JP3028793B2 - Superconducting thin film and method for producing the same - Google Patents

Superconducting thin film and method for producing the same

Info

Publication number
JP3028793B2
JP3028793B2 JP9231813A JP23181397A JP3028793B2 JP 3028793 B2 JP3028793 B2 JP 3028793B2 JP 9231813 A JP9231813 A JP 9231813A JP 23181397 A JP23181397 A JP 23181397A JP 3028793 B2 JP3028793 B2 JP 3028793B2
Authority
JP
Japan
Prior art keywords
oxide
thin film
layer
film
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9231813A
Other languages
Japanese (ja)
Other versions
JPH10112560A (en
Inventor
孝夫 中村
博史 稲田
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9231813A priority Critical patent/JP3028793B2/en
Publication of JPH10112560A publication Critical patent/JPH10112560A/en
Application granted granted Critical
Publication of JP3028793B2 publication Critical patent/JP3028793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導薄膜に関す
る。より詳細には、表面に保護膜を有し、空気中で劣化
しない超電導薄膜およびその作製方法に関する。
[0001] The present invention relates to a superconducting thin film. More specifically, the present invention relates to a superconducting thin film having a protective film on its surface and not deteriorating in air, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】酸化物超電導薄膜、特にY−Ba−Cu−O
系の酸化物超電導薄膜は、大気中の炭酸ガスや水蒸気に
より容易に分解し、その表層が分解してできたアモルフ
ァス層で、表面が覆われてしまう。このため、酸化物超
電導薄膜を使用して超電導素子を作製しても、作製した
素子が期待される特性を示さなかったり、酸化物超電導
薄膜自体の超電導性が失われてしまう事態が起こる。
2. Description of the Related Art Oxide superconducting thin films, especially Y-Ba-Cu-O
The oxide superconducting thin film is easily decomposed by carbon dioxide gas or water vapor in the air, and its surface is covered with an amorphous layer formed by decomposing the surface layer. For this reason, even when a superconducting element is manufactured using the oxide superconducting thin film, the produced element does not exhibit expected characteristics or the superconductivity of the oxide superconducting thin film itself is lost.

【0003】実用上極めて重要であると考えられている
超電導素子に、超電導電界効果型素子がある。超電導電
界効果型素子は、超電導電界効果トランジスタともいわ
れ、酸化物超電導体で形成された超電導チャネルを有
し、超電導チャネル上にゲート絶縁層を介して配置され
たゲート電極を備え、ゲート電極に印加された信号電圧
により超電導チャネルを流れる電流を制御する三端子素
子である。この素子は、電圧制御型の素子であって信号
の増幅作用があり、電流密度が大きい等、実用的な特性
を有する。
A superconducting element considered to be extremely important in practical use is a superconducting field effect element. The superconducting field effect element is also called a superconducting field effect transistor, has a superconducting channel formed of an oxide superconductor, includes a gate electrode disposed on the superconducting channel via a gate insulating layer, and applies a voltage to the gate electrode. A three-terminal element that controls the current flowing through the superconducting channel according to the applied signal voltage. This element is a voltage-controlled element, has an action of amplifying a signal, and has practical characteristics such as a large current density.

【0004】上記の超電導電界効果型素子は、厚さが5
nm程度の極めて薄い酸化物超電導薄膜で形成された超電
導チャネルを有する。このように、極めて薄い酸化物超
電導薄膜を有する素子では、上記のアモルファス層の生
成の結果、素子領域に相当する部分が消滅してしまうこ
とも起こる。これを抑制するには、素子作製の主要工程
を、超高真空中から取り出さずに実施するか、酸化物超
電導薄膜が露出する領域のすべてを保護膜で覆わなけれ
ばならない。素子の作製工程のすべてを真空中で実施す
ることは、不可能ではないが、工程の自由度を確保した
り、処理の容易性、あるいは、使用する材料の自由度等
の点から、真空の外や、他の処理装置において加工する
利点は多い。
The above superconducting field effect element has a thickness of 5
It has a superconducting channel formed of a very thin oxide superconducting thin film of about nm. As described above, in an element having an extremely thin oxide superconducting thin film, a portion corresponding to the element region may disappear as a result of the formation of the amorphous layer. In order to suppress this, the main process of device fabrication must be performed without taking out from an ultra-high vacuum, or the entire region where the oxide superconducting thin film is exposed must be covered with a protective film. It is not impossible to perform all of the device fabrication steps in a vacuum, but it is not possible to secure the degree of freedom of the process, the ease of processing, or the degree of freedom of the materials used. There are many advantages to processing outside or in other processing equipment.

【0005】しかしながら、保護膜の材質・形成方法に
も、制限がある。まず、保護膜形成時に、下地の酸化物
超電導薄膜から酸素を奪ったり、構成元素の相互拡散を
起こさないことが、必要である。また、加工あるいは動
作時の温度差が大きいことから、機械的歪が存在しない
こと、熱膨張係数が酸化物超電導体に近いことも求めら
れる。
[0005] However, there are also restrictions on the material and method of forming the protective film. First, at the time of forming the protective film, it is necessary not to deprive the underlying oxide superconducting thin film of oxygen or to cause mutual diffusion of constituent elements. Further, since the temperature difference during processing or operation is large, it is also required that there is no mechanical strain and that the coefficient of thermal expansion is close to that of the oxide superconductor.

【0006】この保護構造が、素子作製の中間段階でも
必要とされる場合には、上部の素子構造の作製を可能に
するため、酸化物超電導膜の結晶性を引き継ぎ、上層の
結晶成長を促すといった、結晶性・格子定数に関する要
求も発生する。この場合、加工性が新たな要求となる。
例えば、酸化物超電導膜と何らかの電気的接触をとるた
めには、形成後の薄膜を選択的に除去する必要もある。
この場合に、酸化物超電導膜上に異物を残さないこと、
選択比のとれる除去方法があること、フォトリソグラフ
ィ技術のようなパターニング技術が適用できること等が
必要となる。
When this protective structure is required even in the intermediate stage of device fabrication, it takes over the crystallinity of the oxide superconducting film and promotes crystal growth of the upper layer in order to enable fabrication of the upper device structure. Demands regarding crystallinity and lattice constant arise. In this case, workability is a new requirement.
For example, in order to make some electrical contact with the oxide superconducting film, it is necessary to selectively remove the formed thin film.
In this case, do not leave foreign matter on the oxide superconducting film,
It is necessary that there be a removal method with a high selectivity and that a patterning technique such as photolithography can be applied.

【0007】[0007]

【発明が解決しようとする課題】従来、酸化物超電導薄
膜の表面保護は、特性の経時変化を抑えることに重点が
置かれていた。成膜直後に真空環境から取り出されて空
気に触れることにより起こる特性の劣化を抑制すること
に主眼をおいた保護膜について、議論されることは少な
かった。
Heretofore, emphasis has been placed on protecting the surface of an oxide superconducting thin film by suppressing changes over time in characteristics. There has been little discussion about a protective film that focuses on suppressing deterioration of characteristics caused by being taken out of a vacuum environment and coming into contact with air immediately after film formation.

【0008】また、従来は、酸化物超電導薄膜を成膜後
に真空環境から取り出し、異なる成膜装置において、保
護膜が形成されたり、大気中で形成される場合が多かっ
た。酸化シリコン膜の形成や樹脂層の形成がこれに当た
る。材料も半導体で活用されてきたものが、概ね転用さ
れてきた。従って、保護膜形成に先立つ酸化物超電導膜
の表面劣化は防止できず、保護膜との間にアモルファス
層を挟んだ構成になっているものが大半であった。
[0008] Conventionally, the oxide superconducting thin film was removed from the vacuum environment after the film was formed, and a protective film was often formed in a different film forming apparatus or in the air. This includes formation of a silicon oxide film and formation of a resin layer. Materials that have also been used in semiconductors have generally been diverted. Therefore, the surface deterioration of the oxide superconducting film prior to the formation of the protective film cannot be prevented, and most of the oxide superconducting films have a configuration in which an amorphous layer is interposed between the oxide superconducting film and the protective film.

【0009】そこで本発明の目的は、上記従来技術の問
題点を解決した保護膜を有する酸化物超電導薄膜および
その作製方法を提供することにある。
An object of the present invention is to provide an oxide superconducting thin film having a protective film which solves the above-mentioned problems of the prior art, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明に従うと、酸化物
超電導体層とこの酸化物超電導体層の表面を被覆して
囲の雰囲気から保護するSrTiO 3 、Ba x Sr 1-x TiO 3 およ
びBaTiO 3 の少なくとも1種の酸化物で構成され、厚さ1
1nm以下で前記酸化物超電導体層よりも薄い保護層を有
することを特徴とする超電導薄膜が提供される。本発明
では、上記保護層が、2種以上の酸化物の層の積層膜で
形成されていることが好ましい。また、上記保護層が、
BaxSr1-xTiO3 (ただし0≦x≦1でxは酸化物超電導
薄膜に接する側が大きく、酸化物超電導薄膜から離れる
に従って連続的に小さくなる)である酸化物で形成され
ていることも好ましい。
According to the present invention SUMMARY OF], peripheral covers the surface of the oxide superconductor layer and the oxide superconductor layer
SrTiO 3, Ba x Sr 1- x TiO 3 to be protected from atmosphere circumference Oyo
And at least one oxide of BaTiO 3 and a thickness of 1
A superconducting thin film having a protective layer having a thickness of 1 nm or less and thinner than the oxide superconducting layer is provided. In the present invention, it is preferable that the protective layer is formed of a laminated film of two or more oxide layers. Further, the protective layer,
Ba x Sr 1-x TiO 3 (where 0 ≦ x ≦ 1 and x is larger on the side in contact with the oxide superconducting thin film and decreases continuously as the distance from the oxide superconducting thin film increases) Is also preferred.

【0011】また、本発明によれば、上記保護層上に金
属層を有し、前記保護層中にこの金属層の金属が熱拡散
しており、前記金属層と酸化物超電導体層とが前記保護
層により電気的に接続されている超電導薄膜も提供され
る。
According to the present invention, a metal layer is provided on the protective layer, and the metal of the metal layer is thermally diffused in the protective layer.
And has a superconducting thin film and the metal layer and the oxide superconducting layer are electrically connected by the protective layer is also provided.

【0012】本発明の超電導薄膜は、超電導素子に使用
され、保護層が超電導素子の構成の一部になっているこ
とが好ましい。この場合、下層が酸化物超電導体の層
で、上層が該酸化物超電導体以外の酸化物の層である積
層膜を有する超電導素子において、上層が酸化物超電導
体の層を保護する機能を有する。より具体的には、例え
ば、超電導電界効果型素子で、上記積層膜が超電導電界
効果型素子の超電導チャネルとゲート絶縁膜を構成する
場合が考えられる。
The superconducting thin film of the present invention is preferably used for a superconducting element, and the protective layer preferably forms part of the structure of the superconducting element. In this case, in a superconducting element having a laminated film in which the lower layer is an oxide superconductor layer and the upper layer is an oxide layer other than the oxide superconductor, the upper layer has a function of protecting the oxide superconductor layer. . More specifically, for example, in a superconducting field effect element, it is conceivable that the laminated film forms a superconducting channel and a gate insulating film of the superconducting field effect element.

【0013】[0013]

【0014】また、本発明の超電導薄膜は、保護層上に
金属層を有し、保護層がこの金属層の金属と合金を形成
しており、金属層と酸化物超電導体層とが保護層により
電気的に接続されていることが好ましい。この超電導薄
膜は、基板上に酸化物超電導薄膜を成膜後、同一の成膜
装置で真空環境を維持したまま酸化物薄膜を連続して酸
化物超電導薄膜上に成膜し、酸化物薄膜上に基板を加熱
しながら金属層を形成し、酸化物薄膜と合金化させるこ
とに作製することが好ましい。また、金属層を形成した
直後にその場で基板を加熱して酸化物薄膜と合金化させ
てもよい。さらに、このようにして形成した金属層を有
する積層膜を、ランプ加熱、レーザ加熱、加熱炉等を使
用して加熱し、さらに合金化を促進させてもよい。
Further, the superconducting thin film of the present invention has a metal layer on a protective layer, the protective layer forms an alloy with the metal of the metal layer, and the metal layer and the oxide superconductor layer are formed of a protective layer. It is preferable that they are electrically connected to each other. This superconducting thin film is formed by forming an oxide superconducting thin film on a substrate and then continuously depositing the oxide thin film on the oxide superconducting thin film while maintaining a vacuum environment with the same film forming apparatus. It is preferable that a metal layer is formed while heating the substrate and alloyed with an oxide thin film. Immediately after the formation of the metal layer, the substrate may be heated in place and alloyed with the oxide thin film. Further, the laminated film having the metal layer formed as described above may be heated using lamp heating, laser heating, a heating furnace, or the like to further promote alloying.

【0015】[0015]

【発明の実施の形態】本発明の超電導薄膜は、表面を酸
化物の保護層により被覆、保護された酸化物超電導体層
で主に構成されている。この酸化物の保護層により、酸
化物超電導体層が大気中の水蒸気、炭酸ガス等と接触せ
ず、これらによって分解されることを防止する。本発明
では、酸化物超電導体は、いわゆるY−Ba−Cu−O系
(この場合、Yはランタノイド元素でもよい)、Bi−Sr
−Ca−Cu−O系(Pb等を含むことがある)、Tl−Ba−Ca
−Cu−O系のいずれでもよい。この酸化物の保護層は、
酸化物超電導体層の形成後、同一の成膜装置で真空環境
を維持したまま連続して酸化物超電導体層上に形成され
ることが好ましい。真空環境を維持するという意味は、
成膜装置の圧力をできるだけ維持することであり、保護
層形成に要求される圧力が、酸化物超電導体層形成の際
の圧力と等しければ、それを維持することである。ま
た、両者が異なる場合でも、酸化物超電導体層形成の際
の圧力から、直ちに保護層形成の圧力に変更すること
で、その途中で余計な圧力の変更を行わないということ
である。このように保護層を形成することにより、酸化
物超電導体表面が分解してできたアモルファス層が、酸
化物超電導体層・保護層間に存在することがない。すな
わち、酸化物超電導体層は形成直後の状態のまま保護層
に被覆され、寸法、特性が保持される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The superconducting thin film of the present invention is mainly composed of an oxide superconductor layer whose surface is covered and protected by an oxide protective layer. This oxide protective layer prevents the oxide superconductor layer from being in contact with water vapor, carbon dioxide gas, and the like in the atmosphere and being decomposed by these. In the present invention, the oxide superconductor is a so-called Y-Ba-Cu-O-based (in this case, Y may be a lanthanoid element), Bi-Sr
-Ca-Cu-O system (may include Pb etc.), Tl-Ba-Ca
Any of -Cu-O type may be used. The protective layer of this oxide
After the formation of the oxide superconductor layer, it is preferable that the oxide superconductor layer is continuously formed on the oxide superconductor layer by using the same film forming apparatus while maintaining a vacuum environment. The meaning of maintaining a vacuum environment is
It is to maintain the pressure of the film forming apparatus as much as possible. If the pressure required for forming the protective layer is equal to the pressure for forming the oxide superconductor layer, it is to be maintained. Further, even when the two are different, the pressure at the time of forming the oxide superconductor layer is immediately changed to the pressure at which the protective layer is formed, so that no extra pressure change is performed during the process. By forming the protective layer in this way, an amorphous layer formed by decomposing the surface of the oxide superconductor does not exist between the oxide superconductor layer and the protective layer. That is, the oxide superconductor layer is covered with the protective layer in a state immediately after formation, and the dimensions and characteristics are maintained.

【0016】本発明の超電導薄膜において、保護層はSr
TiO3、BaxSr1-xTiO3およびBaTiO3のいずれか1種の
酸化物か、2種以上の酸化物の層の積層膜か、またはBa
xSr1-xTiO3(ただし0≦x≦1でxは酸化物超電導薄
膜に接する側が大きく、酸化物超電導薄膜から離れるに
従って連続的に小さくなる)である組成の酸化物で形成
されていることが好ましい。これらの酸化物は、いずれ
も酸化物超電導体と格子定数が近く、また酸化物超電導
体を劣化させることがないからである。また、保護層
は、数nmの厚さでその保護効果は十分である。しかしな
がら、後述するよう保護層に他の機能を持たせる場合
は、後加工の有無、酸化物超電導体層との間の相互拡散
の抑制等からその厚さが決定される。通常は、1〜100
nmが好ましい。
In the superconducting thin film of the present invention, the protective layer is made of Sr
An oxide of one of TiO 3 , Ba x Sr 1-x TiO 3 and BaTiO 3 , a laminated film of two or more oxide layers, or Ba
x Sr 1-x TiO 3 (where 0 ≦ x ≦ 1 and x is larger on the side in contact with the oxide superconducting thin film and decreases continuously as the distance from the oxide superconducting thin film increases) Is preferred. This is because each of these oxides has a lattice constant close to that of the oxide superconductor and does not deteriorate the oxide superconductor. The protective effect of the protective layer having a thickness of several nm is sufficient. However, when the protective layer has another function as described later, its thickness is determined based on the presence or absence of post-processing, suppression of mutual diffusion with the oxide superconductor layer, and the like. Usually 1 to 100
nm is preferred.

【0017】本発明の超電導薄膜は、超電導素子に使用
されて各層がそれぞれ超電導素子を構成する要素となる
ことが好ましい。例えば、酸化物超電導体層が超電導電
界効果型素子の超電導チャネルとなり、保護層がゲート
絶縁膜となる構成であってもよい。また、トンネル型ジ
ョセフソン素子の超電導電極と絶縁体層となる構成でも
よい。
The superconducting thin film of the present invention is preferably used for a superconducting element, and each layer is preferably an element constituting the superconducting element. For example, the oxide superconductor layer may be a superconducting channel of the superconducting field effect element, and the protective layer may be a gate insulating film. In addition, a configuration in which the superconducting electrode of the tunnel type Josephson element and the insulator layer are used may be used.

【0018】本発明の超電導薄膜は、保護層上に金属層
を有し、保護層がこの金属層の金属と合金を形成してお
り、金属層と酸化物超電導体層とが保護層により電気的
に接続されていてもよい。この場合、金属層はいわゆる
オーミック電極となり、酸化物超電導体層と外部とを電
気的に接続する。この場合も、保護層は数nmの厚さで酸
化物超電導体層を十分保護し、また、この厚さで酸化物
超電導体層との間で電気的な接触が十分得られる。この
構成において、保護層はSrTiO3が好ましく、金属層はT
i、Nb、Ni、Ag、Au等が好ましい。これらの金属はSrTi
3と合金を形成しやすいからである。
The superconducting thin film of the present invention has a metal layer on a protective layer, the protective layer forms an alloy with the metal of the metal layer, and the metal layer and the oxide superconductor layer are electrically connected by the protective layer. May be connected to each other. In this case, the metal layer becomes a so-called ohmic electrode, and electrically connects the oxide superconductor layer to the outside. Also in this case, the protective layer sufficiently protects the oxide superconductor layer with a thickness of several nm, and this thickness provides sufficient electrical contact with the oxide superconductor layer. In this configuration, the protective layer is preferably SrTiO 3 and the metal layer is Tr.
i, Nb, Ni, Ag, Au and the like are preferred. These metals are SrTi
This is because it is easy to form an alloy with O 3 .

【0019】この保護層が金属層と合金を形成している
本発明の超電導薄膜を作製するには、上述の連続成膜に
より酸化物超電導体層および保護層を形成した後、保護
層上に金属層を例えば基板を加熱しながら形成する。こ
の加熱は、合金化を促進するためである。この加熱処理
は、金属層を形成直後にその場で行ってもよい。金属層
は、既に保護層上に形成するので、酸化物超電導体層、
保護層とは異なる装置で形成することができる。また、
合金化をさらに促進するために、金属層を形成後、ラン
プアニール、レーザアニール、加熱炉による加熱等を行
ってもよい。
In order to produce the superconducting thin film of the present invention in which the protective layer forms an alloy with the metal layer, the oxide superconductor layer and the protective layer are formed by the above-described continuous film formation, and then the protective layer is formed on the protective layer. The metal layer is formed, for example, while heating the substrate. This heating is for promoting alloying. This heat treatment may be performed immediately after the formation of the metal layer. Since the metal layer is already formed on the protective layer, the oxide superconductor layer,
It can be formed in a device different from the protective layer. Also,
After the formation of the metal layer, lamp annealing, laser annealing, heating with a heating furnace, or the like may be performed to further promote alloying.

【0020】[0020]

【実施例1】発明の超電導薄膜をSrTiO3(100)
基板上に作製し、保護膜を持たない従来の酸化物超電導
薄膜と特性の経時変化を比較した。成膜条件を以下に示
す。
[Embodiment 1] A superconducting thin film of the present invention was made of SrTiO 3 (100)
A change in characteristics over time was compared with a conventional oxide superconducting thin film formed on a substrate and having no protective film. The film forming conditions are shown below.

【0021】[0021]

【表1】 酸化物超電導体層 成膜法 パルスレーザ蒸着法 (Y1Ba2Cu37-X) 酸素圧 0.3 Torr 基板温度 690 ℃ 成膜時間 1 分 膜厚 11nm 保護層 成膜法 パルスレーザ蒸着法 (SrTiO3) 酸素圧 0.03Torr 基板温度 600 ℃ 成膜時間 3 秒 膜厚 3 nm[Table 1] Oxide superconductor layer film formation method Pulsed laser deposition method (Y 1 Ba 2 Cu 3 O 7-X ) Oxygen pressure 0.3 Torr Substrate temperature 690 ° C Film formation time 1 minute Film thickness 11 nm Protective layer film formation method Pulse Laser deposition (SrTiO 3 ) Oxygen pressure 0.03 Torr Substrate temperature 600 ° C Deposition time 3 seconds Film thickness 3 nm

【0022】次に、それぞれの試料を三分割し、作製直
後、1日後、4日後の臨界温度をAg電極を使用し、四端
子法で測定した。結果を図1および図2に示す。図1
は、本発明の超電導薄膜の臨界温度の測定結果であり、
図2は保護層を持たない従来の酸化物超電導薄膜の臨界
温度の測定結果である。、、はそれぞれ作製直
後、1日後、4日後を示す。図1および図2からわかる
よう。本発明の超電導薄膜の臨界温度は、作製直後に6
9.5Kで、1日後65.2K、4日後65.4Kとほとんど変化
がなかった。それに対し、従来の酸化物超電導薄膜は、
作製直後47.1K、1日後26.3K、4日後超電導転移せず
(16Kで3Ω)と、臨界温度が時間とともに大幅に低下
した。
Next, each sample was divided into three parts, and immediately after the preparation, one day and four days later, the critical temperature was measured by a four-terminal method using an Ag electrode. The results are shown in FIG. 1 and FIG. FIG.
Is a measurement result of the critical temperature of the superconducting thin film of the present invention,
FIG. 2 shows the measurement results of the critical temperature of a conventional oxide superconducting thin film having no protective layer. ,, Indicate immediately after preparation, 1 day, and 4 days after, respectively. As can be seen from FIG. 1 and FIG. The critical temperature of the superconducting thin film of the present invention is 6
At 9.5K, there was almost no change at 65.2K after 1 day and 65.4K after 4 days. In contrast, conventional oxide superconducting thin films
Immediately after fabrication, 47.1K, 26.3K after 1 day, and no superconductivity after 4 days (3Ω at 16K), the critical temperature decreased significantly with time.

【0023】この様に、保護層を形成することで、酸化
物超電導体層を超高真空から取り出しても、その特性劣
化を抑えられる上、その経時変化をも防ぐことができ
る。
As described above, by forming the protective layer, even if the oxide superconductor layer is taken out of an ultra-high vacuum, its characteristic deterioration can be suppressed, and its aging can be prevented.

【0024】[0024]

【実施例2】異なる材料を用いて本発明の超電導薄膜を
作製し、特性の経時変化を検証した。基板は実施例1と
同じくSrTiO3(100)基板を用いた。成膜条件を以
下に示す。
Example 2 A superconducting thin film of the present invention was manufactured using different materials, and the change over time in characteristics was verified. A SrTiO 3 (100) substrate was used as in Example 1. The film forming conditions are shown below.

【0025】[0025]

【表2】 酸化物超電導体層 成膜法 パルスレーザ蒸着法 (Y1Ba2Cu37-X) 酸素圧 0.3 Torr 基板温度 690 ℃ 成膜時間 1 分 膜厚 11nm 保護層 成膜法 パルスレーザ蒸着法 (Ba0.5Sr0.5TiO3) 酸素圧 0.03Torr 基板温度 600 ℃ 成膜時間 3 秒 膜厚 3 nm[Table 2] Oxide superconductor layer film formation method Pulsed laser deposition method (Y 1 Ba 2 Cu 3 O 7-X ) Oxygen pressure 0.3 Torr Substrate temperature 690 ° C Film formation time 1 minute Film thickness 11 nm Protective layer film formation method Pulse Laser deposition method (Ba 0.5 Sr 0.5 TiO 3 ) Oxygen pressure 0.03 Torr Substrate temperature 600 ° C Deposition time 3 seconds Film thickness 3 nm

【0026】次に、それぞれの試料を二分割し、作製直
後および7日後の臨界温度をAg電極を使用し、四端子法
で測定した。その結果、上記本発明の超電導薄膜の臨界
温度は、作製直後に73.2Kで、7日後に73Kとほとんど
変化がなかった。本発明の超電導薄膜は保護層により、
その特性劣化が抑えられ、特性の経時変化をも防止され
ている。
Next, each sample was divided into two parts, and the critical temperatures immediately after preparation and seven days later were measured by a four-terminal method using an Ag electrode. As a result, the critical temperature of the above-mentioned superconducting thin film of the present invention was 73.2K immediately after the preparation, and hardly changed to 73K after 7 days. The superconducting thin film of the present invention has a protective layer,
Deterioration of the characteristics is suppressed, and changes over time in the characteristics are also prevented.

【0027】[0027]

【実施例3】SrTiO3(100)基板上に酸化物超電導
体層をY1Ba2Cu37-X 酸化物超電導体で、保護層をSrT
iO3で形成し、その上にTi層による電極を形成し、保護
層と合金化し、Ti層と酸化物超電導体層とを電気的に接
続した。酸化物超電導体層の厚さは33nmで、実施例1と
同様の条件のパルスレーザ蒸着法で成膜した。また、Sr
TiO3層も実施例1と同様の条件のパルスレーザ蒸着法
で厚さ11nmに成膜した。Ti層は以下の条件で形成した。
Embodiment 3 On a SrTiO 3 (100) substrate, an oxide superconductor layer was made of Y 1 Ba 2 Cu 3 O 7-X oxide superconductor, and a protective layer was made of SrT.
The electrode was formed of TiO 3 , an electrode of a Ti layer was formed thereon, alloyed with the protective layer, and the Ti layer and the oxide superconductor layer were electrically connected. The oxide superconductor layer had a thickness of 33 nm and was formed by a pulsed laser deposition method under the same conditions as in Example 1. Also, Sr
The TiO 3 layer was also formed to a thickness of 11 nm by the pulse laser deposition method under the same conditions as in Example 1. The Ti layer was formed under the following conditions.

【0028】[0028]

【表3】 電極膜 材料 Ti 成膜法 加熱蒸着法 成膜温度 室温 成膜時間 20分 膜厚 150nm 接触抵抗 15.8Ωcm2 [Table 3] Electrode film material Ti film forming method Heat evaporation method Film forming temperature Room temperature Film forming time 20 minutes Film thickness 150nm Contact resistance 15.8Ωcm 2

【0029】次に、接触抵抗を更に下げるため、合金化
処理を促進する処理を行った。処理条件を以下に示す。
Next, in order to further reduce the contact resistance, a treatment for accelerating the alloying treatment was performed. The processing conditions are shown below.

【0030】[0030]

【表4】 電極膜 加熱方法 ランプアニール法 加熱処理時間 1分 加熱雰囲気 真空雰囲気 接触抵抗 10-3Ωcm2 [Table 4] Electrode film heating method Lamp annealing method Heat treatment time 1 minute Heating atmosphere Vacuum atmosphere Contact resistance 10 -3 Ωcm 2

【0031】上記本発明の電極は、保護層上から作製さ
れ、直接酸化物超電導体層に接触することがないので酸
化物超電導体層の劣化を起こさない。また、いわゆる窓
開けをする過程が省略できる。さらに、電極材料を選択
的に形成する一般的な方法、例えば、選択的エッチング
法、リフトオフ法、メタルマスク等任意の方法を使用で
きるので、段差の影響もなく高い精度で電極を形成する
ことができる。
The electrode of the present invention is formed on the protective layer and does not directly contact the oxide superconductor layer, so that the oxide superconductor layer does not deteriorate. Also, the process of opening a window can be omitted. Furthermore, a general method for selectively forming an electrode material, for example, any method such as a selective etching method, a lift-off method, and a metal mask can be used, so that an electrode can be formed with high accuracy without being affected by a step. it can.

【0032】[0032]

【実施例4】MBE法で本発明の超電導薄膜をSrTiO3
(100)基板上に作製し、特性の経時変化を測定し
た。成膜条件を以下に示す:
Embodiment 4 The superconducting thin film of the present invention was formed by SrTiO 3 by MBE.
It was fabricated on a (100) substrate, and the change over time in the characteristics was measured. The deposition conditions are shown below:

【0033】[0033]

【表5】 酸化物超電導体層 成膜法 MBE法 (Y1Ba2Cu37-X) 圧力(O3) 5 ×10-5Torr(基板周辺) 基板温度 700 ℃ 成膜時間 20 分 膜厚 10 nm 保護層 成膜法 MBE法 (SrTiO3) 圧力(O3) 5 ×10-5Torr(基板周辺) 基板温度 500 ℃ 成膜時間 3 分 膜厚 3 nm[Table 5] Oxide superconductor layer film forming method MBE method (Y 1 Ba 2 Cu 3 O 7-X ) Pressure (O 3 ) 5 × 10 -5 Torr (around substrate) Substrate temperature 700 ° C. Film forming time 20 minutes Film thickness 10 nm Protective layer Film forming method MBE method (SrTiO 3 ) Pressure (O 3 ) 5 × 10 -5 Torr (around substrate) Substrate temperature 500 ° C Film forming time 3 minutes Film thickness 3 nm

【0034】上記本発明の超電導薄膜の試料を三分割
し、作製直後、1日後、4日後の臨界温度をAg電極を使
用し、四端子法で測定した。上記本発明の超電導薄膜の
臨界温度は、作製直後に73.8Kで、1日後73.5K、4日
後73.7Kとほとんど変化がなかった。
The sample of the superconducting thin film of the present invention was divided into three parts, and immediately after the preparation, one day and four days later, the critical temperature was measured by a four-terminal method using an Ag electrode. The critical temperature of the superconducting thin film of the present invention was 73.8K immediately after the preparation, and was almost unchanged at 73.5K after 1 day and 73.7K after 4 days.

【0035】[0035]

【実施例5】MBE法で作製した本発明の超電導薄膜を
使用して超電導電界効果型素子のゲート構造を作製し
た。図3を参照してその工程を説明する。まず、図3
(a)に示すようSrTiO3(100)基板5上にY1Ba2Cu3
7-X 酸化物超電導薄膜1をMBE法で成膜した。成膜
条件を以下に示す:
Example 5 A gate structure of a superconducting field effect element was produced using the superconducting thin film of the present invention produced by the MBE method. The process will be described with reference to FIG. First, FIG.
As shown in (a), Y 1 Ba 2 Cu 3 is deposited on SrTiO 3 (100) substrate 5.
An O 7-X oxide superconducting thin film 1 was formed by MBE. The deposition conditions are shown below:

【表6】 酸化物超電導体層 成膜法 MBE法 (Y1Ba2Cu37-X) 圧力(O3) 5 ×10-5Torr(基板周辺) 基板温度 700 ℃ 成膜時間 10 分 膜厚 5 nm[Table 6] Oxide superconductor layer film forming method MBE method (Y 1 Ba 2 Cu 3 O 7-X ) Pressure (O 3 ) 5 × 10 -5 Torr (around substrate) Substrate temperature 700 ° C. Film forming time 10 minutes Film thickness 5 nm

【0036】次に、図3(b)に示すよう、基板5をMB
E装置から動かさず、SrTiO3保護層50を連続してMB
E法によりY1Ba2Cu37-X酸化物超電導薄膜1上に成膜
した。成膜条件を以下に示す: 保護層 成膜法 MBE法 (SrTiO3) 圧力(O3) 5 ×10-5Torr(基板周辺) 基板温度 500 ℃ 成膜時間 3 分 膜厚 3 nm
Next, as shown in FIG.
E Keep the SrTiO 3 protective layer 50 continuously without moving
A film was formed on the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 1 by the E method. The film forming conditions are shown below: Protective layer Film forming method MBE method (SrTiO 3 ) Pressure (O 3 ) 5 × 10 -5 Torr (around the substrate) Substrate temperature 500 ° C Film forming time 3 minutes Film thickness 3 nm

【0037】続いて上記の保護層上に、図3(c)に示す
よう実施例1と等しい条件のパルスレーザ蒸着法で厚さ
400 nmのSrTiO3薄膜51を積層した。次に、図3(d)に示
すよう、SrTiO3膜51上の一部にフォトレジスト膜6を
形成した。フォトレジスト膜6をマスクとして、図3
(e)に示すよう、ArイオンミリングでSrTiO3膜51および
酸化物超電導薄膜1を基板5が露出するまでエッチング
して、ゲート絶縁層52および超電導チャネル10を作製し
た。
Subsequently, on the above protective layer, as shown in FIG.
A 400 nm SrTiO 3 thin film 51 was laminated. Next, as shown in FIG. 3D, a photoresist film 6 was formed on a part of the SrTiO 3 film 51. Using the photoresist film 6 as a mask, FIG.
As shown in (e), the SrTiO 3 film 51 and the oxide superconducting thin film 1 were etched by Ar ion milling until the substrate 5 was exposed, thereby producing a gate insulating layer 52 and a superconducting channel 10.

【0038】図3(f)に示すよう、基板5の露出した部
分上にCeO2膜8を室温で成膜し、フォトレジスト膜上
の部分をリフトオフ法により除去した。最後に、図3
(g)に示すよう、ゲート電極4を蒸着法でゲート絶縁層5
2上にAgを使用して形成し、超電導電界効果型素子のゲ
ート構造が完成した。
As shown in FIG. 3F, a CeO 2 film 8 was formed on the exposed portion of the substrate 5 at room temperature, and the portion on the photoresist film was removed by a lift-off method. Finally, FIG.
As shown in (g), the gate electrode 4 is deposited on the gate insulating layer 5 by vapor deposition.
The gate structure of the superconducting field effect device was formed by using Ag on 2.

【0039】上記のゲート構造の超電導薄膜の臨界温度
を、SrTiO3膜51成膜直後と、ゲート構造作製後にそれ
ぞれAg電極を使用し、四端子法で測定した。上記本発明
の超電導薄膜の臨界温度は、作製直後に71.4Kで、加工
後に66.7Kであり、臨界温度の劣化は5K以下に抑えら
れた。また、超電導チャネル10の両端に接してソース電
極およびドレイン電極を設け、超電導電界効果型素子の
特性を測定した。
The critical temperature of the superconducting thin film having the above gate structure was measured by a four-terminal method using an Ag electrode immediately after the SrTiO 3 film 51 was formed and after the gate structure was formed. The critical temperature of the above-mentioned superconducting thin film of the present invention was 71.4K immediately after fabrication and 66.7K after processing, and the deterioration of the critical temperature was suppressed to 5K or less. Further, a source electrode and a drain electrode were provided in contact with both ends of the superconducting channel 10, and characteristics of the superconducting field effect element were measured.

【0040】図4に、素子のドレイン電流−電圧特性の
ゲート電圧依存性を示す。上記超電導電界効果型素子で
は、超電導電流の変調度は正極性で5%、負極性で10%
であった。また、図5に、トランスコンダクタンス(伝
達コンダクタンス)gm の値を規格化した温度の関数で
表して他の素子構造と比較したものを示す。上記本発明
の方法で作製された本発明の超電導薄膜を有する超電導
電界効果型素子は、最も優れた値を示した。
FIG. 4 shows the gate voltage dependence of the drain current-voltage characteristics of the device. In the superconducting field effect element, the modulation degree of the superconducting current is 5% for positive polarity and 10% for negative polarity.
Met. Further, FIG. 5 shows those expressed as a function of temperature normalized to the value of the transconductance (transconductance) g m compared to other device structures. The superconducting field effect element having the superconducting thin film of the present invention produced by the method of the present invention showed the most excellent value.

【0041】[0041]

【発明の効果】以上説明したように、本発明に従えば保
護層で被覆され、保護された酸化物超電導体層を有する
超電導薄膜が提供される。本発明の超電導薄膜は、超電
導素子に使用され、その保護層および酸化物超電導体層
の両方が超電導素子を構成する要素となる。また、保護
層上に金属層を配置し、保護層と合金を形成することに
より、金属層を酸化物超電導体層と電気的に接続された
電極とすることができる。
As described above, according to the present invention, there is provided a superconducting thin film having an oxide superconductor layer covered with a protective layer and protected. The superconducting thin film of the present invention is used for a superconducting element, and both the protective layer and the oxide superconducting layer are elements constituting the superconducting element. In addition, by disposing a metal layer on the protective layer and forming an alloy with the protective layer, the metal layer can be an electrode electrically connected to the oxide superconductor layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の超電導薄膜の臨界温度の変化を示す
グラフである。
FIG. 1 is a graph showing a change in critical temperature of a superconducting thin film of the present invention.

【図2】 従来の酸化物超電導薄膜の臨界温度の変化を
示すグラフである。
FIG. 2 is a graph showing a change in critical temperature of a conventional oxide superconducting thin film.

【図3】 本発明の超電導薄膜を使用して超電導電界効
果型素子のゲート構造を作製する工程を説明する断面図
である。
FIG. 3 is a cross-sectional view illustrating a step of manufacturing a gate structure of a superconducting field effect element using the superconducting thin film of the present invention.

【図4】 本発明の超電導薄膜を使用した超電導電界効
果型素子のドレイン電流−電圧特性のゲート電圧依存性
を示すグラフである。
FIG. 4 is a graph showing gate voltage dependence of drain current-voltage characteristics of a superconducting field effect element using the superconducting thin film of the present invention.

【図5】 本発明の超電導薄膜を使用した超電導電界効
果型素子のトランスコンダクタンス(伝達コンダクタン
ス)gm の値を規格化した温度の関数で表して他の素子
構造と比較した図である。
FIG. 5 is a diagram showing a transconductance (transfer conductance) g m value of a superconducting field effect element using the superconducting thin film of the present invention as a function of normalized temperature and comparing it with other element structures.

【符号の説明】[Explanation of symbols]

1 酸化物超電導薄膜 2 保護層 4 ゲート電極 5 基板 6 フォトレジスト DESCRIPTION OF SYMBOLS 1 Oxide superconducting thin film 2 Protective layer 4 Gate electrode 5 Substrate 6 Photoresist

フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 13/00 565 H01B 13/00 565D H01L 39/22 ZAA H01L 39/22 ZAAG (56)参考文献 特開 平7−45880(JP,A) 特開 平1−163918(JP,A) 特開 平1−126205(JP,A) 特開 平5−343754(JP,A) 特開 昭61−128545(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/24 H01L 39/00 H01B 12/06 H01B 13/00 565 H01L 39/22 H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768 Continuation of the front page (51) Int.Cl. 7 Identification code FI H01B 13/00565 H01B 13/00 565D H01L 39/22 ZAA H01L 39/22 ZAAG (56) References JP-A-7-45880 (JP, A JP-A-1-163918 (JP, A) JP-A-1-126205 (JP, A) JP-A-5-343754 (JP, A) JP-A-61-128545 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 39/24 H01L 39/00 H01B 12/06 H01B 13/00 565 H01L 39/22 H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超電導体層とこの酸化物超電導体
層の表面を被覆して周囲の雰囲気から保護するSrTi
3 、Ba x Sr 1-x TiO 3 およびBaTiO 3 の少なくとも1種の
酸化物で構成され、厚さ11nm以下で前記酸化物超電導体
層よりも薄い保護層を有することを特徴とする超電導薄
膜。
1. An oxide superconductor layer and SrTi for covering the surface of the oxide superconductor layer to protect it from the surrounding atmosphere.
At least one of O 3 , Ba x Sr 1-x TiO 3 and BaTiO 3
The oxide superconductor is composed of oxide and has a thickness of 11 nm or less.
A superconducting thin film having a protective layer thinner than a layer.
【請求項2】 前記保護層が、SrTiO3、BaxSr1-xTiO
3 およびBaTiO3の中の2種以上の酸化物の層の積層膜
で形成されていることを特徴とする請求項1に記載の超
電導薄膜。
2. The method according to claim 1, wherein the protective layer is made of SrTiO 3 , Ba x Sr 1-x TiO.
3 and superconducting thin film according to claim 1, characterized in that it is formed by a laminated film of two or more layers of oxide in the BaTiO 3.
【請求項3】 前記保護層が、BaxSr1-xTiO3 (ただし
0≦x≦1でxは酸化物超電導薄膜に接する側が大き
く、酸化物超電導薄膜から離れるに従って連続的に小さ
くなる)である酸化物で形成されていることを特徴とす
る請求項1に記載の超電導薄膜。
3. The protective layer is made of Ba x Sr 1-x TiO 3 (where 0 ≦ x ≦ 1, x is larger on the side in contact with the oxide superconducting thin film, and decreases continuously as the distance from the oxide superconducting thin film increases). The superconducting thin film according to claim 1, wherein the superconducting thin film is formed of an oxide.
【請求項4】 前記保護層上に金属層を有し、前記保護
層中にこの金属層の金属が熱拡散しており、前記金属層
と酸化物超電導体層とが前記保護層により電気的に接続
されていることを特徴とする請求項1〜3のいずれか1
項に記載の超電導薄膜。
4. The method according to claim 1, further comprising a metal layer on the protective layer,
In the layer has a metal thermal diffusion of the metal layer, any one of claims 1 to 3, and the metal layer and the oxide superconductor layer is characterized by being electrically connected by said protective layer 1
The superconducting thin film according to the above item.
【請求項5】 酸化物超電導体層と、この酸化物超電導
体層の表面を被覆して保護する酸化物の保護層と、保護
層上に配置されて保護層を介して酸化物超電導体層と電
気的に接続されている金属層とを有する超電導構造体を
作製する方法において、酸化物超電導薄膜を成膜後、同
一の成膜装置で真空環境を維持したまま酸化物薄膜を連
続して酸化物超電導薄膜上に成膜し、酸化物薄膜上に加
熱しながら金属層を形成し、酸化物薄膜と合金化させる
ことを特徴とする方法。
5. An oxide superconductor layer, an oxide protective layer for covering and protecting the surface of the oxide superconductor layer, and an oxide superconductor layer disposed on the protective layer with the protective layer interposed therebetween. In the method for producing a superconducting structure having a metal layer and a metal layer electrically connected to each other, after forming an oxide superconducting thin film, the oxide thin film is continuously formed while maintaining a vacuum environment in the same film forming apparatus. A method characterized in that a film is formed on an oxide superconducting thin film, a metal layer is formed on the oxide thin film while heating, and alloyed with the oxide thin film.
【請求項6】 酸化物超電導体層と、この酸化物超電導
体層の表面を被覆して保護する酸化物の保護層と、保護
層上に配置されて保護層を介して酸化物超電導体層と電
気的に接続されている金属層とを有する超電導構造体を
作製する方法において、酸化物超電導薄膜を成膜後、同
一の成膜装置で真空環境を維持したまま酸化物薄膜を連
続して酸化物超電導薄膜上に成膜し、酸化物薄膜上に金
属層を形成し、金属層を形成後加熱して酸化物薄膜と合
金化させることを特徴とする方法。
6. An oxide superconductor layer, an oxide protective layer for covering and protecting the surface of the oxide superconductor layer, and an oxide superconductor layer disposed on the protective layer via the protective layer. In the method for producing a superconducting structure having a metal layer and a metal layer electrically connected to each other, after forming an oxide superconducting thin film, the oxide thin film is continuously formed while maintaining a vacuum environment in the same film forming apparatus. A method comprising forming a film on an oxide superconducting thin film, forming a metal layer on the oxide thin film, heating the metal layer, and then alloying with the oxide thin film.
JP9231813A 1996-08-13 1997-08-13 Superconducting thin film and method for producing the same Expired - Lifetime JP3028793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9231813A JP3028793B2 (en) 1996-08-13 1997-08-13 Superconducting thin film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-231517 1996-08-13
JP23151796 1996-08-13
JP9231813A JP3028793B2 (en) 1996-08-13 1997-08-13 Superconducting thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10112560A JPH10112560A (en) 1998-04-28
JP3028793B2 true JP3028793B2 (en) 2000-04-04

Family

ID=26529923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231813A Expired - Lifetime JP3028793B2 (en) 1996-08-13 1997-08-13 Superconducting thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3028793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732390B2 (en) * 2007-03-26 2011-07-27 富士通株式会社 Manufacturing method of high-temperature superconducting device

Also Published As

Publication number Publication date
JPH10112560A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5215960A (en) Method for manufacturing oxide superconducting devices
EP0468868B1 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JP3028793B2 (en) Superconducting thin film and method for producing the same
JPS5846198B2 (en) Method for manufacturing oxide superconductor Josephson device
JP4380878B2 (en) Superconducting element and manufacturing method thereof
CA2212827C (en) Superconducting film structure comprising oxide superconductor layer and protective layer and method for preparing the same
JPH054828B2 (en)
EP0509886B1 (en) Process for patterning layered thin films including a superconductor layer
JPH0634411B2 (en) Superconducting device
JP2908346B2 (en) Superconducting structure
JP2544390B2 (en) Oxide superconducting integrated circuit
JP4104323B2 (en) Method for fabricating Josephson junction
JP2730336B2 (en) Manufacturing method of superconducting device
JP2691065B2 (en) Superconducting element and fabrication method
JP2819871B2 (en) Manufacturing method of superconducting device
JP2647280B2 (en) Manufacturing method of laminated film
JPH05190926A (en) Forming method of superconducting device and superconducting device formed by the same
JP2647251B2 (en) Superconducting element and fabrication method
JPS637675A (en) Manufacture of superconducting device
KR0163741B1 (en) Method for fabricating the ohmic contact electrode of semiconductor devices
JP2647279B2 (en) Manufacturing method of laminated film
JPH0613666A (en) Nb josephson junction device and its manufacture
JPS6331181A (en) Superconductive transistor and manufacture thereof
JPH05327049A (en) Manufacture of superconducting junction element
JPH05243628A (en) Josephson device and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000104