JP3042121B2 - Precision bearing spindle device and assembly method thereof - Google Patents

Precision bearing spindle device and assembly method thereof

Info

Publication number
JP3042121B2
JP3042121B2 JP3352999A JP35299991A JP3042121B2 JP 3042121 B2 JP3042121 B2 JP 3042121B2 JP 3352999 A JP3352999 A JP 3352999A JP 35299991 A JP35299991 A JP 35299991A JP 3042121 B2 JP3042121 B2 JP 3042121B2
Authority
JP
Japan
Prior art keywords
peripheral surface
raceway
rolling
spindle device
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3352999A
Other languages
Japanese (ja)
Other versions
JPH05164126A (en
Inventor
陸生 久保
博樹 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP3352999A priority Critical patent/JP3042121B2/en
Publication of JPH05164126A publication Critical patent/JPH05164126A/en
Application granted granted Critical
Publication of JP3042121B2 publication Critical patent/JP3042121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明に係る精密軸受スピンド
ル装置及びその組立方法は、精密旋盤の主軸等を、軸方
向の振れなく支承する為に利用する。
BACKGROUND OF THE INVENTION The precision bearing spindle device and the method of assembling the same according to the present invention are used for supporting the main shaft of a precision lathe without any axial deflection.

【0002】[0002]

【従来の技術とその問題点】図3に示す様に、精密旋盤
の主軸等の回転軸1はハウジング2の内側に、複数個の
転がり軸受3、3を介して、回転自在に支承されてい
る。転がり軸受3、3としては、アンギュラ玉軸受、深
溝玉軸受、円錐ころ軸受等、ラジアル方向の荷重の他、
アキシャル方向の荷重も支承出来る構造のものを使用す
る。
2. Description of the Related Art As shown in FIG. 3, a rotary shaft 1 such as a main shaft of a precision lathe is rotatably supported inside a housing 2 through a plurality of rolling bearings 3, 3. I have. Rolling bearings 3, 3 include, in addition to radial loads, such as angular ball bearings, deep groove ball bearings, tapered roller bearings,
Use a structure that can support the load in the axial direction.

【0003】ところが、上述の様な転がり軸受3、3に
より、ハウジング2の内側に回転自在に支承された回転
軸1は、回転に伴なって軸方向(図3の左右方向)に振
れる(往復移動する)場合がある。即ち、上記回転軸1
の端面1aの中心部に高精度の変位計4を対向させた状
態で回転軸1を回転させた場合、この変位計4の出力
が、図4に示す様に、回転軸1の1回転を1周期Lとし
て変化する。この様にして変位計4により検出される、
回転軸1の軸方向に亙る変位量δは、μm単位若しくは
それ以下の極く僅かのものである。
However, the rotating shaft 1 rotatably supported inside the housing 2 by the above-described rolling bearings 3 and 3 swings in the axial direction (left and right directions in FIG. 3) with rotation (reciprocation). Move). That is, the rotating shaft 1
When the rotating shaft 1 is rotated in a state in which the high-precision displacement meter 4 is opposed to the center of the end surface 1a of the end surface 1a, as shown in FIG. It changes as one cycle L. Detected by the displacement meter 4 in this manner,
The amount of displacement δ of the rotating shaft 1 in the axial direction is very small in the order of μm or less.

【0004】一方、近年に於ける製造装置等の精度向上
により、ダイヤモンドバイト等の超硬質バイトを使用し
て、金属材の端面をサブμm単位で仕上げる様な事が行
なわれている。この様な高精度の加工を行なう場合に
は、上記回転軸1の変位量δが、μm単位若しくはそれ
以下の極く僅かであっても、加工精度上無視出来なくな
る。
On the other hand, with the recent improvement in the accuracy of manufacturing equipment and the like, the end face of a metal material is finished in sub-μm units using an ultra-hard tool such as a diamond tool. In the case of performing such high-precision machining, even if the displacement amount δ of the rotating shaft 1 is extremely small in μm units or less, it cannot be ignored in terms of machining accuracy.

【0005】この様に、加工精度に悪影響を及ぼす、回
転軸1の軸方向に亙る振れの原因に就いて、本発明者が
研究したところ、転がり軸受3、3を構成する軌道輪の
軌道面の歪による事が解った。
The inventors of the present invention have studied the cause of the run-out in the axial direction of the rotary shaft 1 which adversely affects the processing accuracy. As a result, the raceway surfaces of the races constituting the rolling bearings 3, 3 have been studied. It turned out that it was due to the distortion.

【0006】即ち、外輪5内周面の外輪軌道6と内輪7
外周面の内輪軌道8との間に、複数の転動体9、9を転
動自在に装着する事で構成された各転がり軸受3、3
は、ラジアル方向(直径方向)の荷重の他、アキシャル
方向(軸方向)の荷重をがたつきなく支承する為、上記
外輪軌道6と内輪軌道8との間で複数の転動体9、9
を、ラジアル方向とアキシャル方向とに押圧している。
即ち、転がり軸受3、3を組み立てる場合に、構成各部
材5、7、9を弾性変形させる事で、上記外輪軌道6及
び内輪軌道8を複数の転動体9、9に弾性的に押圧す
る、所謂予圧付与を行なっている。
That is, the outer raceway 6 and the inner race 7 on the inner peripheral surface of the outer race 5
Each of the rolling bearings 3, 3 configured by rotatably mounting a plurality of rolling elements 9, 9 between the inner ring raceway 8 on the outer peripheral surface.
Is provided with a plurality of rolling elements 9, 9 between the outer raceway 6 and the inner raceway 8 in order to support not only the radial (diameter) load but also the axial (axial) load without play.
Are pressed in the radial direction and the axial direction.
That is, when assembling the rolling bearings 3, the components 5, 7, 9 are elastically deformed to elastically press the outer raceway 6 and the inner raceway 8 against the plurality of rolling elements 9, 9. A so-called preload is applied.

【0007】ところが、上記外輪軌道6及び内輪軌道8
の円周方向に亙る形状は、不可避的な製造誤差により真
円とはならず、極く僅かではあるが、楕円形、或は三角
形等の非円形に歪む事が避けられない。この様に非円形
の外輪軌道6及び内輪軌道8を有する外輪5及び内輪7
を同心に組み合わせて、両部材5、7同士を相対的に回
転させた場合、上記外輪軌道6と内輪軌道8との軸方向
距離が変化する。この様に、外輪軌道6と内輪軌道8と
の軸方向距離が変化した場合には、両軌道6、8の間に
弾性的に挟持された転動体9、9を押圧する力が変化
し、その反作用として、外輪5及び内輪7が軸方向に変
位してしまう。
However, the outer raceway 6 and the inner raceway 8
The shape in the circumferential direction does not become a perfect circle due to an unavoidable manufacturing error, and it is unavoidable that the shape is slightly, but slightly non-circular, such as elliptical or triangular. Outer ring 5 and inner ring 7 having non-circular outer ring track 6 and inner ring track 8 in this manner
When the two members 5 and 7 are relatively rotated by concentrically combining the two, the axial distance between the outer raceway 6 and the inner raceway 8 changes. Thus, when the axial distance between the outer raceway 6 and the inner raceway 8 changes, the force for pressing the rolling elements 9, 9 elastically held between the raceways 6, 8 changes, As a reaction, the outer ring 5 and the inner ring 7 are displaced in the axial direction.

【0008】例えば、図5に誇張して示す様に、外輪軌
道6(破線a)及び内輪軌道8(実線b)が何れも楕円
であるとすると、外輪軌道6と内輪軌道8とが同図
(A)に示す様に、互いの長軸及び短軸を一致させる位
置関係となった場合には、転動体9の予圧量が適正にな
って、外輪5と内輪7とが軸方向にずれる事はない。と
ころが、同図(B)に示す様に、内輪軌道8の長軸と外
輪軌道6の短軸とが一致する様な位置関係となった場合
には、上記内輪軌道8の長軸の延長線近傍に存在する、
一部の転動体の予圧量が過剰となり、外輪5と内輪7と
が軸方向に亙ってずれる傾向となる。
[0008] For example, as shown exaggeratedly in FIG. 5, when the outer ring raceway 6 (broken line a) and the inner ring raceway 8 (solid line b) are all at the oval, the same and the outer ring raceway 6 and the inner ring raceway 8 As shown in FIG. 7A, when the positional relationship is such that the long axis and the short axis of each other coincide with each other, the preload amount of the rolling elements 9 becomes appropriate, and the outer ring 5 and the inner ring 7 There is no deviation. However, when the long axis of the inner raceway 8 and the short axis of the outer raceway 6 are aligned as shown in FIG. Exist in the vicinity,
The preload amount of some rolling elements becomes excessive, and the outer ring 5 and the inner ring 7 tend to shift in the axial direction.

【0009】図5(A)の状態と同図(B)の状態と
は、内輪7が外輪5の内側で1回転する毎に繰り返し生
じる為、この内輪7の内側に嵌合支持された回転軸1
が、軸方向に亙って振れる事になる。図6は、この様な
原因に基づいて生じる、回転軸1の軸方向に亙る変位量
を表わしている。内径が70mm、接触角が15度のアン
ギュラ玉軸受で、外輪軌道の楕円量と内輪軌道の楕円量
とが等しい場合に於ける軸方向の振れ量を表わした、こ
の図6の横軸は、長径と短径との差に関連する楕円量
を、縦軸は回転軸1の軸方向変位量を、それぞれ表わし
ている。
The state shown in FIG. 5 (A) and the state shown in FIG. 5 (B) are repeatedly generated each time the inner ring 7 makes one rotation inside the outer ring 5, and therefore the rotation fitted and supported inside the inner ring 7. Axis 1
Swings in the axial direction. FIG. 6 shows the amount of displacement of the rotating shaft 1 in the axial direction caused by such a cause. In the case of an angular ball bearing having an inner diameter of 70 mm and a contact angle of 15 degrees, the axial runout amount when the elliptical amount of the outer ring raceway and the elliptical amount of the inner raceway are equal is shown. The elliptic amount related to the difference between the major axis and the minor axis, and the vertical axis represents the axial displacement of the rotating shaft 1 respectively.

【0010】この図6から明らかな通り、外輪軌道6並
びに内輪軌道8を精密に仕上げる事で、各軌道6、8を
真円に近付ければ、上記回転軸1の軸方向変位量を小さ
く出来るが、上記各軌道6、8を真円に仕上げる事は難
しく、製作費を高くする原因となる為、好ましくない。
As is apparent from FIG. 6, by precisely finishing the outer raceway 6 and the inner raceway 8 and bringing the raceways 6, 8 closer to a perfect circle, the axial displacement of the rotary shaft 1 can be reduced. However, it is difficult to finish each of the tracks 6 and 8 in a perfect circle, which is not preferable because it causes an increase in manufacturing cost.

【0011】本発明の精密軸受スピンドル装置は、この
様な事情に鑑みて発明されたものである。
The precision bearing spindle device of the present invention has been invented in view of such circumstances.

【0012】[0012]

【課題を解決するための手段】本発明の精密軸受スピン
ドル装置は何れも、従来の精密軸受スピンドル装置と同
様に、外輪内周面の外輪軌道と内輪外周面の内輪軌道と
の間に複数の転動体を転動自在に設けて成り、アキシャ
ル方向及びラジアル方向の荷重を支承自在とした転がり
軸受により、円筒状の内周面を有するハウジングの内側
に、円筒状の外周面を有する軸を、相対的回転自在に支
承する事で構成される。
All of the precision bearing spindle devices of the present invention, like the conventional precision bearing spindle device, have a plurality of inner races between the outer raceway on the inner peripheral surface of the outer race and the inner race raceway on the outer peripheral surface of the inner race. The rolling element is provided so that it can roll freely, by a rolling bearing that is capable of supporting the load in the axial direction and the radial direction, inside the housing having a cylindrical inner peripheral surface, a shaft having a cylindrical outer peripheral surface, It is configured to be supported for relative rotation.

【0013】特に、本発明の精密軸受スピンドル装置
うち、請求項1に記載した精密軸受スピンドル装置に於
いては、上記転がり軸受として互いに接触角の方向が逆
であるものを複数個設けると共に、各転がり軸受を、上
記外輪軌道及び内輪軌道のうねりに起因してこれら両軌
道同士の間隔が狭くなる部分の回転方向に関する位相を
互いに一致させた状態で配置する事により、外輪と内輪
との相対回転に伴って生じる軸方向の振れを相殺させる
事を特徴としている。又、請求項2に記載した精密軸受
スピンドル装置に於いては、上記転がり軸受として互い
に接触角の方向が同じであるものを複数個設けると共
に、各転がり軸受を、上記外輪軌道及び内輪軌道のうね
りに起因してこれら両軌道同士の間隔が狭くなる部分の
回転方向に関する位相を互いに90度ずらせた状態で配
置する事により、外輪と内輪との相対回転に伴って生じ
る軸方向の振れを相殺させる事を特徴としている。
に、請求項3、4に記載した精密軸受スピンドル装置の
組立方法に於いては、上述した請求項1又は請求項2に
記載した精密軸受スピンドル装置を構成する為、上記外
輪軌道及び内輪軌道のうねりに起因してこれら両軌道同
士の間隔が狭くなる部分の回転方向に関する位相を予め
測定した後、この位相を互いに一致或は90度ずらせて
配置した状態で組み合わせる事により、外輪と内輪との
相対回転に伴って生じる軸方向の振れを相殺させる。
In particular, in the precision bearing spindle device of the present invention ,
In the precision bearing spindle device according to the first aspect of the present invention , the rolling bearings have directions of contact angles opposite to each other.
A plurality of rolling bearings, and each of the rolling bearings is driven by these two raceways due to the undulation of the outer raceway and the inner raceway.
The phase with respect to the rotation direction of the part where the distance between the roads becomes narrower
By arranging them in a state where they match each other, the outer ring and inner ring
The present invention is characterized in that the axial vibration generated due to the relative rotation with the above is offset . A precision bearing according to claim 2.
In the spindle device, each other as the above-mentioned rolling bearing
When two or more devices with the same contact angle
In addition, each rolling bearing is
In the area where the distance between these two orbits is
The phases in the rotation direction are shifted 90 degrees from each other.
Caused by the relative rotation between the outer ring and the inner ring
It is characterized by offsetting axial vibration. Change
The precision bearing spindle device according to claims 3 and 4,
In the assembling method, according to claim 1 or claim 2 described above.
To configure the described precision bearing spindle device,
Due to the undulation of the inner and outer raceways
Phase in the direction of rotation of the part where the distance between
After the measurement, the phases are matched with each other or shifted by 90 degrees
By combining them with the outer ring and inner ring,
Axial run-out caused by relative rotation is offset.

【0014】[0014]

【作用】上述の様に構成される本発明の精密軸受スピン
ドル装置及びその組立方法の場合、複数個の転がり軸受
の内の何れかの転がり軸受が何れかの方向に変位する事
で、軸を一方向に変位させる傾向となると同時に、他の
転がり軸受が別の方向に変位する事で、上記軸を他方向
に変位させる傾向となる。この結果、軸に互いに逆方向
の力が加わる様になって、この軸が軸方向に亙って変位
しなくなるか、変位した場合でも、実用上無視出来る程
度の、極めて小さな変位量となる。
In the case of the precision bearing spindle device and the assembling method of the present invention configured as described above, any one of the plurality of rolling bearings is displaced in any direction, so that the shaft is moved. At the same time that the shaft tends to be displaced in one direction, the other rolling bearing is displaced in another direction, so that the shaft tends to be displaced in another direction. As a result, forces in directions opposite to each other are applied to the shaft, so that the shaft is not displaced in the axial direction, or even if displaced, the displacement is extremely small, which is practically negligible.

【0015】[0015]

【実施例】図1は、請求項1、3に対応する、本発明の
実施例を示している。ハウジング2の内側に回転軸1
が、2個の転がり軸受3、3により、回転自在に支承さ
れている。アンギュラ玉軸受である各転がり軸受3、3
は、それぞれ外輪5内周面の外輪軌道6と内輪7外周面
の内輪軌道8との間に、複数の転動体9、9を転動自在
に装着する事で構成されており、所謂背面組み合わせ状
態に組み合わせた状態で、上記外輪5、5をハウジング
2に内嵌し、上記内輪7、7を回転軸1に外嵌し、且つ
予圧が付与されている。
FIG. 1 shows an embodiment of the present invention corresponding to the first and third aspects . Rotating shaft 1 inside housing 2
Are rotatably supported by two rolling bearings 3,3. Each rolling bearing 3, 3 which is an angular ball bearing
Is formed by mounting a plurality of rolling elements 9 and 9 between the outer raceway 6 on the inner peripheral surface of the outer race 5 and the inner raceway 8 on the outer peripheral surface of the inner race 7 so as to be freely rotatable. In the combined state, the outer rings 5, 5 are fitted inside the housing 2, the inner rings 7, 7 are fitted outside the rotating shaft 1, and a preload is applied.

【0016】各転がり軸受3、3を構成する外輪5、5
内周面の外輪軌道6、6の円周方向に亙る形状は、不可
避的な製造誤差により、図2(A)に誇張して破線a、
aで示す様に、楕円形となっているが、両外輪軌道6、
6の位相は互いに同じにしている。又、各内輪7、7外
周面の内輪軌道8、8の円周方向に亙る形状も、上記外
輪軌道6、6と同様、図2(A)に誇張して実線b、b
で示す様に、楕円形となっているが、やはり両内輪軌道
8、8の位相は互いに同じにしている。この様に各軌道
6、8の位相を一致させるには、予めこれら各軌道6、
8の形状を精密測定しておき、この測定結果により各外
輪5、5をハウジング2に、各内輪7、7を軸1に、そ
れぞれ固定する。
Outer rings 5, 5 constituting each rolling bearing 3, 3
The shape of the inner peripheral surface of the outer ring raceways 6, 6 in the circumferential direction is exaggerated in FIG.
As shown by a, although it is elliptical, both outer raceways 6,
6 have the same phase. The shape of the inner races 7, 8 in the circumferential direction of the inner races 8, 8 on the outer peripheral surfaces of the inner races 7, 7 is also exaggerated in FIG.
As shown by, the inner raceways 8 have the same phase as each other. Each orbit in this way
In order to make the phases of 6 and 8 coincide with each other,
Precise measurement of the shape of 8
The wheels 5, 5 are mounted on the housing 2, the inner rings 7, 7 are mounted on the shaft 1, and
Fix each.

【0017】外輪軌道6及び内輪軌道8が、上述の様に
楕円形となっている事に伴ない、各転がり軸受3、3の
内輪7、7は、回転軸1の回転に伴ない、前述の様な予
圧量の変化に基づいて、軸方向に変位する傾向となる。
但し、両転がり軸受3、3は、上述の様に背面組み合わ
せとなっているので、両転がり軸受3、3の内輪7、7
の変位方向は、互いに逆となる。しかも、上記外輪軌道
6、6と内輪軌道8、8との位相が互いに一致している
ので、回転軸1の回転に伴ない両内輪8、8の軸方向に
加わる力は、同じタイミングで発生する事になる。
As the outer raceway 6 and the inner raceway 8 are elliptical as described above, the inner races 7, 7 of the rolling bearings 3, 3 are rotated as the rotating shaft 1 rotates. Based on the change of the preload amount as described above, there is a tendency to be displaced in the axial direction.
However, since the two rolling bearings 3 and 3 are combined in the back as described above, the inner rings 7 and 7 of the two rolling bearings 3 and 3 are provided.
Are opposite to each other. In addition, since the phases of the outer raceways 6, 6 and the inner raceways 8, 8 coincide with each other, forces applied in the axial direction of the inner races 8, 8 with the rotation of the rotating shaft 1 are generated at the same timing. Will do.

【0018】この結果、両内輪8、8の軸方向に加わる
力が互いに相殺しあって、両内輪8、8を外嵌した回転
軸1には、軸方向の力が作用しないか、作用しても極く
小さくなって、上記回転軸1が軸方向に変位しないか、
変位した場合でも、実用上無視出来る程度の、極めて小
さな変位量となる。
As a result, the forces applied in the axial direction of the inner races 8 and 8 cancel each other, and no axial force acts on the rotating shaft 1 on which the inner races 8 are fitted. The rotation shaft 1 does not displace in the axial direction,
Even in the case of displacement, the displacement amount is extremely small, which can be ignored in practical use.

【0019】尚、図2には、上述した実施例の場合も含
めて、回転軸1の変位を抑える事の出来る組み合わせ例
を示している。この内の図2(A)は、既に説明した。
尚、これらは総て、転がり軸受3として、アンギュラ玉
軸受を使用したものを示している。又、各図の矢印は、
図示の状態から軸を一方向に回転させた場合に、内輪
7、7が押圧される方向を示している。
FIG. 2 shows a combination example in which the displacement of the rotary shaft 1 can be suppressed, including the case of the above-described embodiment. FIG. 2A has already been described.
In addition, these all show the thing using the angular contact ball bearing as the rolling bearing 3. The arrow in each figure is
The direction in which the inner rings 7, 7 are pressed when the shaft is rotated in one direction from the illustrated state is shown.

【0020】図2(B)は、(A)と同様に請求項1、
3に対応するもので、1対の転がり軸受3、3を、所謂
正面組み合わせで組み合わせた実施例を示している。こ
の実施例の場合、内輪7、7の押圧方向が図2(A)と
逆方向になる以外、機能的には図2(A)に示したもの
と同じである。
FIG. 2B is a view similar to FIG.
3 shows an embodiment in which a pair of rolling bearings 3 are combined in a so-called front combination. In the case of this embodiment, the function is the same as that shown in FIG. 2A, except that the pressing direction of the inner rings 7, 7 is opposite to that in FIG. 2A.

【0021】図2(C)は、やはり(A)と同様に請求
項1、3に対応するもので、転がり軸受3、3を2個、
互いに並列組み合わせすると共に、この組み合わせを2
組、互いに背中合わせに組み合わせたものである。転が
り軸受3、3を合計4個使用した以外、図2(A)のも
のと、機能的には同じである。
FIG. 2C also shows a request similar to FIG.
Items corresponding to items 1 and 3, two rolling bearings 3 , 3,
In addition to combining them in parallel with each other,
Pairs are combined back to back. The function is the same as that of FIG. 2A except that a total of four rolling bearings 3 are used.

【0022】図2(D)は、やはり(A)と同様に請求
項1、3に対応するもので、背面組み合わせにより互い
に組み合わされた1対の転がり軸受3、3を構成する外
輪5、5内周面の外輪軌道6、6同士の位相、内輪7、
7外周面の内輪軌道8、8同士の位相を、互いに90度
ずらせている。この様に構成した場合にも、回転軸1の
回転に伴ない両内輪7、7を軸方向に変位させようとす
る力が、同じタイミングで逆の方向に発生する様になっ
て、上記回転軸1が軸方向に変位するのを防止する。
FIG. 2 (D) is also similar to FIG.
Corresponding to the items 1 and 3, the outer rings 5, 5 constituting a pair of rolling bearings 3, 3 combined with each other by a back combination, the phases of the outer ring raceways 6, 6 on the inner peripheral surface, the inner ring 7,
The phases of the inner ring raceways 8, 8 on the outer peripheral surface 7 are shifted from each other by 90 degrees. Even in the case of such a configuration, a force for displacing the inner rings 7, 7 in the axial direction with the rotation of the rotating shaft 1 is generated in the opposite direction at the same timing. The shaft 1 is prevented from being displaced in the axial direction.

【0023】図2(E)は、やはり(A)と同様に請求
項1、3に対応するもので、1対の転がり軸受3、3
を、所謂正面組み合わせで組み合わせた実施例を示して
いる。この実施例の場合、内輪7、7の押圧方向が図2
(D)と逆方向になる以外、機能的には図2(D)に示
したものと同じである。
FIG. 2E also shows a request similar to FIG.
A pair of rolling bearings 3, 3
Are combined in a so-called front combination. In the case of this embodiment, the pressing direction of the inner rings 7, 7 is shown in FIG.
The function is the same as that shown in FIG. 2D except that the direction is opposite to that of FIG.

【0024】図2(F)は、やはり(A)と同様に請求
項1、3に対応するもので、転がり軸受3、3を2個、
互いに並列組み合わせすると共に、この組み合わせを2
組、互いに背中合わせに組み合わせたものである。この
例では、外側の2個の軸受に対して、内側の2個の外輪
軌道の位相及び内輪軌道の位相を90度ずらせており、
図2(D)のものと、機能的には同じである。
FIG. 2F also shows a request similar to FIG.
Items corresponding to items 1 and 3, two rolling bearings 3 , 3,
In addition to combining them in parallel with each other,
Pairs are combined back to back. In this example, the phases of the inner two outer raceways and the inner raceway are shifted by 90 degrees with respect to the two outer bearings,
The function is the same as that of FIG. 2D.

【0025】図2(G)(H)は、請求項2、4に対応
するもので、転がり軸受3、3を2個、互いに並列に組
み合わせた例を示している。この内の(G)は内輪軌道
8、8同士の位相を互いに90度ずらせた例、(H)は
外輪軌道6、6同士の位相を互いに90度ずらせた例で
ある。又、図2(I)は、請求項1〜4の総てに対応す
るもので、転がり軸受3、3を2個、互いに並列組み合
わせすると共に、この組み合わせを2個、互いに背中合
わせに組み合わせたものである。この例では、外側の2
個の軸受に対して、内側の2個の軸受の外輪軌道の位相
を90度ずらせており、互いに背中合わせに組み合わせ
た各組で、図2(H)のものと、機能的には同じであ
る。
FIGS. 2G and 2H correspond to claims 2 and 4.
This shows an example in which two rolling bearings 3 are combined in parallel with each other. (G) shows an example in which the phases of the inner raceways 8 and 8 are shifted from each other by 90 degrees, and (H) shows an example in which the phases of the outer raceways 6 and 6 are shifted from each other by 90 degrees. FIG. 2I corresponds to all of claims 1 to 4.
, Two rolling bearings 3, 3 combined in parallel with each other
At the same time
It is a combination. In this example, the outer 2
Phase of outer ring raceway of inner two bearings for one bearing
Are shifted 90 degrees and combined back to back
In each set, the function is the same as that of FIG.
You.

【0026】尚、精密軸受スピンドル装置を実際に精密
旋盤等に組み込む場合、外輪軌道6、6の位相を互いに
一致させる事が好ましい。これは、各内輪7、7は回転
軸1に締まり嵌めにより外嵌する場合が多い為、回転軸
1の外周面が真円でないと、この回転軸1に外嵌固定し
た内輪7、7外周面の内輪軌道8、8は、この回転軸1
の外周面に合わせて、非円形となり、しかも通常は位相
が同じになる為である。これに対して、外輪5、5の外
周面とハウジング2の内周面との間には、極く僅かな隙
間を存在させる場合が多い為、ハウジング2の内周面が
非円形であっても、これに合わせて外輪軌道6、6が非
円形となる事は起こりにくく、予め外輪軌道6、6の位
相を一致させて組む事が望ましい。
When the precision bearing spindle device is actually incorporated in a precision lathe or the like, it is preferable that the phases of the outer raceways 6, 6 coincide with each other. This is because the inner rings 7, 7 are often fitted around the rotary shaft 1 by interference fit. Therefore, if the outer peripheral surface of the rotary shaft 1 is not a perfect circle, the inner rings 7, 7 fixed to the rotary shaft 1 are fitted. The inner ring raceways 8, 8 of the surface
Is non-circular, and usually has the same phase, in accordance with the outer peripheral surface of the. On the other hand, since there is often a very small gap between the outer peripheral surfaces of the outer rings 5, 5 and the inner peripheral surface of the housing 2, the inner peripheral surface of the housing 2 is non-circular. However, it is unlikely that the outer raceways 6, 6 become non-circular in accordance with this, and it is desirable to form the outer raceways 6, 6 in advance with the phases thereof being matched.

【0027】尚、上述の説明は、アンギュラ玉軸受に就
いて説明したが、深溝型の玉軸受をアンギュラ型の如
く、アキシャル荷重も支承する状態で使用する場合、及
び、円すいころ軸受の場合も、同様に構成出来る。
Although the above description has been made with reference to an angular contact ball bearing, a deep groove type ball bearing, such as an angular type, is used in a state where an axial load is supported, and a tapered roller bearing is also applicable. Can be similarly configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す部分断面図。FIG. 1 is a partial sectional view showing an embodiment of the present invention.

【図2】組み合わせ状態の9例を示す部分断面図。FIG. 2 is a partial cross-sectional view showing nine examples of a combination state.

【図3】本発明の対象となる精密軸受スピンドル装置の
1例を示す断面図。
FIG. 3 is a sectional view showing an example of a precision bearing spindle device to which the present invention is applied.

【図4】回転軸の軸方向の振れを示す線図。FIG. 4 is a diagram showing a run-out of the rotary shaft in the axial direction.

【図5】軸方向の振れの原因を説明する為の断面図及び
線図。
FIGS. 5A and 5B are a cross-sectional view and a diagram for explaining the cause of axial deflection.

【図6】楕円量と軸方向変位量の大きさとを示す線図。FIG. 6 is a diagram showing an elliptical amount and a magnitude of an axial displacement amount.

【符号の説明】[Explanation of symbols]

1 回転軸 1a 端面 2 ハウジング 3 転がり軸受 4 変位計 5 外輪 6 外輪軌道 7 内輪 8 内輪軌道 9 転動体 DESCRIPTION OF SYMBOLS 1 Rotating shaft 1a End surface 2 Housing 3 Rolling bearing 4 Displacement meter 5 Outer ring 6 Outer ring track 7 Inner ring 8 Inner ring track 9 Rolling element

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 19/54 F16C 25/08 F16C 35/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) F16C 19/54 F16C 25/08 F16C 35/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外輪内周面の外輪軌道と内輪外周面の内
輪軌道との間に複数の転動体を転動自在に設けて成り、
アキシャル方向及びラジアル方向の荷重を支承自在とし
た転がり軸受により、円筒状の内周面を有するハウジン
グの内側に、円筒状の外周面を有する軸を、相対的回転
自在に支承して成る精密軸受スピンドル装置に於いて、
上記転がり軸受として互いに接触角の方向が逆であるも
のを複数個設けると共に、各転がり軸受を、上記外輪軌
道及び内輪軌道のうねりに起因してこれら両軌道同士の
間隔が狭くなる部分の回転方向に関する位相を互いに一
致させた状態で配置する事により、外輪と内輪との相対
回転に伴って生じる軸方向の振れを相殺させる事を特徴
とする精密軸受スピンドル装置。
1. A plurality of rolling elements are provided between an outer raceway on an inner peripheral surface of an outer race and an inner raceway on an outer peripheral surface of an inner race so as to roll freely.
A precision bearing in which a shaft having a cylindrical outer peripheral surface is relatively rotatably supported inside a housing having a cylindrical inner peripheral surface by a rolling bearing capable of supporting axial and radial loads. In the spindle device,
The contact angles of the rolling bearings are opposite to each other.
The provided with a plurality, each rolling bearing due to the undulation of the outer ring raceway and inner ring raceway of both track each other's
The phase in the rotation direction of the narrower part is
By arranging them in a state of matching, the relative position between the outer ring and the inner ring
A precision bearing spindle device characterized by offsetting axial run- out caused by rotation .
【請求項2】 外輪内周面の外輪軌道と内輪外周面の内
輪軌道との間に複数の転動体を転動自在に設けて成り、
アキシャル方向及びラジアル方向の荷重を支承自在とし
た転がり軸受により、円筒状の内周面を有するハウジン
グの内側に、円筒状の外周面を有する軸を、相対的回転
自在に支承して成る精密軸受スピンドル装置に於いて、
上記転がり軸受として互いに接触角の方向が同じである
ものを複数個設けると共に、各転がり軸受を、上記外輪
軌道及び内輪軌道のうねりに起因してこれら両軌道同士
の間隔が狭くなる部分の回転方向に関する位相を互いに
90度ずらせた状態で配置する事により、外輪と内輪と
の相対回転に伴って生じる軸方向の振れを相殺させる事
を特徴とする精密軸受スピンドル装置。
A plurality of rolling elements are rotatably provided between an outer raceway on an inner peripheral surface of the outer race and an inner raceway on the outer peripheral surface of the inner race;
A precision bearing in which a shaft having a cylindrical outer peripheral surface is relatively rotatably supported inside a housing having a cylindrical inner peripheral surface by a rolling bearing capable of supporting axial and radial loads. In the spindle device,
A plurality of rolling bearings having the same contact angle direction are provided as the above-mentioned rolling bearings, and each rolling bearing is provided with a rotating direction in a portion where the interval between these two raceways becomes narrow due to the undulation of the outer raceway and the inner raceway. A precision bearing spindle device characterized in that by disposing the phases with respect to each other by 90 degrees, axial run-out caused by relative rotation between the outer ring and the inner ring is offset.
【請求項3】 外輪内周面の外輪軌道と内輪外周面の内
輪軌道との間に複数の転動体を転動自在に設けて成り、
アキシャル方向及びラジアル方向の荷重を支承自在とし
た転がり軸受により、円筒状の内周面を有するハウジン
グの内側に、円筒状の外周面を有する軸を、相対的回転
自在に支承して成る精密軸受スピンドル装置の組立方法
に於いて、上記転がり軸受として互いに接触角の方向が
逆であるものを複数個用意し、これら各転がり軸受を、
上記外輪軌道及び内輪軌道のうねりに起因してこれら両
軌道同士の間隔が狭くなる部分の回転方向に関する位相
を予め測定した後、この位相を互いに一致させて配置し
た状態で組み合わせる事により、外輪と内輪との相対回
転に伴って生じる軸方向の振れを相殺させる事を特徴と
する精密軸受スピンドル装置の組立方法。
3. A plurality of rolling elements are rotatably provided between an outer raceway on an inner peripheral surface of an outer race and an inner raceway on an outer peripheral surface of an inner race.
A precision bearing in which a shaft having a cylindrical outer peripheral surface is relatively rotatably supported inside a housing having a cylindrical inner peripheral surface by a rolling bearing capable of supporting axial and radial loads. In the method of assembling the spindle device, a plurality of rolling bearings having opposite contact angle directions are prepared as the rolling bearings, and each of these rolling bearings is
After previously measuring the phase in the rotational direction of the portion where the interval between these two tracks becomes narrower due to the undulation of the outer ring track and the inner ring track, by combining these phases in a state where they are aligned with each other, the outer ring and the outer ring are combined. A method of assembling a precision bearing spindle device, wherein an axial run-out caused by relative rotation with an inner ring is offset.
【請求項4】 外輪内周面の外輪軌道と内輪外周面の内
輪軌道との間に複数の転動体を転動自在に設けて成り、
アキシャル方向及びラジアル方向の荷重を支承自在とし
た転がり軸受により、円筒状の内周面を有するハウジン
グの内側に、円筒状の外周面を有する軸を、相対的回転
自在に支承して成る精密軸受スピンドル装置の組立方法
に於いて、上記転がり軸受として互いに接触角の方向が
同じであるものを複数個用意し、これら各転がり軸受
を、上記外輪軌道及び内輪軌道のうねりに起因してこれ
ら両軌道同士の間隔が狭くなる部分の回転方向に関する
位相を予め測定した後、この位相を互いに90度ずらせ
て配置する事により、外輪と内輪との相対回転に伴って
生じる軸方向の振れを相殺させる事を特徴とする精密軸
受スピンドル装置の組立方法。
4. A plurality of rolling elements are rotatably provided between an outer raceway on an inner peripheral surface of an outer race and an inner raceway on an outer peripheral surface of the inner race,
A precision bearing in which a shaft having a cylindrical outer peripheral surface is relatively rotatably supported inside a housing having a cylindrical inner peripheral surface by a rolling bearing capable of supporting axial and radial loads. In the method of assembling the spindle device, a plurality of the rolling bearings having the same contact angle direction are prepared as the above-mentioned rolling bearings, and each of these rolling bearings is provided with the two raceways due to the undulation of the outer raceway and the inner raceway. After measuring in advance the phase in the direction of rotation of the part where the distance between them becomes smaller, the phases are shifted by 90 degrees from each other, thereby offsetting the axial runout caused by the relative rotation between the outer ring and the inner ring. A method for assembling a precision bearing spindle device.
JP3352999A 1991-12-17 1991-12-17 Precision bearing spindle device and assembly method thereof Expired - Fee Related JP3042121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352999A JP3042121B2 (en) 1991-12-17 1991-12-17 Precision bearing spindle device and assembly method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352999A JP3042121B2 (en) 1991-12-17 1991-12-17 Precision bearing spindle device and assembly method thereof

Publications (2)

Publication Number Publication Date
JPH05164126A JPH05164126A (en) 1993-06-29
JP3042121B2 true JP3042121B2 (en) 2000-05-15

Family

ID=18427882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352999A Expired - Fee Related JP3042121B2 (en) 1991-12-17 1991-12-17 Precision bearing spindle device and assembly method thereof

Country Status (1)

Country Link
JP (1) JP3042121B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042205A1 (en) * 2007-09-05 2009-04-02 Schaeffler Kg Fluid friction clutch, for example for vehicle applications

Also Published As

Publication number Publication date
JPH05164126A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP3419015B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP2004160642A (en) Inclining and rotating table device
JP4476286B2 (en) Compound rolling bearing
JP3658994B2 (en) Method for manufacturing pre-loaded double row rolling bearing device
JP3046748B2 (en) Bearing device and method of manufacturing the same
JP3042121B2 (en) Precision bearing spindle device and assembly method thereof
JP3254825B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP3419053B2 (en) Double-row rolling bearing device with preload
JP2003299299A (en) Rotor supporting structure for direct drive motor
JPH08226439A (en) Double row ball bearing
JPS60256983A (en) Spindle unit for reading device of disc recording medium
JP2009275853A (en) Output part structure of reduction gear
EP1022476A1 (en) Rolling bearing
JP2006349100A (en) Bearing structure of roll
JP2571381B2 (en) Planetary roller type power transmission device
JP2002206554A (en) Bearing unit, and drive device and rotating disk pivotally supporting device using the bearing unit
JP3419041B2 (en) Rolling bearing device with preload
JPS6069320A (en) Shaft unit with bearing
JP3419044B2 (en) Double-row rolling bearing device with preload
JP2003227514A (en) Swing arm device
JP2000055044A (en) Ball-and-roller bearing
JPS6392815A (en) Bearing device
JP2541648Y2 (en) Carrier mechanism
JPH08254211A (en) Preloaded ball bearing and its manufacture
JPS6311386Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees