JP3032633B2 - Dissolved gas component extraction tank of dissolved gas analyzer - Google Patents

Dissolved gas component extraction tank of dissolved gas analyzer

Info

Publication number
JP3032633B2
JP3032633B2 JP3338049A JP33804991A JP3032633B2 JP 3032633 B2 JP3032633 B2 JP 3032633B2 JP 3338049 A JP3338049 A JP 3338049A JP 33804991 A JP33804991 A JP 33804991A JP 3032633 B2 JP3032633 B2 JP 3032633B2
Authority
JP
Japan
Prior art keywords
overflow
sample liquid
dissolved gas
section
extraction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3338049A
Other languages
Japanese (ja)
Other versions
JPH05172708A (en
Inventor
健治 原田
聡 西方
義 高田
博雅 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
New Cosmos Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, New Cosmos Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3338049A priority Critical patent/JP3032633B2/en
Publication of JPH05172708A publication Critical patent/JPH05172708A/en
Application granted granted Critical
Publication of JP3032633B2 publication Critical patent/JP3032633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液体中の溶存ガスを分析
する装置の溶存ガス成分を液相から気相に抽出する抽出
槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extraction tank for extracting a dissolved gas component from a liquid phase to a gas phase in an apparatus for analyzing dissolved gas in a liquid.

【0002】[0002]

【従来の技術】液体中の溶存ガスを分析する装置につい
て、溶存ガス成分を気相に移行させる抽出槽として、従
来、図9に示すものが知られている。図9はその抽出槽
の構成を示す模式断面図であり、液体およびガスの流れ
る方向を矢印で示してある。図9においてこの抽出槽
は、本体1の側面にある導入管2から、試料液3を図示
してない水圧または液送ポンプにより本体1に送り込
み、排出管4でオーバーフローさせ、自然落下により本
体1から排出する。一方、本体1内にある水封板5によ
って形成されるヘッドスペース部6に、キャリアーガス
導入管7から清浄ガスを送り込み、試料液3中の溶存ガ
ス成分を捕捉した後、これをキャリアーガス導入管8に
より、図示してないガス成分検出部に導いている。この
ような溶存ガス成分抽出槽における問題は次の点であ
る。
2. Description of the Related Art As an apparatus for analyzing dissolved gas in a liquid, there is conventionally known an extraction tank shown in FIG. 9 for transferring a dissolved gas component to a gas phase. FIG. 9 is a schematic cross-sectional view showing the configuration of the extraction tank, in which directions in which liquid and gas flow are indicated by arrows. In FIG. 9, the extraction tank feeds the sample liquid 3 from the introduction pipe 2 on the side surface of the main body 1 to the main body 1 by a water pressure or a liquid feed pump (not shown), causes the sample liquid 3 to overflow by the discharge pipe 4, and naturally drops the main body 1. Discharged from On the other hand, a clean gas is sent from a carrier gas introduction pipe 7 to a head space portion 6 formed by a water sealing plate 5 in the main body 1 to capture a dissolved gas component in the sample liquid 3, and then the carrier gas is introduced. The tube 8 leads to a gas component detection unit (not shown). Problems in such a dissolved gas component extraction tank are as follows.

【0003】[0003]

【発明が解決しようとする課題】図9に示した抽出槽で
は、試料液3の水位を一定に保つために、試料液3をオ
ーバーフローさせる排出管4を設けているが、試料液3
の流量が大きくなると、排出管4の上端部周辺では、表
面張力により試料液3が盛り上がり、その結果、ヘッド
スペース部6の容積が試料液3の流量によって変動し、
検出部の出力は液面水位変動の影響を受けてS/N比を
低下させることになる。そこで、排出管4を大きくして
その周囲に試料液3が盛り上がるのを少なくしようとす
ると、抽出槽全体が大型のものとなり、溶存ガス分析装
置として不都合である。
In the extraction tank shown in FIG. 9, a discharge pipe 4 for overflowing the sample liquid 3 is provided in order to keep the water level of the sample liquid 3 constant.
When the flow rate of the sample liquid 3 increases, the sample liquid 3 swells around the upper end of the discharge pipe 4 due to surface tension, and as a result, the volume of the head space 6 fluctuates according to the flow rate of the sample liquid 3,
The output of the detecting unit is affected by the fluctuation of the liquid level, and lowers the S / N ratio. Therefore, if it is attempted to increase the size of the discharge pipe 4 to reduce the swelling of the sample liquid 3 around it, the entire extraction tank becomes large, which is inconvenient as a dissolved gas analyzer.

【0004】さらに、キャリアーガスを用いたヘッドス
ペース部6を有するこの抽出槽は、一般に試料液3の流
量が大きくなると、検出部の出力も大きくなることが知
られており、試料液3の全部が本体1内を流れるので、
試料液3の流量変動に検出部側が直接影響されやすい構
造となっている。そのため、液送ポンプなどを用いて、
本体1内に一定流量の試料液3を送り込む必要がある。
Further, it is known that in this extraction tank having a head space section 6 using a carrier gas, the output of the detection section generally increases as the flow rate of the sample liquid 3 increases, and the entire amount of the sample liquid 3 is known. Flows through the body 1,
The structure is such that the detection unit side is easily affected directly by fluctuations in the flow rate of the sample liquid 3. Therefore, using a liquid feed pump,
It is necessary to feed a constant flow of the sample liquid 3 into the main body 1.

【0005】本発明は上述の点に鑑みてなされたもので
あり、その目的はヘッドスペース部の流量変動を抑制し
て、試料液流量に対して検出部の出力が影響されること
なく、測定精度を向上させることができる溶存ガス分析
装置の溶存ガス成分抽出槽を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to suppress fluctuations in the flow rate in the head space portion and to measure the flow rate of the sample liquid without affecting the output of the detection section. An object of the present invention is to provide a dissolved gas component extraction tank of a dissolved gas analyzer that can improve accuracy.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の溶存ガス成分抽出槽は、槽内に第一オー
バーフロー部と、これより水位の低い第二オーバーフロ
ー部との間に受水部を介在させ、これらオーバーフロー
部のそれぞれの水位を一定にする第一の仕切り部と第二
の仕切り部を設けてあり、試料液が第一オーバーフロー
部から第一細管部を通って受水部に流れる流路と、受水
部内に流れ込んだ試料液が第二細管部を通って第二オー
バーフロー部に流れる流路とを有し、受水部の上部に取
り付けた配管接続部材によって形成される受水部内のヘ
ッドスペース部に、キャリアーガス導入管と、被検出ガ
ス成分を捕捉したキャリアーガス導出管のそれぞれ一端
を配置する。
In order to solve the above-mentioned problems, a dissolved gas component extraction tank according to the present invention is provided between a first overflow section and a second overflow section having a lower water level in the tank. A first partition section and a second partition section are provided to interpose a water receiving section and keep the water level of each of these overflow sections constant, and sample liquid is received from the first overflow section through the first capillary section. It has a flow path that flows into the water part, and a flow path in which the sample liquid that has flowed into the water receiving part flows through the second capillary part to the second overflow part, and is formed by a pipe connection member attached to the upper part of the water receiving part. One end of a carrier gas inlet pipe and one end of a carrier gas outlet pipe that captures a gas component to be detected are arranged in a head space section in the water receiving section to be formed.

【0007】[0007]

【作用】以上のように、本発明の溶存ガス成分抽出槽
は、試料液導入口から槽内に引き込まれた試料液の一部
は、第一オーバーフロー部の第一の仕切り部の上部をオ
ーバーフローして排出され、第一オーバーフロー部の水
位はある一定値に保たれ、残りの試料液は第一細管部を
通って受水部に流入し、受水部に溜まった試料液は、第
一細管部より広い断面積を有する第二細管部を通り、第
二オーバーフロー部に流入して、第二オーバーフロー部
の第二の仕切り部をオーバーフローし槽本体の底部から
排出する。このとき、第二オーバーフロー部の水位もあ
る一定値に保たれる。
As described above, in the dissolved gas component extraction tank of the present invention, a part of the sample liquid drawn into the tank from the sample liquid introduction port overflows the upper part of the first partition part of the first overflow part. And the water level in the first overflow section is maintained at a certain value, the remaining sample liquid flows into the water receiving section through the first capillary section, and the sample liquid accumulated in the water receiving section is discharged to the first It flows into the second overflow portion through the second thin tube portion having a larger cross-sectional area than the thin tube portion, overflows the second partition portion of the second overflow portion, and is discharged from the bottom of the tank body. At this time, the water level of the second overflow portion is also kept at a certain value.

【0008】ここで、第一細管部を通る試料液の流速
は、第一オーバーフロー部と受水部の水位差(ヘッド
圧)で決まる一定値であり、第一細管部の有する一定の
断面積との積から一定の流量を得ることができる。この
ため、キャリアーガスと接触する試料液表面が試料液流
量に影響されることなく、一定容積の安定したヘッドス
ペース部を確保することができる。このヘッドスペース
部にキャリアーガスを導入し、試料液に溶け込んでいる
溶存ガス成分を捕捉し、これを導入されたキャリアーガ
ス流量と同じガス流量値で検出部に送ることができる。
Here, the flow rate of the sample solution passing through the first capillary portion is a constant value determined by the water level difference (head pressure) between the first overflow portion and the water receiving portion, and the constant cross-sectional area of the first capillary portion A constant flow rate can be obtained from the product of Therefore, a stable head space portion having a constant volume can be secured without being affected by the sample liquid flow rate on the surface of the sample liquid in contact with the carrier gas. A carrier gas is introduced into the head space, the dissolved gas component dissolved in the sample solution is captured, and this can be sent to the detection unit at the same gas flow rate as the introduced carrier gas flow rate.

【0009】[0009]

【実施例】図1〜図4は溶存ガス分析装置に用いられる
本発明の溶存ガス成分抽出槽の要部構成を示す模式図で
ある。図1は上から見た正面図,図2は図1のA−A線
断面図,図3は図1のB−B線断面図,図4は図1のC
−C線断面図であり、液体の流れる方向を矢印で表わし
てある。但し、図1〜図4はガス配管部材については、
説明の便宜上図示を省略し後述する。はじめに、本発明
を主として図2〜図4の断面図を参照して説明する。
1 to 4 are schematic views showing the configuration of a main part of a dissolved gas component extraction tank of the present invention used in a dissolved gas analyzer. 1 is a front view seen from above, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. 3 is a sectional view taken along line BB of FIG. 1, and FIG.
FIG. 4 is a cross-sectional view taken along a line C, in which directions in which the liquid flows are indicated by arrows. However, FIG. 1 to FIG.
The illustration is omitted for convenience of explanation and will be described later. First, the present invention will be described mainly with reference to the cross-sectional views of FIGS.

【0010】図2において、槽本体10の底面に設けた
試料液導入口11から、試料液12を槽本体10の点線
で囲った第一オーバーフロー部13に導入する。試料液
12は第一オーバーフロー部13に設けた第一の仕切り
部14の上部をオーバーフローし、槽本体10の底部に
あけた排出口15から外部に流出される。したがって、
第一オーバーフロー部13の水位は第一の仕切り部14
により規制される。第一オーバーフロー部13でオーバ
ーフローしない残りの試料液12は、槽本体10内に設
けた隔壁16の下方の第一細管部17を通り、点線で囲
った受水部18に導入される。受水部18に導入された
試料液12は、受水部18の側面下部に設け且つ第一細
管部17より太い第二細管部19を通り、図3および図
4に示した点線で囲った第二オーバーフロー部20に導
入される。第二オーバーフロー部20に導入された試料
液12は、第二オーバーフロー部20に設けた第二の仕
切り部21の上部をオーバーフローし、第一オーバーフ
ロー部13をオーバーフローした試料液12とともに、
槽本体10の底部の排出口15から外部に流出される。
したがって、受水部18および第二オーバーフロー部
の水位は、第二の仕切り部21により規制される。
[0010] In FIG. 2, from the sample liquid inlet 11 provided in the bottom surface of the tank body 10, is introduced into the first overflow portion 13 surrounds the sample solution 12 by the dotted line of the vessel main body 10. The sample liquid 12 overflows the upper part of the first partition part 14 provided in the first overflow part 13 and flows out to the outside from the outlet 15 opened at the bottom of the tank body 10 . Therefore,
The water level of the first overflow section 13 is the first partition section 14
Regulated by The remaining sample liquid 12 that does not overflow in the first overflow section 13 passes through a first thin tube section 17 below a partition 16 provided in the tank body 10 and is introduced into a water receiving section 18 surrounded by a dotted line. Water receiving section 18 samples introduced into the liquid 12 passes through the second narrow tube portion 19 thicker than the side surface and the first tube portion 17 provided in the lower portion of the water receiving portion 18, surrounded by a dotted line shown in FIGS. 3 and 4 It is introduced into the second overflow section 20 . The sample solution 12 which is introduced into the second overflow section 20, the upper portion of the second partition part 21 which is provided on the second overflow section 20 overflows, with the sample solution 12 which overflows the first overflow section 13,
It is discharged to the outside through the outlet 15 at the bottom of the tank body 10 .
Therefore, the water receiving section 18 and the second overflow section 2
The water level of 0 is regulated by the second partition 21.

【0011】以上のようにして、第一細管部17を通過
する試料液12の流速は、第一の仕切り部14と第二の
仕切り部21により規制される水位差で決まる一定値と
なり、しかも第一細管部17は一定の断面積を有するか
ら、受水部18に流入する試料液12は一定の流量とな
る。
As described above, the flow rate of the sample liquid 12 passing through the first capillary portion 17 becomes a constant value determined by the water level difference regulated by the first partition portion 14 and the second partition portion 21, and Since the first capillary portion 17 has a constant cross-sectional area, the sample liquid 12 flowing into the water receiving portion 18 has a constant flow rate.

【0012】図2〜図4の断面図により説明した本発明
の溶存ガス成分抽出槽について、各構成部材の位置関係
は、図1に示す正面図の如く、第一オーバーフロー部
,受水部18,第二オーバーフロー部20,排水口1
5が互いにほぼ直角となるように配置してある。したが
って、本発明の溶存ガス成分抽出槽は、小型にして各構
成部材を一体化するための加工も容易である。さらに、
図1に示す止め栓22,23を設けることにより、第一
細管部17と第二細管部19の加工を容易にし、これら
細管部が汚染したとき、止め栓22,23を外して棒状
物質を除去することも可能となり、保守の点でも向上す
る。
[0012] The dissolved gas component extraction vessel of the present invention described with reference to sectional views of FIGS. 2-4, the positional relationship of the components is, as the front view shown in FIG. 1, the first overflow section 1
3 , water receiving section 18 , second overflow section 20 , drain port 1
5 are arranged so as to be substantially perpendicular to each other. Therefore, the dissolved gas component extraction tank of the present invention is easy to process for reducing the size and integrating the constituent members. further,
By providing the stoppers 22 and 23 shown in FIG. 1, the processing of the first thin tube portion 17 and the second thin tube portion 19 is facilitated, and when these thin tube portions are contaminated, the stopper plugs 22 and 23 are removed to remove the rod-like substance. Removal is also possible, and maintenance is improved.

【0013】次に、図1〜図4では図示を省略したガス
配管接続部材を取り付けた本発明の溶存ガス成分抽出槽
を、図1のA−A線断面図として図5に示す。図5は図
2に対応するものであるが、図2よりやや拡大して示し
てあり、図2と共通部分を同一符号で表わす。図5にお
いて、槽本体10の受水部18の上部に、ガス配管接続
部材24を例えばOリング25を介して取り付け、受水
18の第二の仕切り部21で規制される水位面と、配
管接続部材24とによりヘッドスペース部26を形成し
ている。そして、この配管接続部材24を貫通し、それ
ぞれチューブフィッティング27,28を用いてキャリ
アーガス導入管29とキャリアーガス導出管30のそれ
ぞれ一端を、外部からヘッドスペース部26まで挿入固
定してあり、キャリアーガス導入管29からヘッドスペ
ース部26にキャリアーガスを流し込むことにより、試
料液12に溶け込んでいるガス成分が気相に移行してく
るので、キャリアーガスでこれを捕捉し、この捕捉した
ガスをキャリアーガス導出管30を通して、図示を省略
した検出部へ導くことができる。また、この配管接続部
材24は同時に受水部18の蓋の役割をも果たすもので
ある。
Next, a dissolved gas component extraction tank according to the present invention to which a gas pipe connecting member not shown in FIGS. 1 to 4 is attached is shown in FIG. 5 as a sectional view taken along line AA of FIG. FIG. 5 corresponds to FIG. 2, but is shown slightly enlarged from FIG. 2, and the same parts as those in FIG. 2 are denoted by the same reference numerals. In FIG. 5, a gas pipe connection member 24 is attached to the upper part of the water receiving part 18 of the tank body 10 via, for example, an O-ring 25, and a water level surface regulated by the second partition part 21 of the water receiving part 18 ; A head space portion 26 is formed by the piping connection member 24. Then, one end of each of the carrier gas inlet pipe 29 and the carrier gas outlet pipe 30 is inserted and fixed from the outside to the head space portion 26 by penetrating the pipe connecting member 24 and using tube fittings 27 and 28, respectively. By flowing the carrier gas from the gas introduction pipe 29 into the head space portion 26, the gas component dissolved in the sample liquid 12 shifts to the gas phase. The carrier gas captures the gas component, and the captured gas is used as a carrier. The gas can be led to a detection unit (not shown) through the gas outlet pipe 30. The pipe connection member 24 also serves as a lid for the water receiving portion 18 at the same time.

【0014】図6,図7はガス配管接続部材24の形状
を示す模式図であり、図6は平面図,図7は図6のA−
A線の断面図である。両図を参照して述べると、断面が
横から見てコ字状を呈するガス配管接続部材24は、上
面の肉厚部に二つの貫通孔31,32をあけてあり、貫
通孔31は図5に示したキャリアーガス導入管29を、
チューブフィッティング27を用いて挿入固定するため
であり、貫通孔32は同様に図5に示したキャリアーガ
ス導出管30を、チューブフィッティング28を用いて
挿入固定するためのものである。26は図5のヘッドス
ペース部に相当する。
6 and 7 are schematic views showing the shape of the gas pipe connecting member 24. FIG. 6 is a plan view, and FIG.
It is sectional drawing of the A line. Referring to both figures, the gas pipe connecting member 24 having a U-shaped cross section when viewed from the side is provided with two through holes 31 and 32 in a thick portion on the upper surface. The carrier gas introduction pipe 29 shown in FIG.
This is for inserting and fixing using the tube fitting 27, and the through hole 32 is for inserting and fixing the carrier gas outlet pipe 30 similarly shown in FIG. 5 using the tube fitting 28. Reference numeral 26 corresponds to the head space section in FIG.

【0015】次に、この溶存ガス成分抽出槽を備えた溶
存ガス分析装置を用いて、試料液中の溶存オゾン濃度を
測定した結果について述べる。試料液の導入は液送ポン
プを用いて一定量とした。また、溶存ガス分析装置の検
出部には半導体式オゾンガス検出器を用いた。測定諸条
件は以下の通りである。 試料液導入用液送ポンプの流量 300ml/分 キャリアーガス導入管29の流量 30ml/分
Next, the results of measuring the concentration of dissolved ozone in a sample liquid using a dissolved gas analyzer equipped with this dissolved gas component extraction tank will be described. The sample liquid was introduced into a fixed amount using a liquid pump. In addition, a semiconductor type ozone gas detector was used for a detection unit of the dissolved gas analyzer. Various measurement conditions are as follows. Flow rate of liquid feed pump for sample liquid introduction 300 ml / min Flow rate of carrier gas introduction pipe 29 30 ml / min

【0016】この測定により得られた結果を図8に示
す。図8は試料液中の溶存オゾン濃度とオゾンガス検出
器の出力との関係を示す線図である。図8は良好な直線
性を示しており、本発明による溶存ガス成分抽出槽の有
効性が認められる。次いで、試料液導出用液送ポンプの
流量を155ml/分から665ml/分に変えて、同
様の測定を行なった。キャリアーガス流量と検出器につ
いては、上記と同じである。得られた結果を表1に示
す。
FIG. 8 shows the result obtained by this measurement. FIG. 8 is a diagram showing the relationship between the concentration of dissolved ozone in the sample liquid and the output of the ozone gas detector. FIG. 8 shows good linearity, confirming the effectiveness of the dissolved gas component extraction tank according to the present invention. Next, the same measurement was carried out while changing the flow rate of the sample liquid delivery pump from 155 ml / min to 665 ml / min. The carrier gas flow rate and the detector are the same as described above. Table 1 shows the obtained results.

【表1】 [Table 1]

【0017】表1から得られた出力に変化のないことが
わかる。また、受水部18の水位は変化していなかっ
た。このことから、本発明による溶存ガス成分抽出槽を
用いることにより、測定に際して試料液導出用液送ポン
プの流量変動の影響を受けていないことがわかる。さら
に、液送ポンプを使用することなく、例えば、オゾン反
応塔の持つ水圧を利用して、試料液を抽出槽に供給する
ことも可能である。
It can be seen from Table 1 that the output obtained does not change. In addition, the water level of the water receiving section 18 did not change. From this, it can be seen that the use of the dissolved gas component extraction tank according to the present invention did not affect the measurement due to fluctuations in the flow rate of the liquid feed pump for deriving the sample liquid. Furthermore, it is also possible to supply the sample liquid to the extraction tank using, for example, the water pressure of the ozone reaction tower without using a liquid feed pump.

【0018】また、溶存オゾン濃度0.6mg/lの試
料液を用いて、繰り返し再現性を検討した。試料液の流
量は300ml/分であり、キャリアーガス流量と検出
器については、上記と同じである。図9に示した従来の
抽出槽を用いた場合、CV値(変動係数)3.8%であ
ったが、本発明の抽出槽を用いて測定した結果は、CV
値1.4%であり、このことから、本発明で第一細管部
17を通して、試料液12を一定流量で受水部18に送
り込むようにしたため、測定精度が向上したことがわか
The reproducibility was repeatedly examined using a sample solution having a dissolved ozone concentration of 0.6 mg / l. The flow rate of the sample liquid is 300 ml / min, and the carrier gas flow rate and the detector are the same as described above. When the conventional extraction tank shown in FIG. 9 was used, the CV value (coefficient of variation) was 3.8%, but the result of measurement using the extraction tank of the present invention was CV.
The value is 1.4%, which indicates that the measurement accuracy is improved because the sample liquid 12 is sent to the water receiving unit 18 at a constant flow rate through the first thin tube unit 17 in the present invention.

【0019】[0019]

【発明の効果】本発明の溶存ガス成分抽出槽は、実施例
で述べた如く、槽内を二つのオーバーフロー部に区分し
て、そりぞれに仕切り部を設けて異なる水位を設定し、
二つのオーバーフロー部の流路間に受水部を設け、口径
の異なる二つの細管流路を通して、水位差により得られ
る一定流量の試料液を受水部に導入し、受水部水面と配
管接続部材とで形成されるヘッドスペース部で、キャリ
アーガスにより試料液中に溶け込んでいるガス成分を捕
捉するという構成としたため、検出部の出力は試料液の
流量に依存することなく、しかも測定精度を向上させる
ことができる。さらに、出力が試料液の流量に影響され
ないので、槽内への試料液の導入は、水圧(ヘッド圧)
を利用して行なうことができる。また、試料水に酸素ガ
スを含む気泡が存在する場合、従来装置においては、気
泡がキャリアーガス中に取り込まれることにより、ガス
成分検出部の検出出力異常が発生する虞れがあったもの
が、本願発明装置においては、第一オーバーフロー部に
おいて、試料水とキャリアーガスが接触する前に、かか
る気泡が排出されてしまうので、検出出力異常の発生が
防止される。またさらに、ヘッドスペース部を持つ受水
部への試料液の導入は、細管部を通して行なうので攪拌
効果が大きく、この点からも高感度で安定した出力が得
られるという利点もある。実施例で述べたようなキャリ
アーガスをヘッドスペース部に導入するのと同様に、キ
ャリアーガスを受水部内の試料液に吹き込む方法も利用
できることは勿論である。
As described in the embodiment, the dissolved gas component extraction tank according to the present invention divides the inside of the tank into two overflow sections, and sets different water levels by providing partitions in each of the overflow sections.
A water receiver is provided between the two overflow channels, and a constant flow rate of sample liquid obtained by the difference in water level is introduced into the water receiver through two narrow pipe channels with different diameters. The headspace formed by the member and the carrier gas captures the gas components dissolved in the sample liquid by the carrier gas, so that the output of the detection unit does not depend on the flow rate of the sample liquid, and the measurement accuracy is improved. Can be improved. Further, since the output is not affected by the flow rate of the sample liquid, the introduction of the sample liquid into the tank is performed by a hydraulic (head pressure)
Can be performed using In the case where bubbles containing oxygen gas are present in the sample water, in the conventional apparatus, the bubbles may be taken into the carrier gas, which may cause a detection output abnormality of the gas component detection unit. In the apparatus of the present invention, such bubbles are discharged before the sample water and the carrier gas come into contact with each other in the first overflow portion, so that occurrence of a detection output abnormality is prevented. Furthermore, since the introduction of the sample liquid into the water receiving portion having the head space portion is performed through the thin tube portion, the stirring effect is large, and from this point, there is also an advantage that a high sensitivity and stable output can be obtained. As in the case of introducing the carrier gas into the head space as described in the embodiment, it is needless to say that the method of blowing the carrier gas into the sample liquid in the water receiving section can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶存ガス成分抽出槽の正面図FIG. 1 is a front view of a dissolved gas component extraction tank of the present invention.

【図2】図1のA−A線断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】図1のB−B線断面図FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1のC−C線断面図FIG. 4 is a sectional view taken along line CC of FIG. 1;

【図5】ガス配管接続部材を取り付けたときの図1のA
−A線断面図
FIG. 5A of FIG. 1 when a gas pipe connection member is attached.
-A line sectional view

【図6】ガス配管接続部材の形状を示す模式平面図FIG. 6 is a schematic plan view showing the shape of a gas pipe connection member.

【図7】図6のA−A線断面図FIG. 7 is a sectional view taken along line AA of FIG. 6;

【図8】本発明の溶存ガス成分抽出槽を用いて測定した
溶存オゾン濃度とオゾンガス検出器の出力との関係線図
FIG. 8 is a graph showing the relationship between the dissolved ozone concentration measured using the dissolved gas component extraction tank of the present invention and the output of the ozone gas detector.

【図9】従来の溶存ガス成分抽出槽の要部構成を示す模
式断面図
FIG. 9 is a schematic cross-sectional view showing a main configuration of a conventional dissolved gas component extraction tank.

【符号の説明】[Explanation of symbols]

1 本体 2 導入管 3 試料液 4 排出管 5 水封板 6 ヘッドスペース部 7 キャリアーガス導入管 8 キャリアーガス導出管10 槽本体 11 試料液導入口 12 試料液13 第一オーバーフロー部 14 第一の仕切り部 15 排出口 16 隔壁 17 第一細管部18 受水部 19 第二細管部20 第二オーバーフロー部 21 第二の仕切り部 22 止め栓 23 止め栓 24 配管接続部材 25 Oリング 26 ヘッドスペース部 27 チューブフィッティング 28 チューブフィッティング 29 キャリアーガス導入管 30 キャリアーガス導出管 31 貫通孔 32 貫通孔DESCRIPTION OF SYMBOLS 1 Main body 2 Inlet pipe 3 Sample liquid 4 Drain pipe 5 Water seal plate 6 Head space part 7 Carrier gas inlet pipe 8 Carrier gas outlet pipe 10 Tank body 11 Sample liquid inlet 12 Sample liquid 13 First overflow part 14 First partition Part 15 Discharge port 16 Partition wall 17 First thin tube part 18 Water receiving part 19 Second thin tube part 20 Second overflow part 21 Second partition part 22 Stopcock 23 Stopcock 24 Pipe connection member 25 O-ring 26 Headspace part 27 Tube Fitting 28 Tube fitting 29 Carrier gas inlet tube 30 Carrier gas outlet tube 31 Through hole 32 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 義 大阪市淀川区三津屋中2丁目5番4号 新コスモス電機株式会社内 (72)発明者 丹上 博雅 大阪市淀川区三津屋中2丁目5番4号 新コスモス電機株式会社内 (56)参考文献 特開 平4−332844(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 101 G01N 1/22 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshitaka Taka 2-5-4 Mitsuyanaka, Yodogawa-ku, Osaka-shi Inside New Cosmos Electric Co., Ltd. (72) Inventor Hiromasa Tangami 2-5-5 Mitsuyanaka, Yodogawa-ku, Osaka-shi No. 4 Inside New Cosmos Electric Co., Ltd. (56) References JP-A-4-332844 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 1/00 101 G01N 1/22

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a.槽本体内に設けた第一オーバーフロー
部と第二オーバーフロー部の双方に互いに隣合い、前記
第一オーバーフロー部と前記第二オーバーフロー部が同
一底面上で直角となる位置に設けた受水部, b.試料液を前記第一オーバーフロー部に流入させる前
記槽本体の底部に形成した試料液導入口, c.前記第一オーバーフロー部と前記第二オーバーフロ
ー部からオーバーフローした前記試料液を前記槽本体外
に流出させる前記槽本体の底部に形成した排出口, d.前記第一オーバーフロー部と前記受水部との間にあ
って前記槽本体に設けた隔壁, e.前記試料液導入口から前記第一オーバーフロー部に
流入した前記試料液をオーバーフローさせる第一の仕切
り部, f.前記隔壁内に形成し前記第一オーバーフロー部内の
前記試料液を前記受水部に流通させる第一細管部, g.前記受水部内の前記試料液を前記第二オーバーフロ
ー部に流通させる第二細管部, h.前記第二細管部から前記第二オーバーフロー部に流
入した前記試料液をオーバーフローさせる第二の仕切り
部, i.前記槽本体の外部からキャリアーガスを送り込むキ
ャリアーガス導入口と、被検出ガス成分を捕捉したキャ
リアーガスを前記槽本体の外部に取り出すキャリアーガ
ス導出口とを有し、前記受水部の上部に取り付けた配管
接続部材, とを備えたことを特徴とする溶存ガス分析装置の溶存ガ
ス成分抽出槽。
1. A method according to claim 1, A water receiving part which is adjacent to both the first overflow part and the second overflow part provided in the tank body and is provided at a position where the first overflow part and the second overflow part are at right angles on the same bottom surface, b . A sample liquid inlet formed at the bottom of the tank body for flowing the sample liquid into the first overflow section; c. An outlet formed at the bottom of the tank body for allowing the sample liquid overflowing from the first overflow section and the second overflow section to flow out of the tank body; d. A partition wall provided on the tank body between the first overflow section and the water receiving section; e. A first partition for overflowing the sample liquid flowing into the first overflow section from the sample liquid inlet; f. A first thin tube portion formed in the partition wall for flowing the sample liquid in the first overflow portion to the water receiving portion; g. A second thin tube section for flowing the sample liquid in the water receiving section to the second overflow section; h. A second partition section for overflowing the sample liquid flowing from the second capillary section into the second overflow section; i. It has a carrier gas inlet for feeding a carrier gas from the outside of the tank body, and a carrier gas outlet for taking out the carrier gas capturing the detected gas component to the outside of the tank body, and is attached to the upper part of the water receiving part. A dissolved gas component extraction tank of a dissolved gas analyzer, comprising: a pipe connection member;
【請求項2】請求項1記載の溶存ガス成分抽出槽におい
て、前記第一細管部の口径を前記第二細管部の口径より
細くすることを特徴とする溶存ガス分析装置の溶存ガス
成分抽出槽。
2. The dissolved gas component extraction tank of a dissolved gas analyzer according to claim 1, wherein the diameter of the first capillary portion is smaller than the diameter of the second capillary portion. .
【請求項3】請求項1または2記載の溶存ガス成分抽出
槽において、前記第一オーバーフロー部の第一の仕切り
部の上端面の位置を前記第二オーバーフロー部の第二の
仕切り部の上端面の位置より高くすることを特徴とする
溶存ガス分析装置の溶存ガス成分抽出槽。
3. The dissolved gas component extraction tank according to claim 1, wherein the position of the upper end surface of the first partition portion of the first overflow portion is changed to the upper end surface of the second partition portion of the second overflow portion. A dissolved gas component extraction tank of a dissolved gas analyzer, characterized in that the tank is higher than the position of (1).
【請求項4】請求項1ないし3記載の溶存ガス成分抽出
槽において、前記第二の仕切り部の上端面の位置を前記
第二細管部の位置より高くすることを特徴とする溶存ガ
ス分析装置の溶存ガス成分抽出槽。
4. A dissolved gas analyzer according to claim 1, wherein an upper end surface of said second partition is higher than a position of said second thin tube. Dissolved gas component extraction tank.
【請求項5】請求項1ないし4記載の溶存ガス成分抽出
槽において、前記第一細管部および前記第二細管部が互
いに直角となる方向に位置することを特徴とする溶存ガ
ス分析装置の溶存ガス成分抽出槽。
5. A dissolved gas analyzer according to claim 1, wherein said first thin tube portion and said second thin tube portion are located in directions perpendicular to each other. Gas component extraction tank.
JP3338049A 1991-12-20 1991-12-20 Dissolved gas component extraction tank of dissolved gas analyzer Expired - Lifetime JP3032633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3338049A JP3032633B2 (en) 1991-12-20 1991-12-20 Dissolved gas component extraction tank of dissolved gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3338049A JP3032633B2 (en) 1991-12-20 1991-12-20 Dissolved gas component extraction tank of dissolved gas analyzer

Publications (2)

Publication Number Publication Date
JPH05172708A JPH05172708A (en) 1993-07-09
JP3032633B2 true JP3032633B2 (en) 2000-04-17

Family

ID=18314436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3338049A Expired - Lifetime JP3032633B2 (en) 1991-12-20 1991-12-20 Dissolved gas component extraction tank of dissolved gas analyzer

Country Status (1)

Country Link
JP (1) JP3032633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102503620B1 (en) * 2021-03-16 2023-02-24 한국전기안전공사 Semi-automatic purging system and method for gas analysis of insulating oil

Also Published As

Publication number Publication date
JPH05172708A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US4567908A (en) Discharge system and method of operating same
CN101692093B (en) Automatic analyzer for anionic surfactant in water and automatic analysis method
US3345910A (en) Colorimeter flow cell
KR101905177B1 (en) Filtration Device For Water Quality analysis
DK155765B (en) PROCEDURE FOR DETERMINING THE CONCENTRATION OF A SUBSTANCE IN A TEST AND APPARATUS FOR USE IN EXERCISING THE PROCEDURE
JPS6129751A (en) Measuring device for determining activity or concentration of ion in solution
JPS60219554A (en) Method and apparatus for measuring minor component in major component
DE2211032A1 (en) METHOD AND DEVICE FOR DETERMINING GASES SOLVED IN A LIQUID, IN PARTICULAR IN THE BLOOD
US3979669A (en) Particle analyzing system
JP3032633B2 (en) Dissolved gas component extraction tank of dissolved gas analyzer
US4651087A (en) Apparatus for measuring impurities in ultrapure water
US6310356B1 (en) Fluid fine particle measuring system for processing semiconductors
KR19990008214A (en) Electrolysis, dropping mercury electrode electrolyzer
US4917776A (en) Flow through voltammetric analyzer and method using deoxygenator
US5889195A (en) Measuring arrangement for determining the concentration of gases from liquid media
US4680552A (en) Apparatus for measuring impurities in super-pure water without exposure to surrounding atmosphere
RU2525305C2 (en) Device for gas-fluid extraction and method of gas-fluid extraction
WO2013069769A1 (en) Sample injection device for biochemical analysis, flow-type biochemical analysis device, and measurement method for hemoglobin component
JP4153489B2 (en) Apparatus and method for liquid sample extraction
JPH04332844A (en) Dissolved gas component extracting tank of analyzing apparatus of dissolved gas
JPH11153462A (en) Liquid outflow detection mechanism and flow analyzer using the same
Martin et al. Tubular debubbler for segmented continuous-flow automated analyzers
CN218686544U (en) Filtering device for liquid chromatograph and liquid chromatograph
JP2530416B2 (en) Effervescent liquid sample preparation device
CN214334595U (en) Fine particle sampling device in high-pressure gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

EXPY Cancellation because of completion of term