JP3032273B2 - Manufacturing method of high strength steel belt - Google Patents

Manufacturing method of high strength steel belt

Info

Publication number
JP3032273B2
JP3032273B2 JP2275422A JP27542290A JP3032273B2 JP 3032273 B2 JP3032273 B2 JP 3032273B2 JP 2275422 A JP2275422 A JP 2275422A JP 27542290 A JP27542290 A JP 27542290A JP 3032273 B2 JP3032273 B2 JP 3032273B2
Authority
JP
Japan
Prior art keywords
phase
belt
steel
point
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2275422A
Other languages
Japanese (ja)
Other versions
JPH04154920A (en
Inventor
孝 井川
美博 植松
敏彦 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2275422A priority Critical patent/JP3032273B2/en
Priority to AT91117409T priority patent/ATE108711T1/en
Priority to DE69102969T priority patent/DE69102969T2/en
Priority to EP91117409A priority patent/EP0481378B1/en
Publication of JPH04154920A publication Critical patent/JPH04154920A/en
Priority to US07/976,054 priority patent/US5269856A/en
Application granted granted Critical
Publication of JP3032273B2 publication Critical patent/JP3032273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/14Making other particular articles belts, e.g. machine-gun belts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Belt Conveyors (AREA)

Abstract

A high strength steel belt (1) having an excellent flatness and a duplex structure of austenite and martensite has been prepared by a process which comprises providing a cold rolled or cold rolled and annealed strip of a martensitic structure from low carbon martensitic stainless steel containing from 10 to 17 % by weight of Cr and having a carbon content of not exceeding 0.15 % by weight, connecting ends of the strip or ends of a plate cut from said strip to provide an endless belt, causing the endless belt to circularly move between rolls (2,3) under tension and to repeatedly pass through a heating furnace (4) where the belt is heated to a temperature within the range from (the As point of the steel + 30 DEG C.) to the Af point of the steel and not higher than 900 DEG C. so that a part of the martensitic phase may be changed to a reversed austenitic phase, and cooling the heated belt to ambient temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,マルテンサイト相とオーステナイト相の微
細な二相組織を有し且つ平坦度に優れた高強度のステン
レス製スチールベルトの製造方法に関する。
The present invention relates to a method for producing a high-strength stainless steel belt having a fine two-phase structure of a martensite phase and an austenite phase and having excellent flatness. .

〔従来の技術〕[Conventional technology]

ステンレス鋼製のスチールベルトは,高温での連続ク
ッキー焼き,低温での食品フリージング,合板等の連続
プレス,機械部品の搬送等の各種の分野で数多く使用さ
れており,その材料鋼種としては,高強度と優れた疲労
強度を必要とする関係上,加工硬化型オーステナイト系
ステンレス鋼,低炭素マルテンサイト系ステンレス鋼,
或いは析出硬化型ステンレス鋼などが適用されている。
この種のスチールベルト用材やスチールベルトの製造方
法については例えば特公昭51−31085号公報や特開昭61
−9903号公報に示されている。
Stainless steel belts are widely used in various fields such as continuous cookie baking at high temperature, food freezing at low temperature, continuous pressing of plywood, etc., and transport of machine parts. Due to the need for high strength and excellent fatigue strength, work-hardening austenitic stainless steel, low-carbon martensitic stainless steel,
Alternatively, precipitation hardening stainless steel or the like is applied.
Japanese Patent Publication No. Sho 51-31085 and Japanese Unexamined Patent Publication No.
No. 9903.

かようなステンレス鋼製のスチールベルトの製造にあ
たっては,形状修正によって平坦としたステンレス鋼帯
を作ってから,両端を溶接してエンドレス状にした後,
再び張力を与えて常温で平坦化する方法を採用するのが
通常である。
When manufacturing such a stainless steel belt, a flattened stainless steel strip is made by shape modification, and then both ends are welded into an endless shape.
Usually, a method of applying tension again to flatten at room temperature is adopted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来のスチールベルト製造法では,形状に優れたスチ
ールベルトを製造するには,まず平坦度に優れたスチー
ルベルト素材板を得ることが必要となる。この平坦度に
優れた素材板を得るにはスチールベルト素材の最終工程
に形状修正のための圧延工程が必要である。この形状修
正圧延においては,加工硬化型オーステナイト系ステン
レス鋼およびマルテンサイト系ステンレス鋼とも,良好
な形状を得るには圧下率,ロール径,圧延速度,板厚,
前工程の履歴などを考慮して適正に行うことが必要であ
り,その成否は製品歩留りに大きく影響する極めて高度
な技術である。したがって,出来得るならば,この形状
修正圧延なしでも平坦度の優れた鋼帯が得られるに越し
たことはないが,この種の鋼帯においてその技術は完成
されていなのが実状である。
In the conventional steel belt manufacturing method, in order to manufacture a steel belt having an excellent shape, it is first necessary to obtain a steel belt material plate having an excellent flatness. In order to obtain a material plate having excellent flatness, a rolling process for correcting the shape is required in the final process of the steel belt material. In this shape-correcting rolling, for both work-hardening austenitic stainless steel and martensitic stainless steel, reduction ratio, roll diameter, rolling speed, sheet thickness,
It is necessary to perform the process properly in consideration of the history of the previous process, and the success or failure is an extremely advanced technology that greatly affects the product yield. Therefore, if possible, it is possible to obtain a steel strip having excellent flatness without this shape correction rolling, but the technology has not been completed in this type of steel strip.

また,形状修正圧延によって平坦度に優れた素材板が
得られたとしても,素材板の両端を溶接してエンドレス
状とする際,溶接時の入熱で素材板に膨脹・収縮が生
じ,溶接部近傍が歪むことは避けられない。このため,
エンドレス状にした後,再度エンドレス状のスチールベ
ルトに張力をかけて平坦化のための作業が必要となる。
Even if a material plate with excellent flatness is obtained by shape correction rolling, when the both ends of the material plate are welded into an endless shape, the heat input during welding causes the material plate to expand and contract, and the welding It is inevitable that the vicinity of the part is distorted. For this reason,
After the endless belt is formed, it is necessary to apply tension to the endless steel belt again to perform a flattening operation.

このようなことから,高強度ステンレス鋼製スチール
ベルトを高歩留りで製造するには精密且つ繁雑な作業を
要していた。特に,広幅のスチールベルトを製造する場
合には,スチールベルト素材板を縦継ぎで溶接(長手方
向に溶接)して広幅鋼帯としたあと,その両端を溶接し
てエンドレス状とすることが行われるが,この場合に
は,このエンドレス状ベルトに張力を与えて溶接部の歪
を修正し平坦化する作業を行っても,全体に平坦化する
には一段と煩雑で多大な時間を要する作業となり,極め
て問題の多い製造方法となっていた。
For these reasons, precise and complicated operations were required to produce a high-strength stainless steel belt at a high yield. In particular, when manufacturing a wide steel belt, it is necessary to weld a steel belt material plate by longitudinal joint (welding in the longitudinal direction) to form a wide steel strip, and then weld both ends of the steel belt to an endless shape. However, in this case, even if the tension is applied to the endless belt to correct the distortion of the welded portion and the flattening work is performed, the entire flattening operation becomes more complicated and requires much time. , A very problematic manufacturing method.

本発明はこのような問題の解決を目的としたものであ
る。
The present invention is directed to solving such a problem.

〔問題点を解決するための手段〕 本発明によれば,10〜17%のCrを含有しC含有量が0.1
5%以下の低炭素マルテンサイト系ステンレス鋼からマ
ルテンサイト組織を有する冷延鋼帯または焼鈍鋼帯を製
造し,この鋼帯を素材板として端部を連結してエンドレ
スベルトとし,このエンドレスベルトをロール間に所要
の張力下に架け渡して回動させながら加熱炉に連続的に
通板し,この加熱炉において(As点+30℃)以上でAf点
以下の温度範囲(ただし900℃以下の範囲)に加熱して
マルテンサイト相の一部を逆変態オーステナイト相とし
たうえ,室温に冷却してオーステナイト相とマルテンサ
イト相の複相組織にすることを特徴とする高強度スチー
ルベルトの製造方法を提供する。なお,As点は昇温過程
でマルテンサイト相からオーステナイト相へ変態が開始
する温度を,またAf点は昇温過程でマルテンサイト相か
らオーステナイト相へ変態が終了する温度を意味してい
る。
[Means for Solving the Problems] According to the present invention, the steel contains 10 to 17% of Cr and has a C content of 0.1 to 0.1%.
A cold-rolled or annealed steel strip having a martensitic structure is manufactured from a low-carbon martensitic stainless steel of 5% or less, and this steel strip is used as a material plate and its ends are connected to form an endless belt. Continuously pass through a heating furnace while rotating it under the required tension between the rolls, and in this heating furnace, a temperature range of (As point + 30 ° C) or more and Af point or less (however, a range of 900 ° C or less) ) To convert a part of the martensite phase into a reverse transformed austenite phase, and then cool to room temperature to form a dual-phase structure of austenite and martensite phases. provide. The As point means the temperature at which the transformation starts from the martensite phase to the austenite phase during the temperature rise process, and the Af point means the temperature at which the transformation from the martensite phase to the austenite phase ends during the temperature rise process.

〔作用〕[Action]

鋼帯の最終製造工程で形状修正圧延を行わなかった鋼
帯を素材板として使用し,その端部を溶接でエンドレス
ベルトにしたさいにさらに形状が悪化したものでも,マ
ルテンサイト組織を有するエンドレスベルトをロール間
に所要の張力下で架け渡して加熱炉に通板し,As点以上
の温度に加熱すると,炉内ではベルトの長手方向に張力
が加わりながらマルテンサイトがオーステナイトに逆変
態し,この逆変態の進行につれて材料が平坦化される。
An endless belt with a martensitic structure, even if the shape of the steel strip, which was not subjected to shape correction rolling in the final manufacturing process of the steel strip, was further deteriorated when the end was formed into an endless belt by welding. Is passed through a heating furnace under the required tension between the rolls and passed through a heating furnace, and heated to a temperature above the As point. In the furnace, martensite reversely transforms into austenite while tension is applied in the longitudinal direction of the belt. The material is planarized as the reverse transformation proceeds.

900℃を越えない温度であって(As点+30℃)以上,Af
点以下の温度範囲であれば,マルテンサイトの一部をオ
ーステナイトに逆変態させることができ,この逆変態で
生成したオーステナイト相は微細で安定なものとするこ
とができ,したがって室温まで冷却しても焼入れマルテ
ンサイトに再度変態しない。このため,マルテンサイト
相と逆変態オーステナイト相との微細な2相組織のスチ
ールベルトが得られる。
Temperature not exceeding 900 ° C (As point + 30 ° C) or more, Af
In the temperature range below the point, a part of martensite can be reverse transformed into austenite, and the austenite phase formed by this reverse transformation can be made fine and stable. Does not transform again into quenched martensite. For this reason, a steel belt having a fine two-phase structure of a martensite phase and a reverse transformation austenite phase can be obtained.

また,加熱温度からの冷却のさいに焼入れマルテンサ
イトに再度変態しないことは焼入れひずみが発生しない
ことを意味し,このために常温まで良好な平坦度が維持
される。
In addition, the absence of transformation to quenched martensite during cooling from the heating temperature means that no quenching strain is generated, and thus good flatness is maintained up to room temperature.

このようにして,本発明によれば,形状修正圧延を省
略した鋼帯を素材としても(もっとも,形状修正圧延を
行った鋼帯を素材としても特に問題はないが),溶接接
合後のエンドレスベルトの連続熱処理によって平坦化と
複相組織化が同時に達成され,形状が優れ且つ高強度の
ステンレス鋼製のスチールベルトが製造性よく作製でき
る。
As described above, according to the present invention, even if the steel strip from which the shape correction rolling is omitted is used as the material (although there is no particular problem even if the steel strip subjected to the shape correction rolling is used as the material), the endless wire after the welding connection is used. By continuous heat treatment of the belt, flattening and formation of a dual phase structure are simultaneously achieved, and a stainless steel belt having excellent shape and high strength can be manufactured with high productivity.

なお,このような作用は,加熱炉に通板される前の鋼
帯が実質的にマルテンサイト組織を有しておればよく,
例えば20容積%以下のフエライト相またはオーステナイ
ト相を有していてもそれほど損なわれない。
In addition, such an effect is sufficient if the steel strip before being passed through the heating furnace has a substantially martensitic structure.
For example, even if it has a ferrite phase or an austenite phase of 20% by volume or less, it is not so much damaged.

このように本発明の特徴は,熱処理時にマルテンサイ
ト相から微細なオーステナイト相が逆変態で生じて微細
な二相組織となり,この微細な二相組織を維持すること
で,平坦度に優れた高強度ステンレススチールベルトを
得たことにある。すなわちHall−Petchの式でも知られ
るように組織の微細化で強度を得るとともに,炉内を通
板する際の張力で平坦化された状態において,張力を緩
和しながら,逆変態が進行することからテンションアニ
ール状態となって優れた形状が得られるのである。した
がって安定した微細な二相組織を得ることが鍵となる。
As点+30℃以下では生成される逆変態オーステナイト量
が少なすぎるため,またAf点以上でかつ900℃以上では
逆にマルテンサイト量が残留しなくなるか,残留量が少
なくなりすぎるため,安定した微細な二相組織が得られ
ない。
As described above, the feature of the present invention is that a fine austenite phase is formed from a martensite phase by a reverse transformation during heat treatment to form a fine two-phase structure, and by maintaining this fine two-phase structure, a high flatness excellent in flatness is obtained. I have obtained a strong stainless steel belt. In other words, as is known from the Hall-Petch equation, strength is obtained by refining the structure, and the reverse transformation proceeds while relaxing the tension in the state where the tension is relaxed while passing through the furnace. Thus, a tension annealing state is obtained, and an excellent shape can be obtained. Therefore, obtaining a stable and fine two-phase structure is key.
If the As point + 30 ° C or lower, the amount of reverse transformed austenite generated is too small, and if the Af point or higher and 900 ° C or higher, the amount of martensite does not remain or conversely becomes too small. A two-phase structure cannot be obtained.

〔発明の好ましい態様〕(Preferred embodiment of the invention)

第1図に本発明で使用する熱処理炉の例を示した。マ
ルテンサイト組織を有する素材板から作ったエンドレス
ベルト1をロール2と3に架け渡し,これらロールのい
ずれかを駆動ロールとしてベルト1を回動させる。この
回動するベルト1が連続通板されるように熱処理炉4を
設ける。この熱処理炉4のベルト出側に空気噴射ノズル
5を設け,このノズル5によって熱処理されたベルトを
冷却するようにすることもできる。熱処理炉4の加熱は
電気抵抗発熱体加熱方式で行うのが便宜であるが,燃料
燃焼方式であってもよい。雰囲気はベルトの酸化を防止
したい場合は,還元性ガスや不活性ガスを使用するが,
大気雰囲気でも特に支障はない。
FIG. 1 shows an example of a heat treatment furnace used in the present invention. An endless belt 1 made of a material plate having a martensite structure is stretched over rolls 2 and 3, and the belt 1 is rotated using one of these rolls as a drive roll. A heat treatment furnace 4 is provided so that the rotating belt 1 is continuously passed. An air injection nozzle 5 may be provided on the belt exit side of the heat treatment furnace 4 to cool the belt heat-treated by the nozzle 5. It is convenient to heat the heat treatment furnace 4 by an electric resistance heating element heating method, but it may be a fuel combustion method. To prevent belt oxidation, use a reducing gas or an inert gas.
There is no particular problem even in the air atmosphere.

エンドレスベルト1は,マルテンサイト組織の鋼帯か
ら所要長さの素材板を切出し,その両端部を溶接接合す
ることによって作られる。広幅のものでは,この両端部
の溶接のほか,複数の素材板の側縁を長手方向に縦継ぎ
溶接して作ることもできる。場合によってはビレット打
ちで接合することもできる。いずれにしても,マルテン
サイト組織の鋼帯としては形状修正圧延を行わないもの
を使用することができ,またベルトへの接合によって平
坦度が悪くなったものでも,前記の熱処理によって平坦
化される。
The endless belt 1 is made by cutting out a material plate of a required length from a steel strip having a martensitic structure, and welding both ends thereof. In the case of a wide material, in addition to welding at both ends, the side edges of a plurality of material plates can be longitudinally welded in a longitudinal direction. In some cases, they can be joined by billet striking. In any case, a steel strip having a martensitic structure that does not undergo shape correction rolling can be used, and even if the flatness is deteriorated by joining to a belt, it can be flattened by the heat treatment described above. .

ロール1と2とにベルト1を所要の張力下に架け渡す
が,その張力の程度はAs点に近い低温域では0.5kgf/mm2
以上の高い張力が望ましく,Af点に近い高温域では0.5kg
f/mm2未満の低い張力が望ましい。また熱処理時間は低
温域では長く,高温域では短く調節するようにするのが
よい。このような張力と保持時間は,鋼の成分組成や熱
処理温度とも関係するが,マルテンサイト相の一部がオ
ーステナイト相に逆変態し,微細な二相組織となるよう
に且つ平坦化が達成されるように調節することが肝要で
あり,これは当該鋼の数度の試験によって知ることがで
きる。
The belt 1 is stretched under the required tension between the rolls 1 and 2, and the degree of the tension is 0.5 kgf / mm 2 in a low temperature region near the As point.
The above high tension is desirable, and 0.5 kg in the high temperature region near the Af point
A low tension of less than f / mm 2 is desirable. It is preferable that the heat treatment time is adjusted to be long in a low temperature range and short in a high temperature range. Such tension and holding time are related to the composition of the steel and the heat treatment temperature. However, a part of the martensite phase is reversely transformed into an austenite phase, and a fine two-phase structure is achieved and flattening is achieved. It is essential that the steel be adjusted in such a way that this can be seen by several tests of the steel.

このようにして張力下に熱処理することにより微細な
二相組織となり,この微細な二相組織を維持することで
形状に優れ且つ高強度のスチールベルトが得られ,溶接
部も母材と実質的に同一の組織および平坦度を有するこ
とになる。したがってこのベルトの熱処理にあたっては
安定した微細な二相組織を得ることが鍵となる。As点+
30℃未満の温度域での熱処理では生成される逆変態オー
ステナイト量が少なすぎるため,またAf点を越える温度
または900℃を越える温度域での熱処理では逆変態オー
ステナイト量が多くなってマルテンサイト量が残留しな
くなるか,残留量が少なくなりすぎるので安定した微細
な二相組織が得られなくなる。したがって,該熱処理は
(As点+30℃)以上でAf点以下の温度範囲(ただし900
℃以下の範囲)で行う必要がある。
In this way, heat treatment under tension results in a fine two-phase structure, and by maintaining this fine two-phase structure, a steel belt with excellent shape and high strength can be obtained, and the welded portion is substantially the same as the base metal. Have the same texture and flatness. Therefore, the key to heat treatment of this belt is to obtain a stable and fine two-phase structure. As point +
The amount of reverse transformed austenite generated by heat treatment at a temperature lower than 30 ° C is too small, and the amount of reverse transformed austenite increases and the amount of martensite increases by heat treatment at a temperature exceeding the Af point or a temperature exceeding 900 ° C. No more remains or the residual amount becomes too small, so that a stable fine two-phase structure cannot be obtained. Therefore, the heat treatment should be performed at a temperature range of (As point + 30 ° C) or higher and Af point or lower (900
℃ or lower).

本発明法を適用するステンレス鋼は,焼鈍状態でマル
テンサイト組織を呈するマルテンサイト系ステンレス鋼
が本旨である。熱処理炉に通板する前のベルトの組織状
態は実質的にマルテンサイト組織であることが必要であ
り,このマルテンサイト組織は鋼中の成分とも関係する
が,鋼帯の最終製造工程が焼鈍工程であるマルテンサイ
ト組織とした焼鈍鋼帯,この焼鈍鋼帯を仕上冷間圧延し
た冷延鋼帯(場合によっては冷間圧延によって加工誘起
マルテンサイトを生成させた冷延鋼帯)を素材板とす
る。しかし,100%マルテンサイト相である必要は必ずし
もなく,20容量%までのフエライト相或いはオーステナ
イト相が存在したものでもよい。いずれにしても,スチ
ールベルトに作ってから熱処理して得られる複相組織の
状態で引張強さが100kg/mm2クラス以上の高強度を得る
ことを本発明の一方の柱とするものであり,この要件を
満たす範囲の鋼の成分と組織割合を本発明は包含するも
のである。
The gist of the stainless steel to which the present invention is applied is a martensitic stainless steel exhibiting a martensite structure in an annealed state. Before passing the belt through the heat treatment furnace, the structure of the belt must be substantially martensitic, and this martensitic structure is related to the components in the steel. An annealed steel strip having a martensite structure, and a cold-rolled steel strip obtained by finish cold-rolling this annealed steel strip (in some cases, a cold-rolled steel strip in which work-induced martensite is formed by cold rolling) is used as a material plate. I do. However, it is not always necessary to have a 100% martensite phase, and a ferrite phase or an austenite phase up to 20% by volume may be present. Anyway, which state a tensile strength of dual phase obtained by heat-treating after making the steel belt is to one of the pillars of the present invention to obtain a high strength of at least 100 kg / mm 2 class The present invention encompasses steel components and microstructure ratios in a range satisfying this requirement.

鋼の成分については,10〜17%のCrと0.15%以下のC
を含有する低炭素マルテンサイト系ステンレス鋼を中心
とする。Niも主要な成分の一つとすることができ,また
前記の要件を満たすかぎり,この種の鋼に含有させる通
常の合金元素の添加も勿論可能である。
Regarding the composition of steel, 10-17% Cr and 0.15% or less C
Mainly of low carbon martensitic stainless steel containing. Ni can also be one of the main components, and it is of course possible to add ordinary alloying elements to be contained in this type of steel as long as the above requirements are satisfied.

その代表的な化学成分と含有量を挙げると次のとおり
である。
The typical chemical components and their contents are as follows.

C:0.15%以下(0を含まず), Si:6.0%以下(0を含まず), Mn:10.0%以下(0を含まず), Ni:8.0%以下(0を含まず), Cr:10.0〜17.0%, N:0.3%以下(0を含まず), Mo:4.0%以下(0を含む), Cu:4.0%以下(0を含む), Co:4.0%以下(0を含む), さらに,Ti,Al,Nb,V,Zr,B,希土類元素を総量で1.0%以
下や,不可避的不純物も含有することができる。
C: 0.15% or less (excluding 0), Si: 6.0% or less (excluding 0), Mn: 10.0% or less (excluding 0), Ni: 8.0% or less (excluding 0), Cr: 10.0 to 17.0%, N: 0.3% or less (excluding 0), Mo: 4.0% or less (including 0), Cu: 4.0% or less (including 0), Co: 4.0% or less (including 0), Further, Ti, Al, Nb, V, Zr, B, and rare earth elements can contain 1.0% or less in total and unavoidable impurities.

ただし,Ti,Al,Nb,V,Zr,B,希土類元素を含まない組成
の場合は, Nieq=Ni+Mn+Cu+Mo+0.2Co+ 0.5Cr+0.3Si+20(C+N) Ti,Al,Nb,V,Zr,B,希土類元素を含む組成の場合は, Nieq=Ni+Mn+Cu+Mo+0.2Co+ 0.5Cr+0.3Si で定義されるNieq(Ni当量)の値が8.0〜17.5の範囲内
となるように各成分量を調整する。これら主要元素の含
有量範囲をこのように規制するのは次のような理由によ
る。
However, when the composition does not include Ti, Al, Nb, V, Zr, B and rare earth elements, Ni eq = Ni + Mn + Cu + Mo + 0.2Co + 0.5Cr + 0.3Si + 20 (C + N) Ti, Al, Nb, V, Zr, B, Rare earth In the case of a composition containing an element, the amount of each component is adjusted so that the value of Ni eq (Ni equivalent) defined by Ni eq = Ni + Mn + Cu + Mo + 0.2Co + 0.5Cr + 0.3Si is in the range of 8.0 to 17.5. The content range of these main elements is regulated in this way for the following reasons.

Cはオーステナイト生成元素で,As点+30℃以上,Af点
以下の温度域での熱処理により生成される逆変態オース
テナイト相の安定化に有効に作用するとともに,逆変態
オーステナイト相とマルテンサイト相の強化に有効に作
用する。しかしながら,多量に含有すると逆変態処理時
にCr炭化物が生成され耐食性が劣化するため,その上限
を0.15%とする。
C is an austenite-forming element and effectively acts to stabilize the reverse-transformed austenite phase formed by heat treatment at a temperature range between the As point + 30 ° C and the Af point, and strengthens the reverse-transformed austenite phase and martensite phase. Works effectively. However, if it is contained in a large amount, Cr carbide is generated during the reverse transformation treatment and the corrosion resistance deteriorates, so the upper limit is set to 0.15%.

Crはステンレス鋼の基本成分であり,良好な耐食性を
得るには10.0%以上含有させる必要がある。しかしなが
ら,Crはフェライト生成元素であり,多量に含有すると
多量のδフェライト相が生成され焼鈍後,常温でマルテ
ンサイト単相組織が得られ難くなるため,上限を17.0%
とする。
Cr is a basic component of stainless steel, and must be contained at 10.0% or more to obtain good corrosion resistance. However, Cr is a ferrite-forming element. If it is contained in a large amount, a large amount of δ-ferrite phase is formed and it becomes difficult to obtain a martensitic single phase structure at room temperature after annealing.
And

Niはオーステナイト生成元素でAs点+30℃以上,Af点
以下の温度域での熱処理により生成される逆変態オース
テナイト相の安定化に有効に作用する。しかし,多量に
含有すると鋼帯製造時の焼鈍後,常温でマルテンサイト
単相組織が得られ難くなるので8.0%以下の範囲で含有
させるのがよい。
Ni is an austenite-forming element and effectively acts to stabilize the reverse-transformed austenite phase formed by heat treatment at a temperature range of As point + 30 ° C or higher and Af point or lower. However, if it is contained in a large amount, it becomes difficult to obtain a martensitic single-phase structure at room temperature after annealing during the production of a steel strip.

SiはAs点とAf点の温度範囲を広げるのでオーステナイ
ト相とマルテンサイト相の安定した二相組織を得るのに
有利に作用し,また熱処理後の逆変態オーステナイト相
とマルテンサイト相の強化にも有効な元素である。しか
し多量に含有すると製造性が劣化するため,6.0%以下の
範囲で含有させるのがよい。
Si widens the temperature range between the As and Af points and thus has an advantageous effect on obtaining a stable two-phase structure of austenite and martensite phases, and also strengthens the reverse transformed austenite and martensite phases after heat treatment. It is an effective element. However, if it is contained in a large amount, the productivity is deteriorated.

Mnはオーステナイト生成元素でありAs点+30℃以上,A
f点以下の温度域での熱処理により生成される逆変態オ
ーステナイト相の安定化に有効に作用する。しかし多量
に含有すると鋼の溶製時にMnヒュームが生成する等,鋼
の製造性が悪くなるので10.0%以下とするのがよい。
Mn is an austenite forming element and has As point + 30 ° C or higher, A
Effectively stabilizes the reverse transformed austenite phase generated by heat treatment in the temperature range below point f. However, if it is contained in a large amount, Mn fumes are generated during melting of the steel, and the productivity of the steel deteriorates. Therefore, the content is preferably set to 10.0% or less.

NはCと同様のオーステナイト生成元素でAs点+30℃
以上,Af点以下の温度域で熱処理により生成される逆変
態オーステナイト相の安定化に有効に作用するととも
に,逆変態オーステナイト相とマルテンサイト相の強化
にも有効な元素である。しかしながら,多量に含有する
と鋼の溶製時にブローホールが生成し,健全な鋼塊が得
られなくなるので0.30%以下とするのがよい。
N is the same austenite forming element as C and As point + 30 ℃
As described above, it is an element that effectively acts to stabilize the reverse transformed austenite phase generated by heat treatment in the temperature range below the Af point, and is also effective in strengthening the reverse transformed austenite phase and the martensite phase. However, if it is contained in a large amount, blowholes are generated at the time of smelting of steel, and a sound steel ingot cannot be obtained. Therefore, the content is preferably set to 0.30% or less.

Moは耐食性を向上させるとともに,熱処理後の逆変態
オーステナイト相とマルテンサイト相の強化に有効な元
素である。しかしながら,Moはフェライト生成元素であ
り,多量に含有すると多量のδフェライトが生成され,
鋼帯製造時の焼鈍後,常温でマルテンサイト単相組織が
得られ難くなるので4.0%以下とするのがよい。
Mo is an element that improves corrosion resistance and is effective in strengthening the reverse transformed austenite phase and martensite phase after heat treatment. However, Mo is a ferrite-forming element.
After annealing during steel strip production, it is difficult to obtain a martensitic single phase structure at room temperature.

CuはNiと同様にオーステナイト生成元素であり,熱処
理後のオーステナイト相の形成に有効であるが,多量に
含有すると鋼帯製造時の熱間加工性が低下するので4.0
%以下とするのがよい。
Cu, like Ni, is an austenite-forming element and is effective in forming an austenite phase after heat treatment. However, if it is contained in a large amount, hot workability during the production of steel strips decreases.
% Or less.

CoはNiと同様にオーステナイト生成元素であり,熱処
理後のオーステナイト相の形成に有効であるが,多量に
含有すると鋼が高価になるので,4.0%以下とするのがよ
い。
Co, like Ni, is an austenite-forming element and is effective in forming an austenite phase after heat treatment. However, if it is contained in a large amount, the steel becomes expensive, so it is better to make it 4.0% or less.

Ti,Al,Nb,VおよびZrはいずれも逆変態処理によって生
成したオーステナイト・マルテンサイト二相組織を安定
した微細且つ均一な組織に維持するのに有効であるとと
もに,Cr炭化物の生成を抑制し,耐食性を維持するのに
も有効な元素である。しかしながら,多量に含有すると
鋼の製造が困難となるのでそれぞれ1.0%以下とすると
共にこれらの合計量も1%以下とするのがよい。
Ti, Al, Nb, V, and Zr are all effective in maintaining the austenite-martensite two-phase structure formed by the reverse transformation process in a stable, fine and uniform structure, and also suppress the formation of Cr carbide. , Is also an effective element for maintaining corrosion resistance. However, if it is contained in a large amount, it becomes difficult to produce steel. Therefore, it is preferable that the content of each is not more than 1.0% and the total amount thereof is also not more than 1%.

Nieq(Ni当量値)については次の通りである。本発明
では,ベルトの熱処理時にマルテンサイト相から微細な
オーステナイト相が逆変態で生じて微細な二相組織とな
り,この微細な二相組織を維持することにより,疲労特
性に優れた高強度スチールベルトが得られる。したがっ
て,本発明では安定した微細な二相組織を得ることが鍵
となる。Nieqが8.0未満であるとAs点+30℃以上,Af点以
下の温度範囲の低温熱処理を施しても逆変態オーステナ
イト量が少なくなり,またNieqが17.5を越えると逆変態
オーステナイト量が多すぎるようになり,いずれも安定
した微細な二相組織を得難くなる。従ってNieqが8.0〜1
7.5となるように各成分量を調整するのが好ましい。
Ni eq (Ni equivalent value) is as follows. In the present invention, a high-strength steel belt having excellent fatigue characteristics is obtained by maintaining a fine two-phase structure by reverse transformation of a fine austenite phase from a martensite phase during belt heat treatment to maintain a fine two-phase structure. Is obtained. Therefore, the key to the present invention is to obtain a stable and fine two-phase structure. When Ni eq is less than 8.0, the amount of reverse transformed austenite decreases even when low-temperature heat treatment is performed at a temperature range of As point + 30 ° C or higher and Af point or less, and when Ni eq exceeds 17.5, the amount of reverse transformed austenite is too large In each case, it is difficult to obtain a stable fine two-phase structure. Therefore, Ni eq is 8.0-1
It is preferable to adjust the amount of each component so as to be 7.5.

〔実施例〕〔Example〕

第1表に示す組成の鋼を通常の方法によって溶製し,
鍛造,熱間圧延により6mm厚さとし,溶体化処理・酸洗
を施した後,冷間圧延,焼鈍し,次いで所定の圧延率で
仕上冷間圧延し1mmの冷間圧延材とした。冷間圧延の際
は熱処理による形状修正を確認するため故意に圧延形状
が悪くなる条件を設定した。一部の仕上冷間圧延材は10
30℃で焼鈍し,酸洗を施した。これらの鋼帯から素材板
を切り出し,両端をTIG溶接して,幅300mm,長さ10.5mエ
ンドレスベルトとし,これを後記の熱処理に供した。な
お,第1表にはAs,Af点も合わせて示すが,これらの変
態点は電気抵抗測定装置により1℃/minの加熱速度で昇
温して得た温度−電気抵抗の関係曲線の変曲点から求め
た。
A steel having the composition shown in Table 1 was melted by the usual method.
It was forged and hot rolled to a thickness of 6 mm, subjected to solution treatment and pickling, cold rolled and annealed, and then finish cold rolled at a predetermined rolling ratio to obtain a cold rolled material of 1 mm. In the case of cold rolling, conditions for intentionally deteriorating the rolling shape were set in order to confirm the shape correction by heat treatment. Some finished cold rolled materials are 10
Annealed at 30 ° C and pickled. Material plates were cut from these steel strips, and both ends were TIG-welded to form endless belts with a width of 300 mm and a length of 10.5 m, which were subjected to the heat treatment described below. Table 1 also shows the As and Af points, and these transformation points are the changes in the temperature-electric resistance relationship curve obtained by raising the temperature at a heating rate of 1 ° C / min using an electric resistance measuring device. It was determined from the point of the curve.

各ベルトを第1図に示す熱処理設備で第2表に示す種
々の条件により熱処理を施した。第2表に熱処理後のス
チールベルト形状およびスチールベルトから取り出した
引張り試験片の引張り試験結果を合わせて示す。なお,
形状検査は熱処理の前と後に行ったが,これらは,第2
図に示すようにうねり高さh(mm)を圧延方向の距離l
(mm)で除した値をL方向の形状値,また第3図に示す
ようにうねり高さh(mm)を鋼帯幅l(300mm)で除し
た値をT方向の形状値とした。
Each belt was heat-treated by the heat treatment equipment shown in FIG. 1 under various conditions shown in Table 2. Table 2 also shows the shape of the steel belt after the heat treatment and the results of the tensile tests of the tensile test pieces taken out of the steel belt. In addition,
The shape inspection was performed before and after the heat treatment.
As shown in the figure, the swell height h (mm) is the distance l in the rolling direction.
(Mm) was defined as the shape value in the L direction, and as shown in FIG. 3, the value obtained by dividing the undulation height h (mm) by the steel strip width l (300 mm) was defined as the shape value in the T direction.

第2表の結果より明らかなように,本発明方法によれ
ば各供試材はいずれも耐力80kgf/mm2以上の高強度を有
し,且つ形状はL方向で2.5/1000以下,T方向で1/300以
下と優れた形状を示す。
As is clear from the results in Table 2, according to the method of the present invention, each of the test materials has a high strength of not less than 80 kgf / mm 2 , and the shape is 2.5 / 1000 or less in the L direction and the T direction. Shows an excellent shape of 1/300 or less.

これに対し,第2表中に*印で示す本発明で規定する
範囲を外れた熱処理条件の比較法では,形状が悪かった
り強度が低くなったりして不具合いが生じ,高強度スチ
ールベルトとして適さない。
On the other hand, in the method of comparing the heat treatment conditions out of the range specified by the present invention, which is indicated by * in Table 2, the shape is poor or the strength is low, which causes inconvenience. Not suitable.

〔発明の効果〕 以上のように本発明によれば,ステンレス鋼製のスチ
ールベルトに要求される平坦性と高強度という両特性が
溶接後の熱処理だけで同時に達成される。このことは形
状修正圧延を省略した鋼帯を素材板として使用できるこ
と,および溶接前後の張力による平坦化処理を別途に行
わなくてもよいことを意味する。したがって,スチール
ベルト製造における省工程および高歩留り化に大きく貢
献できる。また,縦継ぎの幅広スチールベルトの製造も
容易に行い得る。
[Effects of the Invention] As described above, according to the present invention, both characteristics of flatness and high strength required for a stainless steel belt are simultaneously achieved only by heat treatment after welding. This means that a steel strip from which shape-correction rolling has been omitted can be used as a material plate, and that a flattening process by tension before and after welding need not be separately performed. Therefore, it can greatly contribute to the saving of the process and the high yield in the steel belt production. In addition, it is possible to easily manufacture wide steel belts with longitudinal joints.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明法に従うベルトの熱処理設備を示す略断
面図,第2図は熱処理前後の鋼帯の形状測定方法のうち
L方向(圧延方向)の測定方法を示す斜視図,第3図は
同じくT方向(圧延方向に直角)の測定方法を示す斜視
図である。
FIG. 1 is a schematic cross-sectional view showing a belt heat treatment facility according to the method of the present invention, FIG. 2 is a perspective view showing a L-direction (rolling direction) measurement method of a steel strip shape measurement method before and after heat treatment, and FIG. FIG. 3 is a perspective view showing a measuring method in the T direction (perpendicular to the rolling direction).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−4831(JP,A) 特開 昭63−26345(JP,A) 特公 昭51−31085(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46,9/00 C22C 38/00 - 38/58 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-4831 (JP, A) JP-A-63-26345 (JP, A) JP-B-51-31085 (JP, B2) (58) Field (Int. Cl. 7 , DB name) C21D 9 / 46,9 / 00 C22C 38/00-38/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】10〜17%のCrを含有しC含有量が0.15%以
下の低炭素マルテンサイト系ステンレス鋼からマルテン
サイト組織を有する冷延鋼帯または焼鈍鋼帯を製造し,
この鋼帯を素材板として端部を連結してエンドレスベル
トとし,このエンドレスベルトをロール間に所要の張力
下に架け渡して回動させながら加熱炉に連続的に通板
し,この加熱炉において(As点+30℃)以上でAf点以下
の温度範囲(ただし900℃以下の範囲)に加熱してマル
テンサイト相の一部を逆変態オーステナイト相としたう
え,室温に冷却してオーステナイト相とマルテンサイト
相の複相組織にすることを特徴とする高強度スチールベ
ルトの製造方法, ただし,As点は昇温過程でマルテンサイト相からオース
テナイト相へ変態が開始する温度であり,Af点は昇温過
程でマルテンサイト相からオーステナイト相へ変態が終
了する温度である。
1. A cold-rolled or annealed steel strip having a martensitic structure is produced from a low-carbon martensitic stainless steel containing 10 to 17% of Cr and having a C content of 0.15% or less,
The steel strip is used as a material plate, and the ends are connected to form an endless belt. The endless belt is continuously stretched between rolls under a required tension and continuously passed through a heating furnace while being rotated. (As point + 30 ° C) or higher and below the Af point (900 ° C or lower) to convert a part of the martensite phase into an inverse transformed austenite phase, and then cool to room temperature to cool the austenite phase and the martensite phase. A method for producing a high-strength steel belt characterized by forming a dual-phase structure of a site phase, where the As point is the temperature at which the transformation from the martensite phase to the austenite phase starts during the temperature rise process, and the Af point is the temperature rise. This is the temperature at which the transformation from the martensite phase to the austenite phase ends in the process.
【請求項2】加熱炉に通板される前の鋼帯は,20容積%
以下のフエライト相またはオーステナイト相を有する請
求項1に記載の高強度スチールベルトの製造方法。
2. The steel strip before passing through the heating furnace is 20% by volume.
The method for producing a high-strength steel belt according to claim 1, which has the following ferrite phase or austenite phase.
【請求項3】ステンレス鋼は,CrおよびCのほかに8.0%
以下のNi,6.0%以下のSi,10.0%以下のMn,0.3%以下の
Nを含有したマルテンサイト系ステンレス鋼である請求
項1または2に記載の高強度スチールベルトの製造方
法。
3. The stainless steel is 8.0% in addition to Cr and C.
The method for producing a high-strength steel belt according to claim 1 or 2, which is a martensitic stainless steel containing the following Ni, 6.0% or less Si, 10.0% or less Mn, and 0.3% or less N.
JP2275422A 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt Expired - Lifetime JP3032273B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2275422A JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt
AT91117409T ATE108711T1 (en) 1990-10-16 1991-10-11 PROCESS FOR MANUFACTURING AN EXCEPTIONALLY STRONG STEEL BELT.
DE69102969T DE69102969T2 (en) 1990-10-16 1991-10-11 Process for the production of a particularly strong steel belt.
EP91117409A EP0481378B1 (en) 1990-10-16 1991-10-11 Process for producing high strength steel belt
US07/976,054 US5269856A (en) 1990-10-16 1992-11-13 Process for producing high strength endless steel belt having a duplex structure of austenite and martesite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275422A JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt

Publications (2)

Publication Number Publication Date
JPH04154920A JPH04154920A (en) 1992-05-27
JP3032273B2 true JP3032273B2 (en) 2000-04-10

Family

ID=17555294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275422A Expired - Lifetime JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt

Country Status (4)

Country Link
EP (1) EP0481378B1 (en)
JP (1) JP3032273B2 (en)
AT (1) ATE108711T1 (en)
DE (1) DE69102969T2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408088B (en) * 1997-10-14 2001-08-27 Berndorf Band Ges M B H & Co K ENDLESS STEEL TAPE AND METHOD FOR PRODUCING THE SAME
DE60016534T2 (en) * 1999-10-04 2005-09-01 Hitachi Metals, Ltd. Method for producing steel strip or sheet with strain-induced martensite
DE10025808A1 (en) * 2000-05-24 2001-11-29 Alstom Power Nv Martensitic hardenable tempering steel with improved heat resistance and ductility
DE10152293B4 (en) * 2001-10-23 2004-04-08 Stahlwerk Ergste Westig Gmbh Use a chrome steel alloy
DE102008005803A1 (en) * 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Component used for armoring vehicles and in installations and components for transporting and recovering gases at low temperature is made from a high carbon-containing austenitic cryogenic steel cast mold
US9822422B2 (en) * 2009-09-24 2017-11-21 Ati Properties Llc Processes for reducing flatness deviations in alloy articles
DE102010016945C5 (en) * 2010-05-14 2013-10-17 Kirchhoff Automotive Deutschland Gmbh Process for producing a molded part
CN109277426B (en) * 2018-10-26 2019-11-15 山西太钢不锈钢精密带钢有限公司 The production method of stainless steel foil etching products
CN111945113A (en) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 Production method of steel coil with coating and coating unit thereof
CN112974532B (en) * 2021-02-05 2023-01-31 山西太钢不锈钢股份有限公司 Rolling method of ultrahigh nitrogen austenitic stainless steel hot continuous rolling coiled plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8301587A (en) * 1983-05-04 1984-12-03 Volvo Car Bv METHOD FOR FORMING AN ENDLESS STEEL STRAP
NL193218C (en) * 1985-08-27 1999-03-03 Nisshin Steel Company Method for the preparation of stainless steel.

Also Published As

Publication number Publication date
EP0481378B1 (en) 1994-07-20
EP0481378A1 (en) 1992-04-22
DE69102969T2 (en) 1995-03-16
JPH04154920A (en) 1992-05-27
ATE108711T1 (en) 1994-08-15
DE69102969D1 (en) 1994-08-25

Similar Documents

Publication Publication Date Title
JP4252893B2 (en) Duplex stainless steel strip for steel belt
TWI762881B (en) Electric-welded steel pipe, method for manufacturing the same, and steel pipe pile
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
JP3032273B2 (en) Manufacturing method of high strength steel belt
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
US5269856A (en) Process for producing high strength endless steel belt having a duplex structure of austenite and martesite
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
EP0141661A2 (en) Work-hardenable substantially austenitic stainless steel and method
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH05154672A (en) Manufacture of high-strength and high-toughness clad steel plate
JP3747773B2 (en) Hot-rolled steel strip for high-tensile line pipe and method for producing the same
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
WO2024038684A1 (en) Thick steel sheet and method for producing same
JP2527564B2 (en) Precipitation hardening type stainless steel with excellent welding strength and toughness
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JPH04180537A (en) High tensile strength steel plate for door guard bar excellent in collapse strength
JP2630072B2 (en) Manufacturing method of high-strength ERW steel pipe for vehicle impact bar
JP2528395B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet for ERW pipe