JP3032441B2 - Ozone sensor - Google Patents

Ozone sensor

Info

Publication number
JP3032441B2
JP3032441B2 JP6305492A JP30549294A JP3032441B2 JP 3032441 B2 JP3032441 B2 JP 3032441B2 JP 6305492 A JP6305492 A JP 6305492A JP 30549294 A JP30549294 A JP 30549294A JP 3032441 B2 JP3032441 B2 JP 3032441B2
Authority
JP
Japan
Prior art keywords
bismuth
ozone sensor
ozone
particles
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6305492A
Other languages
Japanese (ja)
Other versions
JPH08136489A (en
Inventor
弘一 立花
章良 服部
昭彦 吉田
信幸 吉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6305492A priority Critical patent/JP3032441B2/en
Publication of JPH08136489A publication Critical patent/JPH08136489A/en
Application granted granted Critical
Publication of JP3032441B2 publication Critical patent/JP3032441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオゾン発生機やオゾン利
用機器におけるオゾン濃度の制御、あるいは漏洩オゾン
の検知用などに用いる小型の電気式センサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-sized electric sensor used for controlling ozone concentration in an ozone generator or an ozone utilization device, or detecting leaked ozone.

【0002】[0002]

【従来の技術】オゾンは強力な酸化作用を示すため、脱
臭、殺菌等の目的で上下水道水の処理、医療、食品工
業、空調など多くの分野で利用されている。しかしその
ような有用な利用価値がある反面、オゾンはごく微量で
も人体に対して極めて有害であるため、発生量の制御や
漏洩オゾンの検知を確実に行なう必要がある。ところで
このように必要性の高くなっているオゾン濃度の測定、
検知には従来一般的にはもっぱら酸化還元滴定法、吸光
光度法、紫外線吸収スペクトル法等が用いられてきた。
これらの方法は手数と時間と、高価大形の機器を必要と
する欠点があった。これに対して最近、より簡便なオゾ
ン濃度の測定方法が望まれるようになり、その一方法と
して例えば特開昭63−298148号に開示されたも
ののように、In23金属酸化物を用いる電気的素子の
オゾンセンサを用いる簡便な方法が提案されている。
2. Description of the Related Art Since ozone has a strong oxidizing effect, it is used in various fields such as treatment of water supply and sewerage, medical treatment, food industry, and air conditioning for the purpose of deodorization and sterilization. However, while having such useful utility value, even a very small amount of ozone is extremely harmful to the human body, so it is necessary to reliably control the amount of generated ozone and detect leaked ozone. By the way, the measurement of the ozone concentration, which has become more necessary,
Conventionally, redox titration, absorption spectroscopy, ultraviolet absorption spectroscopy, and the like have been generally used for detection.
These methods have the drawback that they require time and labor, and require large and expensive equipment. On the other hand, recently, a simpler method for measuring the ozone concentration has been demanded. As one of the methods, for example, an In 2 O 3 metal oxide such as that disclosed in JP-A-63-298148 is used. A simple method using an ozone sensor as an electric element has been proposed.

【0003】[0003]

【発明が解決しようとする課題】従来一般的に行なわれ
ていた上記幾つかの分析的測定方法はいずれも一般に大
がかりな装置、煩雑な操作を必要とし、しかも装置が高
価であるため、どこでも簡単に利用することはできない
という欠点を有している。一方、簡便なオゾン濃度測定
法として提案されているIn23等の金属酸化物を感応
体として用いたオゾンセンサの場合は、特に印刷等によ
って作製された薄膜型のセンサでは、感度や応答性に優
れている反面、経時安定性の面でやや問題があった。従
って長寿命で信頼性に富み、小型軽量かつ安価なセンサ
が強く望まれていた。本発明はこの課題に着目してなさ
れたもので、オゾンセンサの経時安定性の向上を目的と
するものである。
All of the above-mentioned methods of analytical measurement, which have been generally performed in the past, generally require large-scale equipment and complicated operations, and are expensive everywhere. It has the disadvantage that it cannot be used for On the other hand, in the case of an ozone sensor using a metal oxide such as In 2 O 3 as a sensitive body, which has been proposed as a simple method for measuring ozone concentration, the sensitivity and response of a thin-film sensor manufactured by printing or the like are particularly high. Although it has excellent properties, it has a problem in terms of stability over time. Accordingly, there has been a strong demand for a small, lightweight, and inexpensive sensor that has a long life, is highly reliable, and is inexpensive. The present invention has been made in view of this problem, and has as its object to improve the temporal stability of an ozone sensor.

【0004】[0004]

【課題を解決するための手段】請求項1の本発明のオゾ
ンセンサは、SnO2を重量比で2〜7%含むIn2O3
を主構成体としビスマスを添加物として含有する塗着層
からなるガス感応体と、そのガス感応体の互に離隔した
部分に設けた1対の電極とを含む構成をもつ。
Means for Solving the Problems] ozone sensor of the present invention of claim 1, an In 2 O3 containing 2-7% of SnO 2 by weight
And a pair of electrodes provided at portions of the gas sensitizer that are separated from each other and formed of a coating layer containing bismuth as an additive.

【0005】請求項2の発明のオゾンセンサは、ビスマ
スの添加量がIn23とSnO2の全量に対してBi2
3換算で3〜15wt%であることを特徴とする。
In the ozone sensor according to the second aspect of the present invention, the amount of bismuth added is Bi 2 O with respect to the total amount of In 2 O 3 and SnO 2.
It is characterized by being 3 to 15 wt% in 3 conversion.

【0006】請求項3の発明のオゾンセンサは、請求項
1のオゾンセンサにおいてさらに、前記ガス感応体が粒
子群からなる構成を有しビスマスが粒子群の少なくとも
粒界層に存在していることを特徴とする。
According to a third aspect of the present invention, in the ozone sensor according to the first aspect, the gas sensitizer has a structure including particles, and bismuth exists in at least a grain boundary layer of the particles. It is characterized by.

【0007】請求項4の発明のオゾンセンサは、請求項
1のオゾンセンサにおいてさらに、前記ガス感応体が粒
子群からなる構成を有し、粒子群の粒子の平均粒径が1
0〜50nmであることを特徴とする。
According to a fourth aspect of the present invention, in the ozone sensor according to the first aspect, the gas sensitizer has a structure including particles, and the average particle diameter of the particles in the particle group is one.
It is characterized in that it is 0 to 50 nm.

【0008】請求項5の発明のオゾンセンサは、請求項
1のオゾンセンサにおいてさらに、前記ガス感応体が膜
状であることを特徴とする。
According to a fifth aspect of the present invention, in the ozone sensor according to the first aspect, the gas sensitive body is formed in a film shape.

【0009】請求項6の発明のオゾンセンサの製造方法
は、インジウムを含む化合物と錫を含む化合物に添加物
としてビスマスを含有する溶液又は分散液を基板に湿式
にて塗着した後乾燥して塗着層をうる工程、前記塗着
層の互に離隔した部分に1対の電極を設ける工程、を有
する。
According to a sixth aspect of the present invention, there is provided a method for manufacturing an ozone sensor, wherein a solution or dispersion containing bismuth as an additive to a compound containing indium and a compound containing tin is wet-coated on a substrate.
Forming a coating layer by drying after coating by a method, and providing a pair of electrodes at mutually separated portions of the coating layer.

【0010】請求項7の発明のオゾンセンサの製造方法
は、請求項6のオゾンセンサの製造方法においてさら
に、前記の塗着層を700℃〜900℃で焼成すること
により、In23とSnO2の混合した粒子群の少なく
とも粒界層にビスマスを存在せしめた感応体を基板上に
形成することを特徴とする。
[0010] manufacturing process of the ozone sensor of the invention of claim 7, further in the production method of the ozone sensor according to claim 6, by firing the coating layer of the at 700 ° C. to 900 ° C., and In 2 O 3 A sensitive body in which bismuth is present in at least a grain boundary layer of a group of particles mixed with SnO 2 is formed on a substrate.

【0011】[0011]

【作用】請求項1及び6の発明によると、オゾンセンサ
素子としてSnO2を重量比で2〜7%含むIn23
主構成体としビスマスを添加物として含有させた塗着層
の感応体を用いることにより経時安定性が向上する。請
求項2の発明のように、特にビスマスの添加量がBi2
3換算でIn23とSnO2の合計量の3〜15wt%
の範囲であることにより、経時安定性が向上する。請求
項3の発明のように、ビスマスが少なくとも感応体を構
成する粒子群の少なくとも粒界層に存在する場合に、オ
ゾン検出感度が向上する。ビスマスは単体、酸化物、塩
その他の形で感応体に添加することができる。感応体中
のビスマスの存在状態はセンサの作製条件等により種々
の形があると考えられるが、通常はBi23として存在
することが元素分析により確認された。請求項4の発明
のように、粒子群の平均粒径が10〜50nmであると
き、初期特性及び経時特性が望ましい安定性を示す。請
求項5の発明のように感応体が膜状であるものは感応体
の性能を所望の値のものに制御しやすく、生産性と歩留
りが高い。請求項7の発明のように塗着層を700℃〜
900℃で構成することにより塗着層の粒子群の平均粒
径を所望の範囲に制御するとともにビスマスを有効に粒
子群の粒界層到達させうる。
[Action] According to an invention of claim 1 and 6, the sensitive ozone sensor element as the In 2 O 3 containing 2-7% of SnO 2 in a weight ratio main structure and then the coating layer containing as additives bismuth The use of a body improves the stability over time. In particular, the amount of bismuth added is Bi 2.
O 3 in terms of in In 2 O 3 and of the total amount of SnO 2 3 to 15%
Within this range, the stability over time is improved. As in the invention of claim 3, when bismuth exists at least in the grain boundary layer of the particle group constituting the sensitive body, the ozone detection sensitivity is improved. Bismuth can be added to the sensitizer in a simple substance, an oxide, a salt or other forms. The existence state of bismuth in the sensitizer is considered to have various forms depending on the manufacturing conditions of the sensor and the like. However, it was confirmed by elemental analysis that the bismuth usually exists as Bi 2 O 3 . When the average particle diameter of the particle group is 10 to 50 nm as in the invention of claim 4, the initial characteristics and the aging characteristics show desirable stability. When the sensitive body is in the form of a film as in the invention of claim 5, the performance of the sensitive body can be easily controlled to a desired value, and the productivity and the yield are high. The coating layer is formed at a temperature of 700 ° C.
By constituting at 900 ° C. can effectively to reach the grain boundary layer of particles of bismuth controls the average diameter of the particles of the coating layer to the desired range.

【0012】[0012]

【実施例】【Example】

[構造と製造]図1は本発明にかかる薄膜オゾンセンサ
素子10の一実施例を示す概略断面図である。図に示す
ように2.5mm幅×5.0mm長×0.5mm厚のア
ルミナ基板1の表の面に2.5mm幅×1.5mm長×
約100nm厚の感応体膜2を設けてある。感応体膜2
は、InとSnの化合物、好適例としては2−エチルヘ
キサン酸インジウムとp−トルイル酸錫(金属インジウ
ム及び金属錫の重量比でSn/(In+Sn)=5/1
00の割合の混合物)を主体とし、添加物としてビスマ
スを加えて調製した溶液を前記アルミナ基板に塗布して
作る。上記の他にSnとInの分量の比を変えたサンプ
ルを実験したが前記金属成分重量比でSn/(In+S
n)が3/100〜10/100の範囲のものが高い感
度を示した(図7参照)。ビスマスの量を種々変化させ
たサンプルを多数作った。こうして溶液を塗布したアル
ミナ基板を800℃で焼成して感応体を得る。なお、塗
布の方法としては、各成分を含む水溶液、分散液等を用
いたディップ法、スピンコート法、スクリーン印刷法な
どの湿式製膜法が膜厚の均一性と生産性の高さと歩留り
の点で好適である。ビスマスの添加量は、Bi23換算
量で0(無添加)、1、3、5、10、15、20、2
5wt%の8種とした。ビスマスは、別途調製した平均
粒径1nmのBi23の超微粉末を前記溶液に分散させ
て添加した。3、3’、7、7’はそれぞれあらかじめ
基板に形成した、感応体用及びヒータ用の金電極であ
る。アルミナの基板の裏面には既知の印刷法により2.
5mm幅×3mm長×10μm厚のRuO2の厚膜ヒー
タを形成した。ヒータ4としてRuO2を用いたのはオ
ゾンによる影響を受けにくいからである。ヒータ4とし
ては上記RuO2の他に、Ptなどの薄膜も用いうる。
なお、作製した感応体を透過型電子顕微鏡で観察しかつ
元素分析をしたところ、添加物であるBi23は、In
23とSnO2が混在し一部で両酸化物の金属元素が一
部置換した固溶体などからなる混合粒子(平均粒径:1
0〜50nm)群の表面と粒界層に、存在することを確
認した。Bi23の添加量が少ない場合には、粒界層に
存在するBi23の割合が相対的にやや多くなる傾向が
認められた。なお、焼成温度と平均粒径については後述
する。
[Structure and Production] FIG. 1 is a schematic sectional view showing one embodiment of a thin film ozone sensor element 10 according to the present invention. As shown in the figure, 2.5 mm width × 1.5 mm length × 2.5 mm width × 5.0 mm length × 0.5 mm thickness
A sensitive film 2 having a thickness of about 100 nm is provided. Sensitive body membrane 2
Is a compound of In and Sn, preferably, indium 2-ethylhexanoate and tin p-toluate (Sn / (In + Sn) = 5/1 by weight ratio of metal indium and metal tin)
The mixture was prepared by applying a solution prepared by adding bismuth as an additive mainly to the alumina substrate (a mixture having a ratio of 00). In addition to the above, an experiment was conducted on a sample in which the ratio of the amounts of Sn and In was changed, but Sn / (In + S
Those with n) in the range of 3/100 to 10/100 showed high sensitivity (see FIG. 7). A number of samples were prepared with varying amounts of bismuth. The alumina substrate coated with the solution is fired at 800 ° C. to obtain a sensitive body. In addition, as a coating method, an aqueous solution containing each component, a wet film forming method such as a dip method using a dispersion liquid, a spin coating method, a screen printing method, and the like are used for uniformity of film thickness, high productivity, and yield. It is suitable in this respect. The amount of bismuth added is 0 (no addition) in terms of Bi 2 O 3 , 1, 3 , 5, 10, 15, 20, 2,
Eight kinds of 5 wt% were used. Bismuth was added by dispersing a separately prepared ultrafine powder of Bi 2 O 3 having an average particle size of 1 nm in the solution. Reference numerals 3, 3 ', 7, and 7' denote gold electrodes for the sensitive body and the heater, respectively, formed on the substrate in advance. 1. On the back surface of the alumina substrate, a known printing method is used.
A RuO 2 thick film heater having a width of 5 mm × a length of 3 mm × a thickness of 10 μm was formed. The reason why RuO 2 is used as the heater 4 is that it is hardly affected by ozone. As the heater 4, a thin film such as Pt can be used in addition to RuO 2 .
When the prepared sensitizer was observed with a transmission electron microscope and subjected to elemental analysis, the additive Bi 2 O 3 was found to be In 2
Mixed particles composed of a solid solution or the like in which 2 O 3 and SnO 2 are mixed and a metal element of both oxides is partially substituted in part (average particle diameter: 1
(0-50 nm) group and on the grain boundary layer. When the amount of added Bi 2 O 3 was small, the proportion of Bi 2 O 3 present in the grain boundary layer tended to be relatively large. The firing temperature and the average particle size will be described later.

【0013】[応答特性の測定]このようにして作製し
たセンサ素子サンプル10を用いて、以下に説明する方
法でオゾンに対する応答特性を測定した。まずセンサ素
子10を清浄空気を満たした容積約1.5リットルの測
定箱にセットし、センサ素子10の基板1の裏面に形成
したRuO2厚膜ヒーター4に図示を略した直流電源に
より6Vを印加してセンサ素子10の温度を300℃に
保ち、センサ素子10の抵抗値(RA)を測定した。セ
ンサ素子10の抵抗値の測定は図3に示す回路で行なっ
た。即ちセンサ素子10に直列に抵抗値100KΩの負
荷抵抗6を接続して直流電源5により1Vの電圧を印加
する。負荷抵抗6の両端には出力端子8、9を経て電圧
計(図示略)に接続されている。実際にこのセンサ素子
10を使用するときの回路も実質的にこの回路と同様の
ものを用いる。
[Measurement of Response Characteristics] Using the sensor element sample 10 thus manufactured, response characteristics to ozone were measured by the method described below. First, the sensor element 10 is set in a measurement box having a capacity of about 1.5 liters filled with clean air, and 6 V is applied to a RuO 2 thick film heater 4 formed on the back surface of the substrate 1 of the sensor element 10 by a DC power supply (not shown). By applying the voltage, the temperature of the sensor element 10 was maintained at 300 ° C., and the resistance value (R A ) of the sensor element 10 was measured. The measurement of the resistance value of the sensor element 10 was performed by the circuit shown in FIG. That is, a load resistor 6 having a resistance value of 100 KΩ is connected in series with the sensor element 10, and a voltage of 1 V is applied by the DC power supply 5. Both ends of the load resistor 6 are connected to a voltmeter (not shown) via output terminals 8 and 9. A circuit for actually using the sensor element 10 is substantially the same as the circuit.

【0014】ついで、オゾンを測定箱に注入して均一に
拡散させて0.1ppmの濃度になるようにし、センサ
素子10の抵抗値が安定するまで待って、その時のセン
サ素子10の抵抗(RG)を測定して感度を求めた。
感度はオゾン混合空気中におけるセンサ素子10の抵抗
値(RG)を空気中におけるセンサ素子10の抵抗値
(RA)で除した値(RG/RA)で表わした。この測定
をそれぞれ前記の8種のビスマスの添加量のそれぞれの
ものについて各一種につき5個づつのサンプルセンサに
ついて行ない、各5個の素子の抵抗値(RA)と感度
(RG/RA)の平均値を図4に示した。なお、各サンプ
ルセンサ素子10の抵抗値はビスマス無添加の場合を1
とする相対値で示した。Bi23の添加量が多くなると
センサ素子10の抵抗値は増大した。電子顕微鏡により
確認したところでは、高抵抗であるBi23の粒界での
存在の量によってセンサ素子の抵抗値が大きく左右され
ることが推察される。一方感度はBi23の添加量が3
〜15wt%の範囲でほぼ同じであるが、Bi23の添
加量が15wt%を越えると感度は急激に小さくなっ
た。実用的な観点では素子の抵抗値は極端に大きくなく
かつ感度は大きいことが望ましく、その意味でビスマス
の添加量は15wt%までとするのがよいと考えられ
る。
Then, ozone is injected into the measuring box and uniformly diffused so as to have a concentration of 0.1 ppm. Wait until the resistance value of the sensor element 10 becomes stable, and then the resistance value of the sensor element 10 at that time ( R G ) was measured to determine the sensitivity.
The sensitivity was represented by a value (R G / R A ) obtained by dividing the resistance value (R G ) of the sensor element 10 in the ozone mixed air by the resistance value (R A ) of the sensor element 10 in the air. The measurements for each respective ones of the added amount of the eight kinds of bismuth performed for a sample sensor five increments for each kind, the resistance value of each five element (R A) and sensitivity (R G / R A 4) are shown in FIG. The resistance value of each sample sensor element 10 was 1 when no bismuth was added.
The relative values are shown below. As the amount of added Bi 2 O 3 increased, the resistance of the sensor element 10 increased. According to the observation with an electron microscope, it is inferred that the resistance value of the sensor element largely depends on the amount of Bi 2 O 3 having high resistance at the grain boundary. On the other hand, the sensitivity was 3 when the amount of Bi 2 O 3 was 3
Approximately the same was observed in the range of 感 度 15 wt%, but when the amount of Bi 2 O 3 exceeded 15 wt%, the sensitivity sharply decreased. From a practical point of view, it is desirable that the resistance value of the device is not extremely large and the sensitivity is high. In that sense, it is considered that the amount of bismuth added is preferably up to 15 wt%.

【0015】[経時変化] 次にセンサ特性の経時変化を測定した。センサ素子を2
0℃で60%RHの空気中で連続通電し、所定時間毎に
取り出して、測定箱中で前記と同様の方法で素子の抵抗
値を測定し、センサ感度を求めた。通電は計5000時
間行なった。初期値を基準とするセンサ素子抵抗値(R
A)の変化率の経時変化を図5に、同じく感度(RG/R
A)の変化率の経時変化を図6に示した。Bi23の添
加量が3〜15wt%の範囲のセンサの場合にはセンサ
素子抵抗と感度の経時変化が小さく安定に推移している
が、その範囲より大きまたは小さい添加量のセンサに
おいてはセンサ素子抵抗と感度の経時変化が大きいこと
が明かとなった。特にBi23を添加しない場合および
添加量が20wt%以上の場合とでその傾向が大きいこ
とがわかった。本発明によるオゾンセンサはBi23
3〜15wt%含むものでは経時変化が少なく、初期特
性も安定するなど優れた特性を示す。またBi23以外
のビスマスの化合物を用いた場合もBi23に換算して
3〜15wt%の添加量の場合がよい結果が得られた。
本発明の場合、感応体を構成する粒子の平均粒径が10
nm未満の場合には感度がやや大きいものの、粒子の焼
結の進行によるセンサ特性の経時変化が大きくなり好ま
しくない。一方、平均粒径が50nmを越えると経時変
化は比較的小さいが、比表面積が小さいために感度が小
さくなる。本発明においては平均粒径が10〜50nm
の場合に望ましい初期特性および経時特性を示すことが
見出された。
[Change over time] Next, the change over time in the sensor characteristics was measured. 2 sensor elements
Electric current was continuously supplied in air at 0 ° C. and 60% RH, taken out at predetermined time intervals, and the resistance of the element was measured in a measuring box in the same manner as described above to determine the sensor sensitivity. Energization was performed for a total of 5000 hours. Sensor element resistance value (R
FIG. 5 shows the change over time of the change rate of A ), and the sensitivity (R G / R)
FIG. 6 shows the change over time in the rate of change in A ). The addition amount of Bi 2 O 3 aging of the sensor element resistance and sensitivity in the case of the sensor in the range of 3 to 15% is remained small and stable, the sensor size have or smaller amount than that range It was found that the change in sensor element resistance and sensitivity with time was large. In particular, it was found that the tendency was large when Bi 2 O 3 was not added and when the added amount was 20 wt% or more. The ozone sensor according to the present invention, which contains Bi 2 O 3 in an amount of 3 to 15 wt%, exhibits excellent characteristics such as little change over time and stable initial characteristics. Also, when a bismuth compound other than Bi 2 O 3 was used, good results were obtained when the addition amount was 3 to 15 wt% in terms of Bi 2 O 3 .
In the case of the present invention, the average particle size of the particles constituting the sensitive body is 10
If it is less than nm, the sensitivity is rather large, but the change over time of the sensor characteristics due to the progress of sintering of the particles is not preferable. On the other hand, when the average particle size exceeds 50 nm, the change with time is relatively small, but the sensitivity is low because the specific surface area is small. In the present invention, the average particle size is 10 to 50 nm.
It has been found that in the case of the above, desirable initial properties and aging properties are exhibited.

【0016】上記実施例の記述では薄膜型のセンサ素子
について詳細に述べたが、例えば棒状や管状などに焼結
した焼結型のセンサ素子の場合にも、粉体の平均粒径及
びビスマスの添加量が前記範囲にあることが望ましい。
また、感応体の焼成温度は700〜900℃の範囲であ
れば上述の実施例と実質的に同等の性能を得ることがで
きた。透過型電子顕微鏡写真での観察によると焼成温度
が700℃未満の場合には、感応体の粒子の焼結が不十
分でビスマスが粒界層に十分に入り込まず、この場合は
特性の安定化にはそれほど寄与しなかった。他方焼成温
度が900℃を越えた場合には、添加したビスマスの大
部分が粒界層に集中し、この場合にはきわめて高抵抗と
なりかつ感度も小さくなって実用的でなかった。以上の
実施例についての詳細な説明から明らかなように、本発
明によるオゾンセンサはきわめて優れた特性を有してい
る。上記の実施例では、ガス感応体の製法において塗布
法を用いた場合について述べたが、印刷法やスピンコー
ト法等の様々な湿式製膜法を用いることもでき、いずれ
の場合にも上記の実施例と同様の特性を有するセンサを
得ることができた。また出発材料としては実施例に示し
たものに限らず本発明の製法に適したものであれば、た
とえば硝酸インジウム、蓚酸錫など、本発明の製造に適
したものを適宜選択して用いることができる。センサ素
子各部の構造や構成あるいは基板材料や電極材料も発明
の主旨に反しない限りにおいて自由に設計あるいは使用
することができるものである。
Although the thin-film sensor element has been described in detail in the description of the above embodiment, the average particle size of powder and bismuth It is desirable that the amount added be in the above range.
Further, if the firing temperature of the sensitive body was in the range of 700 to 900 ° C., substantially the same performance as that of the above-described example could be obtained. According to transmission electron micrographs, when the sintering temperature is lower than 700 ° C., the sintering of the particles of the sensitive body is insufficient, so that bismuth does not sufficiently enter the grain boundary layer, and in this case, the characteristics are stabilized. Did not contribute much. On the other hand, when the firing temperature exceeded 900 ° C., most of the added bismuth was concentrated in the grain boundary layer, and in this case, the resistance was extremely high and the sensitivity was low, which was not practical. As is clear from the detailed description of the above embodiments, the ozone sensor according to the present invention has extremely excellent characteristics. In the above embodiment, the case where the coating method was used in the method of manufacturing the gas sensitive body was described.However, various wet film forming methods such as a printing method and a spin coating method can also be used. A sensor having the same characteristics as in the example was obtained. Further, the starting material is not limited to those shown in the examples, and any material suitable for the production of the present invention, such as indium nitrate or tin oxalate, may be appropriately selected and used as long as it is suitable for the production method of the present invention. it can. The structure and configuration of each part of the sensor element, as well as the substrate material and the electrode material, can be freely designed or used without departing from the gist of the invention.

【0017】[0017]

【発明の効果】請求項1の発明にかかるオゾンセンサ
は、ビスマスの添加により小型軽量な素子であるにかか
わらずガス検知感度の経時的な安定性に優れ、オゾン発
生機やオゾン利用機器におけるオゾン濃度制御、あるい
はオゾン検知等の用途に適する。請求項2の発明にかか
るオゾンセンサは、ビスマス添加量が3〜15wt%の
範囲にあることにより経時安定性が高い。請求項3の発
明にかかるオゾンセンサは、ビスマスが感応体を構成す
る粒子群の少なくとも粒界層に存在することによりオゾ
ン検出感度が向上する。請求項4の発明にかかるオゾン
センサは、粒子群の平均粒径が10〜50nmであるこ
とにより、初期特性及び経時特性が望ましい安定性を示
す。請求項5の発明にかかるオゾンセンサは、感応体が
膜状であるから、感応体の性能を所望の値のものに制御
しやすく、生産性と歩留りが高い。請求項6の発明にか
かるオゾンセンサの製造方法は、湿式法で塗着層を作る
ことにより、均一な感応体薄膜をもつオゾンセンサ素子
を効率よく高い歩留りで製造できる。請求項7の発明に
かかるオゾンセンサの製造方法によれば、700℃〜9
00℃での焼成によってビスマスが少なくとも粒界層に
存在し、それにより経時安定性の高い素子を製造するこ
とができる。
The ozone sensor according to the first aspect of the present invention has excellent stability over time in gas detection sensitivity irrespective of the size and weight of the element due to the addition of bismuth. Suitable for applications such as concentration control and ozone detection. The ozone sensor according to the second aspect of the present invention has high stability over time because the added amount of bismuth is in the range of 3 to 15 wt%. In the ozone sensor according to the third aspect of the present invention, the ozone detection sensitivity is improved by the presence of bismuth in at least the grain boundary layer of the particles constituting the sensitive body. In the ozone sensor according to the fourth aspect of the invention, when the average particle diameter of the particle group is 10 to 50 nm, the initial characteristics and the aging characteristics show desirable stability. In the ozone sensor according to the fifth aspect of the present invention, since the sensitive body is in the form of a film, the performance of the sensitive body can be easily controlled to a desired value, and the productivity and the yield are high. According to the method of manufacturing an ozone sensor according to the sixth aspect of the present invention, an ozone sensor element having a uniform sensitive substance thin film can be efficiently manufactured at a high yield by forming a coating layer by a wet method. According to the method for manufacturing an ozone sensor according to the seventh aspect of the present invention, the ozone sensor has a temperature of
By baking at 00 ° C., bismuth is present at least in the grain boundary layer, whereby a device having high temporal stability can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるオゾンセンサ素子の一実施例の
断面図。
FIG. 1 is a sectional view of an embodiment of an ozone sensor element according to the present invention.

【図2】図1に示すオゾンセンサ素子の平面図。FIG. 2 is a plan view of the ozone sensor element shown in FIG.

【図3】図1及び図2に示すオゾンセンサ素子の抵抗変
化を測定する回路図。
FIG. 3 is a circuit diagram for measuring a resistance change of the ozone sensor element shown in FIGS. 1 and 2;

【図4】図1及び図2に示すオゾンセンサそしてのビス
マス添加量の変化に対する抵抗値及び感度の変化を示す
図。
FIG. 4 is a graph showing changes in resistance and sensitivity with respect to changes in the amount of bismuth added to the ozone sensor shown in FIGS. 1 and 2;

【図5】図1及び図2に示すオゾンセンサ素子の素子抵
抗の経時変化を示す図。
FIG. 5 is a diagram showing a change with time of the element resistance of the ozone sensor element shown in FIGS. 1 and 2;

【図6】図1及び図2に示すオゾンセンサ素子の感度の
経時変化を示す図。
FIG. 6 is a diagram showing a change over time in the sensitivity of the ozone sensor element shown in FIGS. 1 and 2;

【図7】SnとInの金属成分重量比Sn/(In+S
n)(wt%)と感度(RG/RA)の関係を示す図。
FIG. 7 is a diagram illustrating a weight ratio of a metal component of Sn to In: Sn / (In + S);
n) A diagram showing the relationship between (wt%) and sensitivity (R G / R A ).

【符号の説明】[Explanation of symbols]

1 基板 2 オゾン感応体 3,3’,7,7’ 電極 4 ヒータ 5 直流電源 6 負荷抵抗 8,9 出力端子 10 センサ素子 DESCRIPTION OF SYMBOLS 1 Substrate 2 Ozone sensitive body 3, 3 ', 7, 7' Electrode 4 Heater 5 DC power supply 6 Load resistance 8, 9 Output terminal 10 Sensor element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉池 信幸 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭55−129741(JP,A) 特開 昭49−65892(JP,A) 特開 平5−157718(JP,A) 特開 平5−26833(JP,A) 特開 昭60−71942(JP,A) 特開 平2−126146(JP,A) 特開 昭63−194307(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (72) Nobuyuki Yoshiike, Inventor 1006 Kazuma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References 65892 (JP, A) JP-A-5-157718 (JP, A) JP-A-5-26833 (JP, A) JP-A-60-71942 (JP, A) JP-A-2-126146 (JP, A) JP-A-63-194307 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/12 JICST file (JOIS)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SnO2を重量比で2〜7%含むIn2
3を主構成体としビスマスを添加物として含有する塗着
層からなるガス感応体と、そのガス感応体の互に離隔し
た部分に設けた1対の電極とを含むオゾンセンサ。
1. In 2 O containing 2 to 7% by weight of SnO 2
An ozone sensor including a gas sensitive body comprising a coating layer containing 3 as a main constituent and containing bismuth as an additive, and a pair of electrodes provided at mutually separated portions of the gas sensitive body.
【請求項2】 ビスマスの添加量がIn23とSnO2
の全量に対してBi23換算で3〜15wt%であるこ
とを特徴とする特許請求項1のオゾンセンサ。
2. The amount of bismuth added is In 2 O 3 and SnO 2.
2. The ozone sensor according to claim 1, wherein the total amount of the ozone sensor is 3 to 15 wt% in terms of Bi2O3.
【請求項3】 前記ガス感応体が粒子群からなる構成を
有しビスマスが粒子群の少なくとも粒界層に存在してい
ることを特徴とする請求項1のオゾンセンサ。
3. The ozone sensor according to claim 1, wherein the gas sensitizer has a structure composed of particles, and bismuth exists in at least a grain boundary layer of the particles.
【請求項4】 前記ガス感応体が粒子群からなる構成を
有し、粒子群の粒子の平均粒径が10〜50nmである
ことを特徴とする請求項1のオゾンセンサ。
4. The ozone sensor according to claim 1, wherein the gas sensitizer has a structure including particles, and the particles of the particles have an average particle diameter of 10 to 50 nm.
【請求項5】 前記ガス感応体が膜状であることを特徴
とする請求項1のオゾンセンサ。
5. The ozone sensor according to claim 1, wherein said gas sensitive body is in the form of a film.
【請求項6】 インジウムを含む化合物と錫を含む化合
物に添加物としてビスマスを含有する溶液又は分散液を
基板に湿式にて塗着した後乾燥して塗着層をうる工
程、 前記塗着層の互に離隔した部分に1対の電極を設ける工
程、 を具有するオゾンセンサの製造方法。
6. A step of applying a solution or a dispersion containing bismuth as an additive to a compound containing indium and a compound containing tin as an additive to a substrate by a wet method , followed by drying to obtain a coating layer. Providing a pair of electrodes at portions of the layer that are spaced apart from each other.
【請求項7】 前記の塗着層を700℃〜900℃で焼
成することにより、In23とSnO2の混合した粒子
群の少なくとも粒界層にビスマスを存在せしめた感応体
を基板上に形成することを特徴とする請求項6のオゾン
センサの製造方法。
7. A sensitizer in which bismuth is present in at least a grain boundary layer of a mixed particle group of In 2 O 3 and SnO 2 by firing the coating layer at 700 ° C. to 900 ° C. 7. The method for manufacturing an ozone sensor according to claim 6, wherein
JP6305492A 1994-11-14 1994-11-14 Ozone sensor Expired - Lifetime JP3032441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6305492A JP3032441B2 (en) 1994-11-14 1994-11-14 Ozone sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6305492A JP3032441B2 (en) 1994-11-14 1994-11-14 Ozone sensor

Publications (2)

Publication Number Publication Date
JPH08136489A JPH08136489A (en) 1996-05-31
JP3032441B2 true JP3032441B2 (en) 2000-04-17

Family

ID=17945818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305492A Expired - Lifetime JP3032441B2 (en) 1994-11-14 1994-11-14 Ozone sensor

Country Status (1)

Country Link
JP (1) JP3032441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU174115U1 (en) * 2017-02-21 2017-10-02 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Flexible Integrated Gas Ozone Sensor

Also Published As

Publication number Publication date
JPH08136489A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
DE3818736C2 (en)
US4357426A (en) Humidity sensitive ceramics
DE2558560C3 (en) Humidity sensor with a negative coefficient of electrical resistance
EP0046989B1 (en) Selective thin-coat gas sensor with high sensitivity and stability to detect and measure gaseous organic pollutants in the air on the basis of tungsten semi-conductor oxide, and method of producing the same
EP0114310B1 (en) Carbon monoxide sensing element and process for manufacturing it
DE2824609C2 (en) Device for measuring humidity by changing electrostatic capacitance
DE3416108C2 (en)
DE2641577A1 (en) MOISTURE-SENSITIVE CERAMIC RESISTOR
US3928837A (en) Ceramic oxide resistor element
JPH0479540B2 (en)
US3715702A (en) Relative humidity sensor
JP3032441B2 (en) Ozone sensor
DE2942516C2 (en) Gas detection element for the detection of hydrogen sulfide
DE2715329A1 (en) FUEL GAS SENSOR ELEMENT
JP2988016B2 (en) Ozone sensor
JPS5941281B2 (en) Ceramic for moisture sensing elements
DE3305683C2 (en) Humidity sensor
JPS62223054A (en) Humidity sensor material and manufacture
EP0488102A2 (en) Method and apparatus for measuring gas
DE2942722A1 (en) METHOD FOR PRODUCING A GAS DETECTOR FOR FLAMMABLE GASES
JPS58134402A (en) Moisture sensitive element
DE3241936C2 (en) Moisture-sensitive resistance sensor
JPS59120946A (en) Gaseous freon detecting element
DE3822194C2 (en)
JPH0827248B2 (en) Ozone sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

EXPY Cancellation because of completion of term