JP3032063B2 - Inspection method of superconducting power cable - Google Patents

Inspection method of superconducting power cable

Info

Publication number
JP3032063B2
JP3032063B2 JP32067491A JP32067491A JP3032063B2 JP 3032063 B2 JP3032063 B2 JP 3032063B2 JP 32067491 A JP32067491 A JP 32067491A JP 32067491 A JP32067491 A JP 32067491A JP 3032063 B2 JP3032063 B2 JP 3032063B2
Authority
JP
Japan
Prior art keywords
superconducting
refrigerant
insulator
power cable
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32067491A
Other languages
Japanese (ja)
Other versions
JPH05157722A (en
Inventor
雅克 永田
昭太郎 吉田
功 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18124067&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3032063(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP32067491A priority Critical patent/JP3032063B2/en
Publication of JPH05157722A publication Critical patent/JPH05157722A/en
Application granted granted Critical
Publication of JP3032063B2 publication Critical patent/JP3032063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導電力ケーブルにお
いて液体窒素又は液体ヘリウム等の超電導冷媒が十分に
含浸していることを非破壊で検査できる超電導電力ケー
ブルの点検方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a superconducting power cable which can non-destructively check that a superconducting refrigerant such as liquid nitrogen or liquid helium is sufficiently impregnated in the superconducting power cable.

【0002】[0002]

【従来の技術】図1は超電導電力ケーブルを示す横断面
図、図2は同じくその縦断面の一部を示す図である。中
心部にコルゲート状の冷媒管1が配置されており、この
中心部冷媒管1の外面山部に接触するようにして、円筒
状の超電導導体12(図1には図示せず)及び絶縁体2
が嵌合されている。冷媒管1は図1に示すようにその横
断面が円輪であり、ケーブルの長手方向にしわ状に延
び、管外面は谷部と山部とが連続するものとなってい
る。また、冷媒管1の横断面の円中心はケーブル長手方
向に螺旋状に移動する。
2. Description of the Related Art FIG. 1 is a cross-sectional view showing a superconducting power cable, and FIG. A corrugated refrigerant pipe 1 is disposed at the center, and a cylindrical superconducting conductor 12 (not shown in FIG. 1) and an insulator are provided so as to be in contact with the outer surface of the central refrigerant pipe 1. 2
Are fitted. As shown in FIG. 1, the refrigerant pipe 1 has a circular cross section, extends in a wrinkle shape in the longitudinal direction of the cable, and has a trough and a ridge continuous on the outer surface of the pipe. In addition, the center of the circle of the cross section of the refrigerant pipe 1 moves spirally in the longitudinal direction of the cable.

【0003】また、図2に示すように、中心部冷媒管1
の外面の谷部15はカーボン布テープ等の谷埋め材10
により埋め込まれている。これにより、中心部冷媒管1
の外面がその軸方向に平滑化されている。
[0003] As shown in FIG.
The valley portion 15 on the outer surface of the valley filling material 10 such as carbon cloth
Embedded by Thus, the central refrigerant pipe 1
Is smoothed in the axial direction.

【0004】実際上、円筒状の超電導導体12の内面及
び外面には、半導電層11、13が積層されており、絶
縁体2は外側半導電層13上に嵌合している。また、こ
の絶縁体2には半導電層14を介して円筒状の遮蔽層3
が嵌合している。
In practice, semiconductive layers 11 and 13 are laminated on the inner surface and outer surface of the cylindrical superconducting conductor 12, and the insulator 2 is fitted on the outer semiconductive layer 13. In addition, a cylindrical shielding layer 3 is provided on the insulator 2 via a semiconductive layer 14.
Are fitted.

【0005】そして、遮蔽層3を内側管4が嵌合し、更
に、円筒状の熱絶縁層5が内側管4を嵌合し、この熱絶
縁層5を外側管6が嵌合している。この外側管6の外面
は防食層7により被覆されている。内側管4及び外側管
6は中心部冷媒管1と同様に横断面は円形をなし、その
円中心がケーブル長手方向に螺旋状に移動する。
[0005] The shielding layer 3 is fitted with the inner tube 4, the cylindrical heat insulating layer 5 is fitted with the inner tube 4, and the heat insulating layer 5 is fitted with the outer tube 6. . The outer surface of the outer tube 6 is covered with an anticorrosion layer 7. The inner tube 4 and the outer tube 6 have a circular cross section like the central refrigerant tube 1, and the center of the circle moves spirally in the longitudinal direction of the cable.

【0006】中心部冷媒管1の内部は、液体窒素等の冷
媒が通流する往路8となっており、遮蔽層3と内側管4
との間の間隙は、冷媒が通流する復路となっている。
[0006] The inside of the central refrigerant pipe 1 is an outward path 8 through which a refrigerant such as liquid nitrogen flows.
Is a return path through which the refrigerant flows.

【0007】このように構成された超電導電力ケーブル
においては、往路8及び復路9を超電導媒体である液体
窒素等の冷媒が通流すると、超電導導体12はこの冷媒
により冷却されて超電導特性を示す。そこで、この超電
導媒体12に通電すると、抵抗値が実質的に0になっ
て、極めて高効率で電力を送給できる。
In the superconducting power cable thus constructed, when a refrigerant such as liquid nitrogen as a superconducting medium flows through the outward path 8 and the return path 9, the superconducting conductor 12 is cooled by the refrigerant and exhibits superconducting characteristics. Then, when the superconducting medium 12 is energized, the resistance value becomes substantially zero, and electric power can be transmitted with extremely high efficiency.

【0008】ところで、この超電導電力ケーブルの施工
後の冷媒含浸時(クールダウン時)には、絶縁体2に超
電導冷媒を含浸させる処理を行う。この場合に、絶縁体
2の厚さ、絶縁材料及び冷媒の含浸圧力に応じて、予め
含浸時間と破壊電圧との関係を調べ、破壊電圧が一定に
なった時点を含浸終了時間として求めておき、実際のケ
ーブル布設後の含浸処理は、この含浸終了時間だけ含浸
処理を行っていた。
When the superconducting power cable is impregnated with the refrigerant after the construction (cooling down), the insulator 2 is impregnated with the superconducting refrigerant. In this case, the relationship between the impregnation time and the breakdown voltage is checked in advance in accordance with the thickness of the insulator 2 and the impregnation pressure of the insulating material and the refrigerant, and the time when the breakdown voltage becomes constant is determined as the impregnation end time. In the impregnation process after the actual cable installation, the impregnation process is performed only for the impregnation end time.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この従
来の点検方法は、製造時の含浸状態の確認は可能である
が、例えばケーブル布設後に再クールダウンが必要にな
った場合には、含浸不良を調べることができないという
欠点がある。
However, according to this conventional inspection method, it is possible to confirm the impregnation state at the time of manufacturing. There is a disadvantage that it cannot be checked.

【0010】本発明はかかる問題点に鑑みてなされたも
のであって、ケーブルの製造時に加えてケーブル布設後
も超電導冷媒の含浸状態を点検することができる超電導
電力ケーブルの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a method of manufacturing a superconducting power cable capable of checking the impregnation state of a superconducting refrigerant after cable installation in addition to cable manufacturing. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明に係る超電導電力
ケーブルの製造方法は、その内部を超電導冷媒が通流す
る中心部冷媒管と、この中心部冷媒管を嵌合する超電導
導体と、この超電導導体を嵌合し前記超電導冷媒が含浸
されている絶縁体と、この絶縁体を嵌合し前記絶縁体と
の間で超電導冷媒の復路を形成する内側冷媒管とを有す
る超電導電力ケーブルの点検方法において、前記内側冷
媒管と、前記中心部冷媒管又は前記超電導導体との間の
静電容量値を測定して前記絶縁体における超電導冷媒の
含浸の良否を判断することを特徴とする。
According to the present invention, there is provided a method for manufacturing a superconducting power cable, comprising: a central refrigerant pipe through which a superconducting refrigerant flows; a superconducting conductor fitted with the central refrigerant pipe; Inspection of a superconducting power cable having an insulator fitted with a superconducting conductor and impregnated with the superconducting refrigerant, and an inner refrigerant pipe fitted with the insulator and forming a return path for the superconducting refrigerant with the insulator. In the method, a capacitance value between the inner refrigerant pipe and the central refrigerant pipe or the superconducting conductor is measured to determine whether or not the insulator is impregnated with the superconducting refrigerant.

【0012】[0012]

【作用】本発明においては、内側冷媒管と、中心部冷媒
管又は超電導導体との間の静電容量値を測定する。この
場合に、絶縁体における超電導冷媒の含浸状態が良好で
ある場合は測定された静電容量値が高く、この静電容量
値が所定値以上である場合に含浸良好と判定できる。そ
れ以外の場合に、含浸不良と判定できる。
In the present invention, the capacitance value between the inner refrigerant pipe and the central refrigerant pipe or the superconducting conductor is measured. In this case, when the impregnation state of the superconducting refrigerant in the insulator is good, the measured capacitance value is high, and when the capacitance value is equal to or more than a predetermined value, it can be determined that impregnation is good. In other cases, impregnation failure can be determined.

【0013】[0013]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0014】超電導電力ケーブル自体の構造は従来と同
様である。しかし、本実施例においては、再クールダウ
ン時等において、図1,2に示す電力ケーブルと地上設
備との接続点等で、コルゲート状の中心部冷媒管1と内
側管4との間に、静電容量計を接続する。そして、中心
部冷媒管1と内側管4との間の静電容量値を測定し、そ
の測定値が予め規定されている静電容量値以上である場
合に、絶縁体2等の含浸状態が良好であると判断する。
一方、静電容量測定値が所定値未満である場合は、含浸
不良と判断する。このようにして、本実施例により、ケ
ーブル布設後において、液体窒素又は液体ヘリウム等の
超電導冷媒の含浸状態の良否を判定することができる。
The structure of the superconducting power cable itself is the same as the conventional one. However, in the present embodiment, at the time of re-cooling or the like, at the connection point between the power cable and the ground equipment shown in FIGS. 1 and 2, between the corrugated central refrigerant pipe 1 and the inner pipe 4, Connect a capacitance meter. Then, the capacitance value between the central refrigerant pipe 1 and the inner pipe 4 is measured, and when the measured value is equal to or larger than a predetermined capacitance value, the impregnation state of the insulator 2 or the like is determined. Judge as good.
On the other hand, if the measured capacitance value is less than the predetermined value, it is determined that impregnation is defective. In this manner, according to the present embodiment, it is possible to determine whether the impregnation state of the superconducting refrigerant such as liquid nitrogen or liquid helium is good after the cable is laid.

【0015】換言すれば、クールダウン後、ケーブルの
特に絶縁体2が液体窒素又は液体ヘリウム等の含浸が完
了した場合には、中心部冷媒管1と内側管4との間の静
電容量値が含浸前に比して増大し、又は静電容量値が安
定するようになり、この静電容量値の検出値を基に含浸
の完了を判断することができる。
In other words, after the cooling down, when the impregnation of the cable, especially the insulator 2 with liquid nitrogen or liquid helium, is completed, the capacitance value between the central refrigerant pipe 1 and the inner pipe 4 is reduced. Is increased as compared to before the impregnation, or the capacitance value is stabilized, and the completion of the impregnation can be determined based on the detected value of the capacitance value.

【0016】なお、静電容量値の測定は、内側管4と中
心部冷媒管1との間の静電容量値に限らず、内側管4と
超電導導体12との間の静電容量値を測定してもよい。
これによっても、含浸の良否を判定することができる。
The measurement of the capacitance value is not limited to the capacitance value between the inner pipe 4 and the central refrigerant pipe 1, and the capacitance value between the inner pipe 4 and the superconducting conductor 12 is measured. It may be measured.
This also makes it possible to determine the quality of impregnation.

【0017】[0017]

【発明の効果】本発明によれば、内側管と、中心部冷媒
管又は超電導導体との間で静電容量値を測定することに
より、絶縁体等の含浸の良否を判定するから、ケーブル
布設後においても、その含浸の良否を点検することがで
きる。このため、本発明は超電導ケーブルの保守、監視
及び点検技術の向上に多大の貢献をなす。
According to the present invention, the quality of the impregnation of the insulator or the like is determined by measuring the capacitance value between the inner pipe and the central refrigerant pipe or the superconducting conductor. Even later, the quality of the impregnation can be checked. For this reason, the present invention greatly contributes to improvement of superconducting cable maintenance, monitoring and inspection techniques.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超電導電力ケーブルを示す横断面図である。FIG. 1 is a cross-sectional view showing a superconducting power cable.

【図2】同じくその縦断面の一部を示す図である。FIG. 2 is a view showing a part of a longitudinal section of the same.

【符号の説明】[Explanation of symbols]

1;中心部管 2;絶縁体 3;遮蔽層 4;内側管 5;熱遮蔽層 6;外側管 7;防食層 8;冷媒往路 9;冷媒復路 12;超電導導体 DESCRIPTION OF SYMBOLS 1; Central pipe 2; Insulator 3; Shielding layer 4; Inner pipe 5; Heat shielding layer 6; Outer pipe 7; Anticorrosion layer 8; Refrigerant outward path 9; Refrigerant return path 12;

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭49−96465(JP,U) 平成3年電気学会全国大会講演論文 集、第12分冊、p.12.18−12.19(平 成3年3月10日発行) (58)調査した分野(Int.Cl.7,DB名) G01N 27/22 - 27/24 H01B 12/16 H02G 15/34 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 49-96465 (JP, U) Proceedings of the 1991 IEEJ National Convention, 12th volume, p. 12.18-12.19 (Issued March 10, 1992) (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 27/22-27/24 H01B 12/16 H02G 15/34 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 その内部を超電導冷媒が通流する中心部
冷媒管と、この中心部冷媒管を嵌合する超電導導体と、
この超電導導体を嵌合し前記超電導冷媒が含浸されてい
る絶縁体と、この絶縁体を嵌合し前記絶縁体との間で超
電導冷媒の復路を形成する内側冷媒管とを有する超電導
電力ケーブルの点検方法において、前記内側冷媒管と、
前記中心部冷媒管又は前記超電導導体との間の静電容量
値を測定して前記絶縁体における超電導冷媒の含浸の良
否を判断することを特徴とする超電導電力ケーブルの点
検方法。
1. A central refrigerant pipe through which a superconducting refrigerant flows, a superconducting conductor fitted with the central refrigerant pipe,
A superconducting power cable having an insulator in which the superconducting conductor is fitted and impregnated with the superconducting refrigerant, and an inner refrigerant pipe which fits the insulator and forms a return path for the superconducting refrigerant with the insulator. In the inspection method, the inner refrigerant pipe;
A method for inspecting a superconducting power cable, comprising: measuring a capacitance value between the central refrigerant pipe and the superconducting conductor to determine whether or not the insulator is impregnated with superconducting refrigerant.
JP32067491A 1991-12-04 1991-12-04 Inspection method of superconducting power cable Expired - Lifetime JP3032063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32067491A JP3032063B2 (en) 1991-12-04 1991-12-04 Inspection method of superconducting power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32067491A JP3032063B2 (en) 1991-12-04 1991-12-04 Inspection method of superconducting power cable

Publications (2)

Publication Number Publication Date
JPH05157722A JPH05157722A (en) 1993-06-25
JP3032063B2 true JP3032063B2 (en) 2000-04-10

Family

ID=18124067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32067491A Expired - Lifetime JP3032063B2 (en) 1991-12-04 1991-12-04 Inspection method of superconducting power cable

Country Status (1)

Country Link
JP (1) JP3032063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784160B2 (en) * 1995-08-11 1998-08-06 株式会社フジクラ Superconducting power cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
平成3年電気学会全国大会講演論文集、第12分冊、p.12.18−12.19(平成3年3月10日発行)

Also Published As

Publication number Publication date
JPH05157722A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
EP0079118B1 (en) Electrical cable joint structure and method of manufacture
CA1192247A (en) Heating device for utilizing the skin effect of alternating current
EP1847841B1 (en) Superconductive cable withstand voltage test method
US7009104B2 (en) Superconducting cable
JPH0271119A (en) Level measuring device of conductive substance in vessel and probe device for measurement
JP3691692B2 (en) Superconducting cable
JP3032063B2 (en) Inspection method of superconducting power cable
JP4683371B2 (en) Withstand voltage test method for superconducting cable
US6759593B2 (en) Superconducting cable
CA1083267A (en) Sensors for use in nuclear reactor cores
Kim et al. Research on insulation design of 22.9-kV high-T/sub c/superconducting cable in Korea
CA1129975A (en) Moisture proof cable with thermal expansion compensation means
EP1205945B1 (en) Superconducting cable
JPH08222426A (en) Coil structure of superconducting magnet
US4047239A (en) Stationary induction apparatus having means to monitor insulation dryness
JPH0422285Y2 (en)
Carter et al. Solenoids of composite conductor simulate ac losses in flexible superconducting cable
JP2647953B2 (en) Deterioration judgment method of overhead transmission and distribution line connection body
JPH0228461Y2 (en)
EP1220239A1 (en) Superconducting cable
Jefferies et al. High-voltage testing of a high-capacity, liquid-nitrogen cooled cable
JP2517837B2 (en) Superconducting power cable
JPS59218932A (en) Method for detecting external damage of cable
JP2002525566A (en) Electrical sensor line for leak detection
JPH062518U (en) Power cable with tree detector