4 to 7 are denoted by the same reference numerals, and redundant description will be omitted.

【0022】図1に示す本発明の実施形態における限流
装置は、4つのダイオードD1 〜D 4 でブリッジ構成さ
れ、その交流端子5,6を電力系統と直列に接続し、直
流端子7,8間に直流リアクトル9を接続した整流ブリ
ッジ回路4(図6又は図7参照)を具備する。この整流
ブリッジ回路4の交流側に複数個の熱限流素子S1〜S
nを直列に接続し、その熱限流素子S1〜Snと同数の
巻線A1〜Anを互いに密に磁気結合させて形成し、各
巻線A1〜Anを各熱限流素子S1〜Snごとに同極性
で接続した構成を有する。この熱限流素子S1〜Snと
しては、ポリマー系材料やチタン酸バリウム系材料を組
成とする正温度特性(PTC)サーミスタが好適であ
る。
The current limiting in the embodiment of the present invention shown in FIG.
The device consists of four diodes D1~ D FourConfigured with bridge
The AC terminals 5 and 6 are connected in series with the power system,
Rectifier with DC reactor 9 connected between flow terminals 7 and 8
And an edge circuit 4 (see FIG. 6 or FIG. 7). This rectification
A plurality of thermal limiting elements S1 to S are provided on the AC side of the bridge circuit 4.
n are connected in series, and the same number of thermal limiting elements S1 to Sn as
The windings A1 to An are formed by closely magnetically coupling each other.
The windings A1 to An have the same polarity for each of the thermal limiting elements S1 to Sn
It has the structure connected by. These thermal limiting elements S1 to Sn
Is a combination of polymer-based materials and barium titanate-based materials.
A positive temperature characteristic (PTC) thermistor is preferable.
You.

【0023】この限流装置では、整流ブリッジ回路4と
熱限流素子S1〜Snとを組み合わせたことにより、整
流ブリッジ回路4と熱限流素子S1〜Snが具備する特
性を相互に補完する。即ち、短絡事故aの発生時、整流
ブリッジ回路4により突発電流を確実に抑制できて高速
応答の限流効果を発揮し、また、熱限流素子S1〜Sn
により比較的長時間の限流機能を維持できて低速応答の
限流効果を発揮する。
In this current limiting device, by combining the rectifying bridge circuit 4 and the thermal limiting elements S1 to Sn, the characteristics of the rectifying bridge circuit 4 and the thermal limiting elements S1 to Sn complement each other. That is, when a short-circuit accident a occurs, the sudden current can be reliably suppressed by the rectifying bridge circuit 4 to exhibit a current limiting effect of high-speed response, and the thermal current limiting elements S1 to Sn
Accordingly, the current limiting function for a relatively long time can be maintained, and the current limiting effect of the low-speed response is exhibited.

【0024】この限流装置の動作を具体的に図2に基づ
いて詳述する。図2は同一定格の熱限流素子S1,S2
を2個直列に接続した場合を示す。なお、同図では、各
熱限流素子S1,S2ごとに設けた後述のスイッチを省
略している。各熱限流素子S1,S2の抵抗(正常運転
時は交流ロスに相当する微小抵抗値)を仮にR1 ,R 2
とすると、次の回路方程式が成立する。
The operation of the current limiting device will be specifically described with reference to FIG.
It will be described in detail. FIG. 2 shows thermal limiting elements S1 and S2 of the same rating.
Are connected in series. In the figure,
A switch, which will be described later, provided for each of the thermal limiting elements S1 and S2 is omitted.
Abbreviated. Resistance of each thermal limiting element S1, S2 (normal operation
Is a minute resistance value corresponding to AC loss).1, R Two
Then, the following circuit equation is established.

【0025】[0025]

【数1】 (Equation 1)

【0026】[0026]

【数2】 (Equation 2)

【0027】この式から、From this equation,

【0028】[0028]

【数3】 (Equation 3)

【0029】これを上式に代入すると、Substituting this into the above equation gives

【0030】[0030]

【数4】 (Equation 4)

【0031】が得られる。ここで、簡単化のために巻線
A1,A2間の磁気結合が理想的で漏れがなく、L1
2 =M2 かつL1 =L2 とすると、上式からR1 1
2 2 の関係式が導かれる。
Is obtained. Where the windings for simplicity
The magnetic coupling between A1 and A2 is ideal and leak-free, and L1L
Two= MTwoAnd L1= LTwoThen, from the above equation, R1i1=
RTwoi TwoIs derived.

【0032】したがって、平常時の素子抵抗をRとし、
短絡電流iが流れ、例えば熱限流素子S2がK倍に高抵
抗化した場合、すなわち、K=R2 /R1 とした場合、
各熱限流素子S1,S2に流れる電流は、上式から、i
2 /i1 =R1 /R2 =1/Kとなり、巻線A1,A2
間の相互誘導は、高抵抗化した熱限流素子S2にあって
は電流を減少する向きに、逆に高抵抗化していない熱限
流素子S1では電流を増加する向きに作用する。したが
って、各熱限流素子の発熱量は、i2 22 /i 1 21
1/Kとなって、高抵抗化していない熱限流素子S1の
発熱量はK倍に急増し、直ちに高抵抗化することにな
る。
Therefore, the element resistance at normal time is represented by R,
Short-circuit current i flows, and for example, thermal limiting element S2 is K times higher
In the case of antagonism, ie, K = RTwo/ R1Then,
The current flowing through each of the thermal current limiting elements S1 and S2 is given by i
Two/ I1= R1/ RTwo= 1 / K, and the windings A1, A2
Mutual induction between the heat-limiting element S2 having a high resistance
In the direction of decreasing the current,
The current element S1 acts to increase the current. But
Therefore, the calorific value of each thermal limiting element is iTwo TwoRTwo/ I 1 TwoR1=
1 / K of the thermal limiting element S1 which has not been increased in resistance.
The calorific value rapidly increased by a factor of K, resulting in an immediate increase in resistance.
You.

【0033】したがって、図1に示すように定常状態で
は熱限流素子S1〜Snの抵抗がほぼ零であるので素子
側に電流が流れるが、短絡事故a(図6又は図7参照)
などの発生により過電流が流れると、素子特性のばらつ
きにより複数個の熱限流素子S1〜Snのうち、いずれ
かの熱限流素子が高抵抗化し、その熱限流素子に接続さ
れた巻線側に過電流が転流される。
Therefore, as shown in FIG. 1, in the steady state, the resistance of the thermal current limiting elements S1 to Sn is almost zero, so that current flows to the element, but a short circuit a (see FIG. 6 or FIG. 7)
When an overcurrent flows due to the occurrence of a current limiter, any one of the plurality of thermal limiting elements S1 to Sn has a high resistance due to variation in element characteristics, and a winding connected to the thermal limiting element. Overcurrent is commutated to the line side.

【0034】この時、各熱限流素子S1〜Snの巻線A
1〜Anを互いに密に磁気結合させて各熱限流素子S1
〜Snごとに同極性で接続しているので、巻線A1〜A
n間の相互誘導作用により、高抵抗化した熱限流素子で
はその素子電流が減少する向きに、高抵抗化していない
熱限流素子ではその素子電流が逆に増加する向きに流れ
る。その結果、高抵抗化していない熱限流素子が素子電
流の増加により高抵抗化する。このようにして各熱限流
素子S1〜Snに特性のばらつきがあっても、各熱限流
素子S1〜Snを均等に高抵抗化させることができる。
At this time, the winding A of each of the thermal current limiting elements S1 to Sn
1 to An are magnetically coupled to each other so that each thermal limiting element S1
To Sn, the windings A1 to A
Due to the mutual induction effect between n, the element current flows in the thermal current limiting element having a high resistance, in the direction in which the element current decreases, and in the thermal current limiting element not having a high resistance, the element current flows in the direction in which the element current increases. As a result, the resistance of the thermal current limiting element, which has not been increased, is increased by an increase in element current. In this way, even if the characteristics of the thermal limiting elements S1 to Sn vary, the resistance of the thermal limiting elements S1 to Sn can be increased uniformly.

【0035】この実施形態は、図1に示すように熱限流
素子S1〜Snと自己インダクタンス値L11,L22
…,Lnnの巻線A1〜Anを互いに密に磁気結合させて
形成したものであり、各巻線A1〜Anの相互インダク
タンス値をL12,L1n,L2nで表わすと、これら各巻線
A1〜Anを直列に接続した場合の合成インダクタンス
値Lは、L=ΣΣLij(i=1〜n,j=1〜n)とな
り、この合成インダクタンス値Lは、限流装置を設置す
る電力系統の仕様から定められ、その最低値は限流に必
要なインピーダンスから求まり、例えば、連系を解列で
きない系統に熱限流素子S1〜Snを使用する場合に
は、限流リアクトル10(図7参照)のインダクタンス
値と等しくなるようにすればよい。また、連系を解列で
きる系統に熱限流素子S1〜Snを使用する場合には、
合成インダクタンス値Lは、限流目標値から定まる最低
値に等しいかそれよりも大きくすればよい。
In this embodiment, as shown in FIG. 1, thermal limiting elements S1 to Sn and self-inductance values L 11 , L 22 ,
..., which are formed by intimately bringing into magnetically coupled to each other winding Al-An of L nn, expressed a mutual inductance value of each winding Al-An L 12, L 1n, with L 2n, these windings A1 To An are connected in series, the combined inductance value L is L = ΣΣL ij (i = 1 to n, j = 1 to n), and the combined inductance value L is the value of the power system in which the current limiting device is installed. The minimum value is determined from the impedance required for current limiting. For example, when the thermal current limiting elements S1 to Sn are used in a system that cannot be disconnected, the current limiting reactor 10 (see FIG. 7) ) May be made equal to the inductance value. Further, when the thermal current limiting elements S1 to Sn are used in a system capable of disconnecting the interconnection,
The combined inductance value L may be equal to or greater than the minimum value determined from the current limit target value.

【0036】本発明の限流装置は、連系を解列できる系
統に熱限流素子を使用する(熱限流素子Sと並列接続さ
れた限流リアクトルがない)場合(図6参照)だけでな
く、連系を解列できない系統に熱限流素子を使用した
(熱限流素子Sと並列接続された限流リアクトル10が
ある)場合(図7参照)にも適用可能であり、さらに、
図示しないが整流ブリッジ回路4と熱限流素子Sの直列
回路に限流リアクトルを並列に接続した構成とした場合
にも適用可能である。
The current limiting device of the present invention is used only when a thermal current limiting element is used in a system that can disconnect the interconnection (there is no current limiting reactor connected in parallel with the thermal current limiting element S) (see FIG. 6). However, the present invention is also applicable to a case where a thermal current limiting element is used in a system that cannot disconnect the interconnection (there is a current limiting reactor 10 connected in parallel with the thermal current limiting element S) (see FIG. 7). ,
Although not shown, the present invention is also applicable to a configuration in which a current limiting reactor is connected in parallel to a series circuit of the rectifying bridge circuit 4 and the thermal current limiting element S.

【0037】尚、連系を解列できない系統に熱限流素子
S1〜Snを使用する場合には、一般的に熱限流素子S
1〜Snと並列に限流リアクトル10(図7参照)を接
続する必要があるが、本発明の場合、すべての熱限流素
子S1〜Snが高抵抗化し、短絡電流が巻線側に転流さ
れると、これら巻線A1〜Anが直列接続された状態で
限流リアクトルとして機能するため、熱限流素子S1〜
Snと並列に限流リアクトル10(図7参照)を別に設
ける必要はないので、部品点数の低減及び装置のコンパ
クト化を図ることも可能である。
When the thermal limiting elements S1 to Sn are used in a system in which the interconnection cannot be disconnected, the thermal limiting elements S1 to Sn are generally used.
Although it is necessary to connect a current limiting reactor 10 (see FIG. 7) in parallel with the current limiting elements 1 to Sn, in the case of the present invention, all the thermal current limiting elements S1 to Sn have high resistance, and the short-circuit current is transferred to the winding side. When flowing, these windings A1 to An function as current limiting reactors in a state of being connected in series.
Since it is not necessary to separately provide a current limiting reactor 10 (see FIG. 7) in parallel with Sn, the number of parts can be reduced and the device can be made compact.

【0038】本発明の巻線構造は、図3に示すように各
巻線A1〜Anを同軸状に形成しているが、各巻線A1
〜Anの磁気結合が密となれば、特に巻線A1〜Anの
構造にこだわるものではない。また、図3は空心コイル
構造のものを示すが、ギャップ入りの鉄心構成のリアク
トルであってもよい。
In the winding structure of the present invention, the windings A1 to An are formed coaxially as shown in FIG.
If the magnetic coupling of .about.An is high, the structure of the windings A1 to An is not particularly limited. FIG. 3 shows an air-core coil structure, but a reactor having a core structure with a gap may be used.

【0039】また、図1に示すように各熱限流素子S1
〜SnごとにスイッチC1〜Cnを設けておけば、短絡
事故時、過電流によって熱限流素子S1〜Snが高抵抗
化した場合にその熱限流素子S1〜SnのスイッチC1
〜Cnを開放してその熱限流素子S1〜Snのみを遮断
できるようにすれば、短絡事故の回避後、前述したスイ
ッチC1〜Cnの投入により熱限流素子S1〜Snを速
やかに正常状態に復帰させることができる。
Further, as shown in FIG.
, The switches C1 to Cn of the thermal current limiting elements S1 to Sn are increased when the resistance of the thermal current limiting elements S1 to Sn is increased by an overcurrent during a short circuit.
To open only the thermal current-limiting elements S1 to Sn so that the short-circuit accident is avoided and then the switches C1 to Cn are turned on to quickly bring the thermal current-limiting elements S1 to Sn into a normal state. Can be restored.

【0040】以上の実施形態では、電力系統に限流装置
を適用した場合について説明したが、本発明はこれに限
定されることなく、電力系統以外の一般的な交流回路に
適用可能であることは勿論である。
In the above embodiment, the case where the current limiting device is applied to the power system has been described. However, the present invention is not limited to this, and is applicable to general AC circuits other than the power system. Of course.

【0041】[0041]

【発明の効果】本発明によれば、熱限流素子と同数の巻
線を空心コイル構造又はギャップ入りの鉄心構成のリア
クトルにより互いに密に磁気結合させて形成し、各巻線
を各熱限流素子ごとに同極性で並列に接続すると共に、
各巻線を直列に接続した場合の合成インダクタンス値を
限流目標値から定まる最低値に等しいかそれよりも大き
くしたことにより、素子特性のばらつきにより一部の熱
限流素子が高抵抗化しても、短絡電流を巻線側に転流さ
せて巻線間の相互誘導作用により、高抵抗化していない
他の熱限流素子を速やかに高抵抗化させることができる
ので、各熱限流素子に特性のばらつき等があっても、各
熱限流素子の高抵抗化を常に均等化でき、過電圧の集中
を防止できて熱限流素子の熱的破壊を未然に防止でき、
装置の品質及び信頼性を向上させることができる。
According to the present invention, the same number of windings as the heat-limiting element are provided in the air-core coil structure or in the rear portion having the iron core structure with a gap.
The coils are tightly magnetically coupled to each other, and each winding is connected in parallel with the same polarity for each heat-limiting element.
By setting the combined inductance value when each winding is connected in series equal to or greater than the minimum value determined from the current limiting target value, even if some thermal current limiting elements have increased resistance due to variations in element characteristics Since the short-circuit current is diverted to the winding side and the mutual induction action between the windings allows the other heat-limiting elements, which have not been increased in resistance, to be quickly increased in resistance, each thermal-limiting element is Even if there are variations in characteristics, etc., it is possible to always equalize the increase in resistance of each thermal current limiting element, prevent concentration of overvoltage, prevent thermal destruction of the thermal current limiting element,
The quality and reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る限流装置の実施形態を示す回路図FIG. 1 is a circuit diagram showing an embodiment of a current limiting device according to the present invention.

【図2】本発明の実施形態における限流装置の動作を説
明するためのもので、2つの熱限流素子を直列に接続し
た限流装置を示す回路図
FIG. 2 is a circuit diagram illustrating a current limiting device in which two thermal current limiting elements are connected in series, for explaining an operation of the current limiting device in the embodiment of the present invention.

【図3】本発明の限流装置における巻線の構造例を示す
構成図
FIG. 3 is a configuration diagram showing a structural example of a winding in the current limiting device of the present invention.

【図4】熱限流素子を用いた限流装置の従来例を示す回
路図
FIG. 4 is a circuit diagram showing a conventional example of a current limiting device using a thermal current limiting element.

【図5】整流ブリッジ回路を用いた限流装置の従来例を
示す回路図
FIG. 5 is a circuit diagram showing a conventional example of a current limiting device using a rectifying bridge circuit.

【図6】整流ブリッジ回路と熱限流素子を組み合わせた
本発明の前提となる限流装置を示す回路図
FIG. 6 is a circuit diagram showing a current limiting device based on a combination of a rectifying bridge circuit and a thermal current limiting element, which is a premise of the present invention.

【図7】連系を解列できない系統に熱限流素子を使用し
た本発明の前提となる限流装置を示す回路図
FIG. 7 is a circuit diagram showing a current limiting device which is a premise of the present invention using a thermal current limiting element in a system in which interconnection cannot be disconnected.

【符号の説明】[Explanation of symbols]

4 整流ブリッジ回路 5,6 交流端子 7,8 直流端子 9 直流リアクトル S1〜Sn 熱限流素子 A1〜An 巻線 4 Rectifier bridge circuit 5, 6 AC terminal 7, 8 DC terminal 9 DC reactor S1-Sn Thermal limiting element A1-An Winding

フロントページの続き (56)参考文献 特開 平9−130966(JP,A) 特開 昭49−45349(JP,A) 特開 昭48−97042(JP,A) 特開 昭56−81039(JP,A) 特許2947277(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H02H 9/02 H01C 7/02 - 7/13 H02J 1/00 309 H01L 39/16 H01H 33/59 Continuation of the front page (56) References JP-A-9-130966 (JP, A) JP-A-49-45349 (JP, A) JP-A-48-97042 (JP, A) JP-A-56-81039 (JP, A) , A) Patent 2947277 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 9/02 H01C 7 /02-7/13 H02J 1/00 309 H01L 39/16 H01H 33 / 59

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 整流ブリッジ回路の交流端子を電力系統
と直列に接続し、前記整流ブリッジ回路の直流端子間に
直流リアクトルを接続すると共に、整流ブリッジ回路の
交流側に、過電流により発熱してその温度上昇で高抵抗
化する複数個の熱限流素子を直列に接続した限流装置で
あって、前記熱限流素子と同数の巻線を空心コイル構造
又はギャップ入りの鉄心構成のリアクトルにより互いに
密に磁気結合させて形成し、各巻線を各熱限流素子ごと
に同極性で並列に接続すると共に、各巻線を直列に接続
した場合の合成インダクタンス値を限流目標値から定ま
る最低値に等しいかそれよりも大きくしたことを特徴と
する限流装置。
1. An AC terminal of a rectifier bridge circuit is connected in series with a power system, a DC reactor is connected between DC terminals of the rectifier bridge circuit, and heat is generated by an overcurrent on an AC side of the rectifier bridge circuit. What is claimed is: 1. A current limiting device in which a plurality of thermal current limiting elements whose resistance is increased by increasing the temperature thereof are connected in series, wherein the same number of windings as the thermal current limiting elements have an air-core coil structure.
Alternatively, the combined inductance value is formed by tightly magnetically coupling each other with a reactor having a core structure with a gap , connecting each winding in parallel with the same polarity for each thermal limiting element, and connecting each winding in series. Is set equal to or greater than the lowest value determined from the current limiting target value.
JP11127601A 1998-07-16 1999-05-07 Current limiting device Expired - Fee Related JP3045166B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11127601A JP3045166B1 (en) 1999-05-07 1999-05-07 Current limiting device
CA002277670A CA2277670A1 (en) 1998-07-16 1999-07-14 Current-limiting device
US09/354,269 US6335851B1 (en) 1998-07-16 1999-07-15 Current-limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127601A JP3045166B1 (en) 1999-05-07 1999-05-07 Current limiting device

Publications (2)

Publication Number Publication Date
JP3045166B1 true JP3045166B1 (en) 2000-05-29
JP2000324684A JP2000324684A (en) 2000-11-24

Family

ID=14964132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127601A Expired - Fee Related JP3045166B1 (en) 1998-07-16 1999-05-07 Current limiting device

Country Status (1)

Country Link
JP (1) JP3045166B1 (en)

Also Published As

Publication number Publication date
JP2000324684A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
US5530613A (en) Current limiting circuit controller
JPH08315666A (en) Breaker and breaking device
JPS5944928A (en) Electric load protecting device
CN101728812B (en) Line commutation type fault current limiter
JP4328860B2 (en) Fault current limiter and power system using the same
JP3045166B1 (en) Current limiting device
JP2004215323A (en) Protective circuit
KR102289336B1 (en) Transformer type superconducting fault current limiter using double iron core
CN113992082B (en) Combined de-excitation resistor circuit
JP2941833B2 (en) Superconducting current limiting device
JP3000981B2 (en) High speed current limiter
JP3204941B2 (en) Current limiting device
CN109994340B (en) A repeat circuit and control method thereof
CN210201543U (en) Charging circuit for improving reliability and photovoltaic air conditioning equipment
JP3045165B1 (en) Current limiting device
US6335851B1 (en) Current-limiting device
JP3399905B2 (en) Three-phase current limiter
JP2904213B1 (en) Current limiting device
JP2901068B2 (en) Current limiting device
JPH09233833A (en) Ac/dc converter
JP2947277B1 (en) Current limiting device
KR102264598B1 (en) Flux-Coupling type superconducting fault current limiter with two triggered current limiting levels
KR102358560B1 (en) Flux-Coupling type superconducting fault current limiter with non-isolated secondary winding
JP2947275B1 (en) Current limiting device
CN214900183U (en) Power supply circuit of power switch and power supply system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees