JP2647953B2 - Deterioration judgment method of overhead transmission and distribution line connection body - Google Patents

Deterioration judgment method of overhead transmission and distribution line connection body

Info

Publication number
JP2647953B2
JP2647953B2 JP1052600A JP5260089A JP2647953B2 JP 2647953 B2 JP2647953 B2 JP 2647953B2 JP 1052600 A JP1052600 A JP 1052600A JP 5260089 A JP5260089 A JP 5260089A JP 2647953 B2 JP2647953 B2 JP 2647953B2
Authority
JP
Japan
Prior art keywords
surface temperature
connector
distribution line
connection body
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1052600A
Other languages
Japanese (ja)
Other versions
JPH02231556A (en
Inventor
隆弘 山下
俊幸 望月
一也 高橋
謙一郎 杣
照夫 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP1052600A priority Critical patent/JP2647953B2/en
Publication of JPH02231556A publication Critical patent/JPH02231556A/en
Application granted granted Critical
Publication of JP2647953B2 publication Critical patent/JP2647953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は架空送配電線(以下、単に架空配電線とい
う)を接続する接続体の劣化を無停電状態で診断する架
空配電線接続体の劣化判定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an overhead distribution line connector for diagnosing deterioration of a connector for connecting an overhead transmission and distribution line (hereinafter simply referred to as an overhead distribution line) in an uninterrupted state. The present invention relates to a deterioration determination method.

〔従来の技術〕[Conventional technology]

ボルト型コネクタやバイス型コネクタなどのような架
空配電線の接続を行う接続体の劣化は電線の発熱、燃
焼、断線などを招き、電力供給の信頼性に悪影響を及ぼ
す。そのため、事前にその劣化診断を行う必要がある。
碍子や電線の劣化診断に関しては赤外線センサを使用し
た方法が昭和62年電気・情報関連学会連合大会の論文集
に紹介されている。この診断方法は碍子や電線の表面温
度を赤外線センサで測定し、その測定値を比較すること
で行うものである。
Deterioration of a connector for connecting an overhead distribution line such as a bolt-type connector or a vice-type connector causes heat generation, combustion, disconnection, and the like of the electric wire, which adversely affects the reliability of power supply. Therefore, it is necessary to perform the deterioration diagnosis in advance.
A method using an infrared sensor for diagnosing the deterioration of insulators and electric wires has been introduced in a collection of papers at the Joint Conference of the Institute of Electrical and Information Engineers in 1987. This diagnosis method is performed by measuring the surface temperature of an insulator or an electric wire with an infrared sensor and comparing the measured values.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、この診断方法はそのまま架空配電線の接続体
の劣化診断に適用することができない。電線接続部で
は、水の侵入や,負荷電流の変化によるヒートサイクル
などが起因して発錆する。これが接触部の接触抵抗を増
加させる。同時に、接続部の締付部品の締め付け力を低
下させるので、更に接触抵抗を増加させる。従って、そ
の接触抵抗の増加を赤外線センサで検出すれば、接続体
の劣化診断を行うことができるようであるが、以下の問
題点が考えられる。
However, this diagnosis method cannot be directly applied to the deterioration diagnosis of the connection body of the overhead distribution line. Rust occurs at the wire connection due to water intrusion and heat cycles caused by changes in load current. This increases the contact resistance of the contact. At the same time, the tightening force of the tightening part of the connecting portion is reduced, so that the contact resistance is further increased. Therefore, if the increase in the contact resistance is detected by the infrared sensor, the deterioration diagnosis of the connected body can be performed, but the following problems are considered.

即ち、赤外線センサの劣化診断法を架空配電線の接続
体に適用した場合には、多数の接続体の表面温度を測定
してこれを相互に比較する方法が1つの方法として考え
られる。その場合、以下の問題点が想定される。
That is, when the method of diagnosing deterioration of the infrared sensor is applied to a connection body of an overhead distribution line, a method of measuring the surface temperatures of many connection bodies and comparing the measured surface temperatures with each other may be considered as one method. In that case, the following problems are assumed.

多数の接続体の表面温度を参考にして判定をするた
め、測定を数多く必要とし、迅速な判定ができない。
Since the determination is made with reference to the surface temperatures of a large number of connectors, many measurements are required, and rapid determination cannot be made.

そのように判定したとしても健全であるか、劣化であ
るかの判定基準となる温度が明確でないので誤判定が生
じ易い。
Even if such a determination is made, an erroneous determination is likely to occur because the temperature used as a criterion for determining whether it is sound or deteriorated is not clear.

一般に、架空配電線に流れる負荷電流は時間帯や地域
によって異なるため、接続体相互の接触抵抗が同一であ
っても、表面温度が異なることがある。このため、接続
体の表面温度だけの相互比較では判定を誤る可能性が大
きい。例えば、健全な接続体であっても、その負荷電流
が大きい場合は温度上昇するため、劣化として誤判定す
ることがあり、正確な判定が難しい。
In general, the load current flowing through the overhead distribution line differs depending on the time zone and the region, and therefore, even if the contact resistance between the connected members is the same, the surface temperature may be different. For this reason, there is a high possibility that the determination will be erroneous in an inter-comparison of only the surface temperature of the connection body. For example, even if the connection body is sound, if the load current is large, the temperature rises, so that erroneous determination may be made as deterioration and accurate determination is difficult.

本発明は上記事情を考慮してなされ、接続体の劣化を
簡単な操作で正確に判定することが可能な判定方法を提
供することを目的とする。
The present invention has been made in consideration of the above circumstances, and has as its object to provide a determination method capable of accurately determining deterioration of a connected body by a simple operation.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため本発明は、接続体の表面温度
と、この接続体によって接続される架空配電線の表面温
度を測定し、その温度差に基づいて接続体の劣化を診断
するものである。
In order to achieve the above object, the present invention measures the surface temperature of a connector and the surface temperature of an overhead distribution line connected by the connector, and diagnoses deterioration of the connector based on the temperature difference. .

〔作 用〕(Operation)

本発明の架空配電線の劣化判定方法は、架空配電線を
構成する絶縁電線の表面温度と、その絶縁電線を接続す
る接続体の中心部の表面温度を測定する。この測定は、
例えば、赤外線センサを使用し、センサ出力をCCD等の
光電素子で受光する。光電素子の電気信号をA/D変換し
て演算回路へ入力し、そこで所定の演算を行う。絶縁電
線の表面温度TW,接続体の中心部の表面温度TJを入力し
た演算回路は、 ΔTBC=TJ−TW の演算を行い、ΔTBC>0のときは接続体が劣化してい
ると判定する。
In the method for determining deterioration of an overhead distribution line according to the present invention, a surface temperature of an insulated wire constituting the overhead distribution line and a surface temperature of a central portion of a connecting body connecting the insulated wire are measured. This measurement is
For example, an infrared sensor is used, and the sensor output is received by a photoelectric element such as a CCD. The electrical signal of the photoelectric element is A / D converted and input to an arithmetic circuit, where a predetermined arithmetic operation is performed. The arithmetic circuit which inputs the surface temperature T W of the insulated wire and the surface temperature T J at the center of the connected body performs an operation of ΔT BC = T J −T W , and when ΔT BC > 0, the connected body deteriorates. It is determined that there is.

〔実施例〕〔Example〕

以下、本発明の架空配電線接続体の劣化判定方法を詳
細に説明する。
Hereinafter, the method for determining the deterioration of the overhead distribution line connection body of the present invention will be described in detail.

架空配電線の接続体としてはボルト型コネクタ、バイ
ス型コネクタなどの他に圧縮スリーブ、撚回スリーブな
どがあり、本発明はこれらの全てに適用することができ
る。
As a connector for an overhead distribution line, there are a compression sleeve, a twisted sleeve, and the like in addition to a bolt type connector, a vice type connector, and the like, and the present invention can be applied to all of them.

第1図はボルト型コネクタ、第2図および第3図はこ
のボルト型コネクタによる接続部を示す。ボルト型コネ
クタ1は側面「U」字形に形成された本体2にナット3
を螺合させることにより、電線10、20の接続を行うもの
である。本体2はガイド溝4が内面に形成されると共
に、このガイド溝4に沿って移動するコネクタガイド5
が内部に挿入されている。そしてコネクタガイド5を下
降させることで本体2内に挿入された電線10、20の導体
11、21を圧縮させて接続する。ナット3はその締め付け
を行うことによってこの接続状態を維持する。この締め
付けを行うため、本体2の外面にはねじ部6が形成され
ている。第1図中、7は本体2に固着されたナット受け
であり、ナット3をこのナット受け7に当接するまで締
め付けると導体11、21の圧縮が行われる。このようなボ
ルト型コネクタ1を用いて電線11、20の接続を行う場
合、第2図に示すように絶縁体12、22を剥いで導体11、
21を露出し、この導体11、21を左右からコネクタ1の本
体2に挿入する。そして、コネクタガイド5を下降させ
ながら、ナット3を締め付けることによって導体11、21
を圧縮する。その後、第3図に示すようにキャップ8を
コネクタ1および導体11、21に被せ、この状態で絶縁テ
ープ9を巻き付けて接続作業を終了する。この場合、絶
縁テープ9としては、粘着性ポリエチレンテープを使用
することができ、このテープ9をハーフラップで綿密に
2回以上巻き付け、その厚さを、例えば、2mmとする。
FIG. 1 shows a bolt-type connector, and FIGS. 2 and 3 show a connection part by the bolt-type connector. A bolt type connector 1 has a body 3 formed in a side “U” shape and a nut 3
Are screwed together to connect the electric wires 10 and 20. The body 2 has a guide groove 4 formed on an inner surface thereof and a connector guide 5 which moves along the guide groove 4.
Is inserted inside. Then, by lowering the connector guide 5, the conductors of the electric wires 10, 20 inserted into the main body 2
11 and 21 are compressed and connected. The nut 3 maintains this connection by tightening the nut. To perform this tightening, a screw portion 6 is formed on the outer surface of the main body 2. In FIG. 1, reference numeral 7 denotes a nut receiver fixed to the main body 2. When the nut 3 is tightened until it comes into contact with the nut receiver 7, the conductors 11 and 21 are compressed. When the electric wires 11 and 20 are connected using such a bolt-type connector 1, the insulators 11 and 22 are peeled off as shown in FIG.
The conductor 21 is exposed, and the conductors 11 and 21 are inserted into the main body 2 of the connector 1 from right and left. Then, while lowering the connector guide 5, the nuts 3 are tightened so that the conductors 11, 21
Compress. Thereafter, as shown in FIG. 3, the cap 8 is put on the connector 1 and the conductors 11 and 21, and in this state, the insulating tape 9 is wrapped to complete the connection operation. In this case, an adhesive polyethylene tape can be used as the insulating tape 9, and the tape 9 is carefully wound twice or more with a half wrap, and its thickness is set to, for example, 2 mm.

本発明はこのような接続体の表面温度と電線の表面温
度を測定し、これらの温度差から接続体の劣化を判定す
る。接続体の劣化は水の侵入に基づく発錆などによる接
触抵抗の増加やナットなどの締付部材の締め付け力低下
による接触抵抗の増加として現れ、この接触抵抗の増加
によって異常発熱し、接続体の表面温度が上昇する。一
方、電線はこのような発熱がないため、表面温度に差が
生じる。なお、ここで電線における温度測定部位は接続
体の発熱の影響を受けないような距離の部位が適宜、選
択される。
The present invention measures the surface temperature of such a connection body and the surface temperature of an electric wire, and judges the deterioration of the connection body from the temperature difference. Deterioration of the connection body appears as an increase in contact resistance due to rusting due to the intrusion of water and an increase in contact resistance due to a decrease in the tightening force of a tightening member such as a nut. Surface temperature rises. On the other hand, since the electric wires do not generate such heat, a difference occurs in the surface temperature. Here, as the temperature measurement site in the electric wire, a site with a distance that is not affected by the heat generation of the connection body is appropriately selected.

第4図は接続体としてボルト型コネクタ1を使用して
電線10、20を接続し、これらの表面温度を赤外線センサ
で測定した結果であり、特性曲線Aはナットの締め付け
力を10kg以下として接触抵抗を規定値より大にした劣化
品を、特性曲線Bはナットを500kgで締め付けた健全品
を示す。これらの特性曲線A、Bの比較結果から、以下
のように判断することができる。
FIG. 4 shows the results of connecting the electric wires 10 and 20 using the bolt type connector 1 as a connection body and measuring the surface temperature of the electric wires 10 and 20 with an infrared sensor. The characteristic curve B shows a healthy product in which the nut was tightened at 500 kg, with a deteriorated product having a resistance larger than the specified value. From the comparison results of these characteristic curves A and B, it can be determined as follows.

健全な接続体の場合 接続体および電線の表面温度分布は接続体の両端部分
にピークP1,P2を有する分布となり、接続体の中央部分P
Cは接続体の発熱の影響を受けない部分の電線の温度よ
りも低くなっている。(ΔTBC<0)。
In the case of a sound connection body, the surface temperature distribution of the connection body and the electric wire has a distribution with peaks P 1 and P 2 at both ends of the connection body, and the central part P of the connection body
C is lower than the temperature of the electric wire in a portion not affected by the heat generation of the connection body. (ΔT BC <0).

接触抵抗が大きい接続体(劣化した接続体)の場合 接続体の中央部分PCの表塩温度が他の部分よりも高く
なり、最大値を示す。特に、接続体から遠ざかって発熱
の影響を受けないような部位の電線の表面温度との差が
大きくなる(ΔTBC>0)。
Table salt temperature of the center portion P C when connection of the contact resistance is large connector (degraded connection member) is higher than the other portions, the maximum value. In particular, the difference from the surface temperature of the electric wire in a portion away from the connector and not affected by heat generation becomes large (ΔT BC > 0).

従って、劣化による表面温度の上昇はコネクタ1の中
央部分PCが最も大きく、最大の表面温度を示すので、こ
の表面温度と電線の表面温度の差ΔTBCを求めることに
より、ΔTBC>0の場合に劣化を判定することができ
る。このことはバイス型コネクタについても同様であ
り、コネクタの中央部分の表面温度と電線の表面温度を
測定することにより劣化の判定が可能となる。一方、接
続体が圧縮スリーブや撚回スリーブの場合、導体の接続
長さが数十cmあり、中央部分に最大表面温度が現れると
は限らない。従って、これらスリーブの場合には、スリ
ーブ両端部分(P1,P2に相当する部分)の表面温度を除
いたスリーブの長さ方向の表面温度を適宜間隔で測定
し、その最大値と電線の表面温度の差を求めることによ
り判定を行うことができる。
Therefore, the surface temperature rise due to deterioration central portion P C is the largest of the connector 1, it indicates the maximum surface temperature, by obtaining the difference [Delta] T BC of the surface temperature of the surface temperature and the electric wire, the [Delta] T BC> 0 In that case, the deterioration can be determined. The same applies to the vice connector, and the deterioration can be determined by measuring the surface temperature of the central portion of the connector and the surface temperature of the electric wire. On the other hand, when the connection body is a compression sleeve or a twisted sleeve, the connection length of the conductor is several tens of cm, and the maximum surface temperature does not always appear at the center. Therefore, in the case of these sleeves, the surface temperature in the length direction of the sleeve excluding the surface temperature of both ends of the sleeve (corresponding to P 1 and P 2 ) is measured at appropriate intervals, and the maximum value and the electric wire The determination can be made by calculating the difference between the surface temperatures.

第5図は電線の負荷電流をパラメータとして、上記Δ
TBCと接触抵抗との関係をプロットしており、接続体と
してボルト型コネクタを使用し、電線として6600V,60mm
2のポリエチレン絶縁電線を使用している。10-5〜10-4
の接触抵抗を有する健全な接続体では、点Aで示すよう
に、負荷電流が230Aであっても、ΔTBCは零度以下とな
っている。これに対し、劣化した接続体の場合、接触抵
抗および負荷電流によってΔTBCが変化するが、例え
ば、点C,Dで示すように、零度以上となっており、ΔTBC
>0を劣化の判定基準とすることができる。ここで、C,
Dは以下に述べる第1表の値をプロットしたものであ
る。
FIG. 5 shows the above Δ
The relationship between TBC and contact resistance is plotted, using a bolt-type connector as the connector and 6600 V, 60 mm
Uses 2 polyethylene insulated wires. 10 -5 to 10 -4
As shown by a point A, ΔT BC is equal to or less than zero degree even with a load current of 230 A in a healthy connection having a contact resistance of On the other hand, in the case of the deteriorated connection body, ΔT BC changes depending on the contact resistance and the load current. For example, as shown by points C and D, it is equal to or higher than zero degree, and ΔT BC
> 0 can be used as a criterion for determining deterioration. Where C,
D is a plot of the values in Table 1 described below.

尚、実配電線路では、接続体および電線の表面温度が
風や外気温などの環境条件によって変化するが、本発明
によると、同一環境下にある表面温度を比較するため、
これらの影響を排除することができる。
In addition, in the actual distribution line, the surface temperature of the connection body and the electric wire changes depending on environmental conditions such as wind and outside temperature. According to the present invention, in order to compare the surface temperatures under the same environment,
These effects can be eliminated.

以下、更に具体的に説明する。 Hereinafter, a more specific description will be given.

電圧6600V,断面積60mm2の屋外用ポリエチレン絶縁電
線をボルト型コネクタによって接続した実配電線路の接
続部分186箇所に対し、その接続体および電線の表面温
度を赤外線センサで測定した。そして測定値からΔTBC
を算出した結果、ΔTBCが零よりも大きな2箇所の接続
部分を検出した。この2箇所について負荷電流を測定し
た後、実配電線路から撤去し、実験室で負荷電流、ΔT
BCおよび接触抵抗を測定した。結果を第1表に示すと共
に、前述したように、第2図に点C、Dとしてプロット
した。撤去した劣化品は実験室で測定した結果と一致し
ており、接続体の劣化判定が確認された。
The surface temperature of the connection body and the electric wire was measured by an infrared sensor at 186 connection points of the actual distribution line where a polyethylene insulated electric wire for outdoor use having a voltage of 6600 V and a cross-sectional area of 60 mm 2 was connected by a bolt-type connector. And from the measured value ΔT BC
As a result, two connection portions where ΔT BC was larger than zero were detected. After measuring the load current for these two locations, remove the load current from the actual distribution line and load it in the laboratory.
BC and contact resistance were measured. The results are shown in Table 1 and plotted as points C and D in FIG. 2 as described above. The removed deteriorated product was in agreement with the result measured in the laboratory, and it was confirmed that the connection body had been deteriorated.

〔発明の効果〕 以上説明したように本発明は、接続体の表面温度と、
電線の表面温度との差に基づいて接続体の劣化を判定す
るため、接続体個々の判定を行うことができるととも
に、簡便で、しかも正確に判定することができる。この
ため、接続体の劣化の早期発見が可能であり、架空送配
電線の保守、管理業務の効率が向上し、電力供給の信頼
度を向上させることができる。
[Effect of the Invention] As described above, the present invention relates to the surface temperature of the connection body,
Since the deterioration of the connector is determined based on the difference from the surface temperature of the electric wire, the determination of each connector can be performed, and the determination can be performed simply and accurately. For this reason, it is possible to detect the deterioration of the connection body at an early stage, to improve the efficiency of maintenance and management work of the overhead transmission and distribution line, and to improve the reliability of power supply.

【図面の簡単な説明】[Brief description of the drawings]

第1図はボルト型コネクタを示す正面図、第2図および
第3図は接続例を示す側面図、第4図はボルト型コネク
タにおける表面温度を示す特性図、第5図は接触抵抗と
ΔTBCの関係を負荷電流をパラメータとしてプロットし
た特性図。 符号の説明 1……ボルト型コネクタ 2……本体、3……ナット 4……ガイド溝 5……コネクタガイド、6……ねじ部 7……ナット受け、8……ケース 9……絶縁テープ、10、20……電線 21、22……導体、12、22……絶縁体
FIG. 1 is a front view showing a bolt type connector, FIGS. 2 and 3 are side views showing connection examples, FIG. 4 is a characteristic diagram showing surface temperature in a bolt type connector, and FIG. FIG. 4 is a characteristic diagram in which the relationship of BC is plotted using load current as a parameter. DESCRIPTION OF SYMBOLS 1... Bolt type connector 2... Body 3... Nut 4... Guide groove 5. Connector guide 6. Screw part 7 nut receiver 8 case 9 insulating tape 10, 20 ... electric wires 21, 22 ... conductor, 12, 22 ... ... insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 一也 茨城県日立市日高町5丁目1番1号 日 立電線株式会社電線研究所内 (72)発明者 杣 謙一郎 茨城県日立市日高町5丁目1番1号 日 立電線株式会社電線研究所内 (72)発明者 吉本 照夫 茨城県日立市日高町5丁目1番1号 日 立電線株式会社電線研究所内 (56)参考文献 実開 昭58−56957(JP,U) 四国電力株式会社研究期報、[49 ](1987)P.68−87 電気計算、55[2](1987)P.55− 59 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuya Takahashi 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Inside the Electric Wire Research Laboratory, Hitachi Cable Co., Ltd. (72) Kenichiro Soma Hidaka-cho, Hitachi City, Ibaraki Prefecture 5-1-1, Nippon Electric Wire & Cable Co., Ltd. (72) Inventor Teruo Yoshimoto 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Pref. Nippon Electric Wire & Cable Co., Ltd. (56) References Akira Mikai 58-56957 (JP, U) Shikoku Electric Power Co., Inc. Research Report, [49] (1987) 68-87 Electric Calculation, 55 [2] (1987) P.E. 55− 59

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】架空送配電線を相互に接続する接続体の表
面温度と前記架空送配電線の表面温度を測定し、その表
面温度の差に基づいて接続体の劣化を診断することを特
徴とする架空送配電線接続体の劣化判定方法。
The present invention is characterized in that the surface temperature of a connecting body for interconnecting overhead transmission and distribution lines and the surface temperature of the overhead transmission and distribution line are measured, and the deterioration of the connecting body is diagnosed based on a difference between the surface temperatures. A method for determining the deterioration of an overhead transmission / distribution line connection body.
【請求項2】前記接続体の表面温度は前記接続体の中央
部分における表面温度であり、その表面温度が前記架空
送配電線の表面温度より高いとき、接続体の劣化と判定
する請求項第1項記載の架空送配電線接続体の劣化判定
方法。
2. The connector according to claim 1, wherein the surface temperature of the connector is a surface temperature at a central portion of the connector, and when the surface temperature is higher than the surface temperature of the overhead power transmission line, it is determined that the connector has deteriorated. 2. The method for judging deterioration of an overhead transmission / distribution line connection body according to claim 1.
JP1052600A 1989-03-03 1989-03-03 Deterioration judgment method of overhead transmission and distribution line connection body Expired - Lifetime JP2647953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052600A JP2647953B2 (en) 1989-03-03 1989-03-03 Deterioration judgment method of overhead transmission and distribution line connection body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052600A JP2647953B2 (en) 1989-03-03 1989-03-03 Deterioration judgment method of overhead transmission and distribution line connection body

Publications (2)

Publication Number Publication Date
JPH02231556A JPH02231556A (en) 1990-09-13
JP2647953B2 true JP2647953B2 (en) 1997-08-27

Family

ID=12919275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052600A Expired - Lifetime JP2647953B2 (en) 1989-03-03 1989-03-03 Deterioration judgment method of overhead transmission and distribution line connection body

Country Status (1)

Country Link
JP (1) JP2647953B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209367A (en) * 1994-01-21 1995-08-11 Chubu Electric Power Co Inc Method for detecting defective joint of coated overhead wire
US5733041A (en) * 1995-10-31 1998-03-31 General Electric Company Methods and apparatus for electrical connection inspection
JP6740859B2 (en) * 2016-10-31 2020-08-19 住友電気工業株式会社 Electric wire monitoring system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
四国電力株式会社研究期報、[49](1987)P.68−87
電気計算、55[2](1987)P.55−59

Also Published As

Publication number Publication date
JPH02231556A (en) 1990-09-13

Similar Documents

Publication Publication Date Title
JP2647953B2 (en) Deterioration judgment method of overhead transmission and distribution line connection body
KR20150099033A (en) busduct joint
JPH02144810A (en) Power cable and its temperature distribution measurement
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
CN109920601B (en) Power cable suitable for partial discharge detection positioning
CN207690941U (en) A kind of experiment power battery pre-warning system for monitoring
JPH0580112A (en) Failure diagnostic device for power cable
KR102309364B1 (en) Measurement system of space charge distribution for cable
JPH07193986A (en) Method for monitoring joint of power cable
CN109917233B (en) Method for inhibiting and evaluating overheating of insulating surface of cable terminal
JP3129783B2 (en) Power cable insulation diagnostic method
CN216902290U (en) Large-current charging cable capable of achieving temperature monitoring function
JP2674265B2 (en) Partial discharge detection method for prefabricated type connection part for CV cable
CN212514856U (en) Pre-buried formula capacitive coupling sensor
JPH062518U (en) Power cable with tree detector
CN115542009B (en) Automatic detection system and method for electrical performance of copper bar
KR102530465B1 (en) Apparatus for sensing partial discharge of power cable and method for diagnosing partial discharge of power cable unsing the same
CN106092878B (en) Method and device for establishing grip strength prediction model for wire coated with electric composite grease
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
JP3092772B2 (en) Diagnosis method for insulation deterioration of power cable
JPH10160781A (en) Electrode for detection of partial discharge
JPH04168906A (en) Monitoring method of prefabricated joint
CN117232679A (en) Pipe bus contact health state assessment method, pipe bus and power equipment
JP2665935B2 (en) Measuring method of dielectric loss of cable
JPH0360056B2 (en)