JP3027061B2 - Reaction measurement method - Google Patents

Reaction measurement method

Info

Publication number
JP3027061B2
JP3027061B2 JP4344400A JP34440092A JP3027061B2 JP 3027061 B2 JP3027061 B2 JP 3027061B2 JP 4344400 A JP4344400 A JP 4344400A JP 34440092 A JP34440092 A JP 34440092A JP 3027061 B2 JP3027061 B2 JP 3027061B2
Authority
JP
Japan
Prior art keywords
reaction
absorbance
time
measured
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4344400A
Other languages
Japanese (ja)
Other versions
JPH06194313A (en
Inventor
稔 稲次
彰夫 木村
進 斉藤
美好 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4344400A priority Critical patent/JP3027061B2/en
Publication of JPH06194313A publication Critical patent/JPH06194313A/en
Application granted granted Critical
Publication of JP3027061B2 publication Critical patent/JP3027061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生化学分析装置で使用
して好適な反応測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction measuring method suitable for use in a biochemical analyzer.

【0002】[0002]

【従来の技術】生化学分析装置においては、図3に示す
ように、透明な反応セル1の中に血清等の検体と所定の
試薬とを混合して発色反応を行わせ、それに光源2から
白色光を照射し、その透過光を分光器3で分光して当該
色素による吸光度を求め、それに基づいて測定すべき物
質の濃度を求めている。
2. Description of the Related Art In a biochemical analyzer, as shown in FIG. 3, a sample such as serum and a predetermined reagent are mixed in a transparent reaction cell 1 to perform a color-forming reaction. White light is emitted, and the transmitted light is separated by the spectroscope 3 to determine the absorbance of the dye, and the concentration of the substance to be measured is determined based on the absorbance.

【0003】測定対象の物質の濃度を求める方法として
は、従来はエンドポイント法とレート法の2種類の方法
が採用されている。エンドポイント法は、図4に示すよ
うに、発色反応による生成される色素の量が反応時間の
経過に伴って飽和する場合に用いられる方法であり、検
体と試薬とを十分反応させた後の最終吸光度Aに基づい
て測定対象物質の濃度を求める方法である。これに対し
て、レート法は、検体中の酵素活性を測定する場合のよ
うに、発色反応により生成される色素の量が反応時間の
経過と共に増大していく場合に用いられる方法であり、
この場合には図5に示すように、反応中に測定した吸光
度yに対して、一次関数y=at+bを最小二乗法によ
りで近似し、その結果求められる係数aの値に基づいて
測定対象物質の濃度を求めている。
Conventionally, as a method for obtaining the concentration of a substance to be measured, two methods, an end point method and a rate method, have been adopted. As shown in FIG. 4, the endpoint method is a method used when the amount of the dye generated by the color reaction is saturated with the elapse of the reaction time, and after the sample and the reagent are sufficiently reacted. This is a method for determining the concentration of the substance to be measured based on the final absorbance A. On the other hand, the rate method is a method used when the amount of a dye produced by a color reaction increases with the lapse of reaction time, such as when measuring enzyme activity in a sample,
In this case, as shown in FIG. 5, a linear function y = at + b is approximated by the least square method to the absorbance y measured during the reaction, and the substance to be measured is determined based on the value of the coefficient a obtained as a result. Is required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
濃度測定方法は精度の点で問題があった。即ち、エンド
ポイント法による濃度測定においては、反応時間を十分
長くとれる場合には良好な結果が得られるが、生化学分
析装置においては多くの検体に対してそれぞれ所定の物
質の濃度測定を行わなければならないので、一つの物質
の濃度測定に多くの時間を費やすことはできないもので
あり、その結果発色反応が完了する前に、例えば図4の
点Pで示すような時間に吸光度を測定し、そのときの吸
光度を最終吸光度Aとして当該物質の濃度を求めざるを
得ない場合が多く、その精度が問題となっていた。
However, the conventional concentration measuring method has a problem in accuracy. That is, in the concentration measurement by the end point method, good results can be obtained if the reaction time is sufficiently long. However, in the biochemical analyzer, the concentration measurement of a predetermined substance must be performed for many samples. Therefore, it is not possible to spend much time in measuring the concentration of one substance. As a result, before the color reaction is completed, the absorbance is measured at the time shown by a point P in FIG. In many cases, the absorbance at that time must be determined as the final absorbance A to determine the concentration of the substance, and the accuracy has been a problem.

【0005】また、レート法による濃度測定において
は、測定点の吸光度をプロットすると理論的には図5に
示すように一つの直線上にあるのであるが、実際には種
々の要因によって図6に示すように曲線を描く場合があ
り、このような場合には上記のような一次関数に近似す
ることは困難となり、その結果得られる濃度の精度は良
好なものではなくなるのである。
In the concentration measurement by the rate method, the absorbance at the measurement point is theoretically plotted on one straight line as shown in FIG. 5, but in actuality it is shown in FIG. 6 due to various factors. In some cases, a curve is drawn as shown, and in such a case, it is difficult to approximate the linear function as described above, and the accuracy of the density obtained as a result is not good.

【0006】本発明は、上記の課題を解決するものであ
って、測定対象物質の濃度を精度よく求めることができ
る反応測定方法を提供することを目的とするものであ
る。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a reaction measuring method capable of accurately determining the concentration of a substance to be measured.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の反応測定方法は、検体と試薬とをセル中
で反応させ、そのセルに光を照射し、透過光を測定し
て、検体中に含まれる所定の物質の量を測定する反応測
定方法であって、その反応の吸光度と時間の関係を、測
定データを用いて最小二乗法により、最終吸光度をA、
反応初期吸光度をB、反応速度定数をK、時間をt、検
体と試薬との反応による測定時の吸光度をyとして y=A+(B−A)/eKt で近似し、その結果得られた最終吸光度A、反応初期吸
光度B及び/または反応速度定数Kに基づいて測定すべ
き物質の量を求めることを特徴とする。
In order to achieve the above object, a reaction measuring method of the present invention comprises reacting a sample with a reagent in a cell, irradiating the cell with light, and measuring transmitted light. A reaction measurement method for measuring the amount of a predetermined substance contained in a sample, wherein the relationship between the absorbance of the reaction and time is determined by the least squares method using the measured data, and the final absorbance is A,
The initial absorbance of the reaction was B, the reaction rate constant was K, the time was t, and the absorbance at the time of measurement by the reaction between the sample and the reagent was y, which was approximated by y = A + ( BA ) / e Kt , and the result was obtained. The amount of the substance to be measured is determined based on the final absorbance A, the initial reaction absorbance B, and / or the reaction rate constant K.

【0008】[0008]

【作用】本発明においては、本来エンドポイント法によ
り測定すべき物質については勿論のこと、本体レート法
により測定すべき物質についても、その反応の吸光度と
時間との関係を、測定した時間と吸光度のデータを用い
て最小二乗法により y=A+(B−A)/eKt で近似する。ここで、yは測定した吸光度、Aは最終吸
光度、Bは反応初期吸光度、Kは反応速度定数、tは測
定時間である。そして、求められた最終吸光度A、反応
初期吸光度B、速度定数Kに基づいて測定対象物質の濃
度を求める。
In the present invention, the relationship between the absorbance and the time of the reaction is determined for the substance which should be measured by the end-point method and also for the substance which should be measured by the main body rate method. Is approximated by y = A + ( BA ) / e Kt by the least square method using the data of Here, y is the measured absorbance, A is the final absorbance, B is the initial absorbance of the reaction, K is the reaction rate constant, and t is the measurement time. Then, the concentration of the substance to be measured is determined based on the determined final absorbance A, initial reaction absorbance B, and rate constant K.

【0009】[0009]

【実施例】以下、図面を参照しつつ実施例を説明する。
図1は本発明に係る反応測定方法の処理のフローチャー
トであり、まず、反応セル中の検体に試薬を混合し、所
定の測定時間の範囲内に所定の回数測光する。これによ
り吸光度yn (n =1,2,…,m)と時間tn との組み合わ
せが所定個数得られる。そして、これらの測定データを
用いて、最小二乗法により吸光度yと時間tとの関係を y=A+(B−A)/eKt で近似する。この式は反応速度論から導き出されている
ものであり、Aは最終吸光度、Bは反応初期吸光度、K
は反応速度定数である。
Embodiments will be described below with reference to the drawings.
FIG. 1 is a flowchart of the process of the reaction measurement method according to the present invention. First, a reagent is mixed with a sample in a reaction cell, and photometry is performed a predetermined number of times within a predetermined measurement time. As a result, a predetermined number of combinations of the absorbance y n (n = 1, 2,..., M) and the time t n are obtained. Then, using these measurement data, the relationship between the absorbance y and the time t is approximated by y = A + ( BA ) / e Kt by the least square method. This formula is derived from the reaction kinetics, where A is the final absorbance, B is the initial absorbance of the reaction, K
Is the reaction rate constant.

【0010】以上のようにして上記の式が求められる
と、次に測定の対象になっている物質の濃度を演算する
が、当該物質が本来エンドポイント法により測定すべき
物質である場合には、最終吸光度Aから反応初期吸光度
Bを減算した(A−B)に所定の係数を乗算して濃度を
算出する。
When the above equation is obtained as described above, the concentration of the substance to be measured is calculated next. If the substance is a substance to be measured by the end point method, Then, the concentration is calculated by multiplying (AB) obtained by subtracting the initial absorbance B of the reaction from the final absorbance A (AB) by a predetermined coefficient.

【0011】また、当該物質が本来レート法により測定
すべき物質である場合には濃度を算出する方法として次
の二つの方法がある。まず、第1には、上記の式を時間
で微分して吸光度の時間変化率を求め、それに所定の時
間tO を代入し、更に所定の係数を乗算して濃度を算出
することができる。tO としてどのような時間を採用す
るかは実験的あるいは経験的に定めればよいものであ
る。
When the substance is a substance to be measured by the rate method, there are the following two methods for calculating the concentration. First, it is possible to calculate the concentration by differentiating the above equation with time to obtain a rate of change in absorbance with time, substituting a predetermined time t O therefor, and further multiplying by a predetermined coefficient. The time to be used as t O can be determined experimentally or empirically.

【0012】また、第2の方法として、上記の式に特定
の異なる二つの時間tP1,tP2(>tP1)を代入し、そ
のときの吸光度yP1,yP2を求め、(yP2−yP1)/
(tP2−tP1)の演算を行って時間tP1〜tP2における
吸光度の時間変化率を求め、それに所定の係数を乗算し
て濃度を求める方法がある。なお、tP1,tP2としてど
のような時間を採用するかは実験的あるいは経験的に定
めればよいものである。上記の第1の方法を採用する
か、第2の方法を採用するかは任意である。
As a second method, two specific times t P1 and t P2 (> t P1 ) are substituted into the above equation, and the absorbances y P1 and y P2 at that time are obtained, and (y P2 −y P1 ) /
(T P2 -t P1) performs operation determined time rate of change of the absorbance at time t P1 ~t P2 of, there is a method to determine the concentration it is multiplied by a predetermined coefficient. The time to be used as t P1 and t P2 may be determined experimentally or empirically. Employment of the first method or the second method is optional.

【0013】なお、上記の例では反応速度定数Kは測定
したデータから求めるものとしたが、このKの値は反応
系が一定であるなら一定の値になることが分かっている
ので、予め標準試料を用いた測定を行ってKを定めてお
き、測定すべき検体の測定時に定数として扱うこともで
きるものである。
In the above example, the reaction rate constant K is determined from the measured data. However, it is known that the value of K is constant if the reaction system is constant. It is also possible to determine K by performing measurement using a sample and treat it as a constant when measuring a sample to be measured.

【0014】次に、本発明の反応測定方法を採用した生
化学分析装置の構成について図2を参照して説明する。
なお、図3と同等の構成要素については同一の符号を付
す。
Next, the configuration of a biochemical analyzer employing the reaction measurement method of the present invention will be described with reference to FIG.
Note that the same components as those in FIG. 3 are denoted by the same reference numerals.

【0015】図2において、反応セル1には検体と所定
の試薬が混合されており、そこに光源2から白色光が照
射される。そして反応セル1を透過した光は分光器3で
分光され、波長毎に吸光度が測定される。そして、測定
された吸光度の値はアナログ/デジタル変換器(AD
C)4によってデジタル化され、測定時間と対になされ
てメモリ5に書き込まれる。
In FIG. 2, a specimen and a predetermined reagent are mixed in a reaction cell 1, and white light is emitted from a light source 2 to the mixture. The light transmitted through the reaction cell 1 is separated by the spectroscope 3, and the absorbance is measured for each wavelength. The measured absorbance value is converted to an analog / digital converter (AD
C) digitized by 4 and paired with the measurement time and written to memory 5;

【0016】演算部6は適宜のプロセッサ及びその周辺
回路で構成されるものであり、メモリに書き込まれた吸
光度と時間の値を用いて最小二乗法により、吸光度yと
時間tの関係を y=A+(B−A)/eKt で近似する。ここで、Aは最終吸光度、Bは反応初期吸
光度、Kは反応速度定数である。
The arithmetic unit 6 is composed of an appropriate processor and its peripheral circuits. The relation between the absorbance y and the time t is calculated by the least square method using the absorbance and the time value written in the memory. Approximate by A + ( BA ) / eKt . Here, A is the final absorbance, B is the initial absorbance of the reaction, and K is the reaction rate constant.

【0017】そして、演算部6には、いま測定すべき物
質がエンドポイント法で測定すべきものか、レート法で
測定すべきものであるかは予め登録されており、エンド
ポイント法で測定すべき物質である場合には、求められ
た最終吸光度Aの値に所定の係数を乗算して濃度を算出
し、レート法により測定すべき物質である場合には、最
小二乗近似で求めた上式を時間微分してそれに予め設定
されている所定の時間を代入し、得られた値に所定の係
数を乗算して濃度を算出する。
Whether the substance to be measured now is to be measured by the end point method or the substance to be measured by the rate method is registered in advance in the calculation unit 6, and the substance to be measured by the end point method is registered in advance. , The concentration is calculated by multiplying the obtained value of the final absorbance A by a predetermined coefficient, and if the substance is to be measured by the rate method, the above equation obtained by the least squares approximation is calculated as Differentiation is performed, a predetermined time set in advance is substituted for the obtained value, and the obtained value is multiplied by a predetermined coefficient to calculate the density.

【0018】なお、いま測定しようとしている物質がレ
ート法により測定すべき物質である場合には、最小二乗
近似で求めた上式に予め設定されている二つの時間
P1,tP2(>tP1)を代入し、そのときの吸光度
P1,yP2を求め、(yP2−yP1)/(tP2−tP1)の
演算を行って時間tP1〜tP2における吸光度の時間変化
率を求め、それに所定の係数を乗算して濃度を求めるよ
うにしてもよいものである。
When the substance to be measured is a substance to be measured by the rate method, the two times t P1 and t P2 (> t substituting P1), the absorbance y P1, y P2 at that time determined, (y P2 -y P1) / (t P2 -t P1) time rate of change of absorbance at performs operation time t P1 ~t P2 of , And a predetermined coefficient may be multiplied to obtain the density.

【0019】以上、本発明の実施例について説明した
が、本発明は上記実施例に限定されるものではなく種々
の変形が可能である。例えば、上記実施例では反応セル
を透過した光を分光器3で分光して検出するようにした
が、光源2と反応セル1との間に分光器を配置し、分光
された光が反応セルを透過して検出されるように構成し
てもよいものである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible. For example, in the above-described embodiment, the light transmitted through the reaction cell is spectrally detected by the spectroscope 3 and detected. However, a spectroscope is disposed between the light source 2 and the reaction cell 1 so that the separated light is reflected on the reaction cell. And may be configured to be detected by transmitting through.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、複数の測定点のデータを用いて、反応速度論
から導き出されている上記の式に近似し、その結果得ら
れた係数の値に基づいて濃度を求めるので、測定対象物
質の濃度を精度よく求めることができる。
As is clear from the above description, according to the present invention, the data obtained at a plurality of measurement points were used to approximate the above equation derived from the reaction kinetics, and the result was obtained. Since the concentration is obtained based on the value of the coefficient, the concentration of the substance to be measured can be obtained with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の反応測定方法の処理を説明するため
のフローチャートである。
FIG. 1 is a flowchart for explaining a process of a reaction measurement method of the present invention.

【図2】 本発明の反応測定方法を採用した生化学分析
装置の構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of a biochemical analyzer employing the reaction measurement method of the present invention.

【図3】 生化学分析を説明するための図である。FIG. 3 is a diagram for explaining biochemical analysis.

【図4】 エンドポイント法による濃度測定を説明する
ための図である。
FIG. 4 is a diagram for explaining concentration measurement by an end point method.

【図5】 レート法による濃度測定を説明するための図
である。
FIG. 5 is a diagram for explaining concentration measurement by a rate method.

【図6】 従来の濃度測定方法の問題点を説明するため
の図である。
FIG. 6 is a diagram for explaining a problem of a conventional concentration measuring method.

【符号の説明】[Explanation of symbols]

1…反応セル、2…光源、3…分光器、4…ADC、5
…メモリ、6…演算部。
DESCRIPTION OF SYMBOLS 1 ... Reaction cell, 2 ... Light source, 3 ... Spectroscope, 4 ... ADC, 5
... Memory, 6...

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田邊 美好 東京都昭島市武蔵野三丁目1番2号 日 本電子株式会社内 (58)調査した分野(Int.Cl.7,DB名) G01N 21/75 G01N 31/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Miyoshi Tanabe 3-1-2 Musashino, Akishima-shi, Tokyo Japan Electronics Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21 / 75 G01N 31/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検体と試薬とをセル中で反応させ、その
セルに光を照射し、透過光を測定して、検体中に含まれ
る所定の物質の量を測定する反応測定方法であって、そ
の反応の吸光度と時間の関係を、測定データを用いて最
小二乗法により、最終吸光度をA、反応初期吸光度を
B、反応速度定数をK、時間をt、検体と試薬との反応
による測定時の吸光度をyとして y=A+(B−A)/eKt で近似し、その結果得られた最終吸光度A、反応初期吸
光度B及び/または反応速度定数Kに基づいて測定すべ
き物質の量を求めることを特徴とする反応測定方法。
1. A reaction measurement method comprising reacting a sample and a reagent in a cell, irradiating the cell with light, measuring transmitted light, and measuring the amount of a predetermined substance contained in the sample. The relationship between the absorbance of the reaction and the time is measured by the least squares method using the measured data, and the final absorbance is A, the initial reaction absorbance is B, the reaction rate constant is K, the time is t, and the measurement is performed by the reaction between the sample and the reagent. The amount of the substance to be measured based on the final absorbance A, the initial reaction absorbance B and / or the reaction rate constant K obtained by approximating y = A + ( BA ) / e Kt with the absorbance at the time as y. A reaction measurement method characterized by determining
JP4344400A 1992-12-24 1992-12-24 Reaction measurement method Expired - Lifetime JP3027061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344400A JP3027061B2 (en) 1992-12-24 1992-12-24 Reaction measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344400A JP3027061B2 (en) 1992-12-24 1992-12-24 Reaction measurement method

Publications (2)

Publication Number Publication Date
JPH06194313A JPH06194313A (en) 1994-07-15
JP3027061B2 true JP3027061B2 (en) 2000-03-27

Family

ID=18368962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344400A Expired - Lifetime JP3027061B2 (en) 1992-12-24 1992-12-24 Reaction measurement method

Country Status (1)

Country Link
JP (1) JP3027061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431731A4 (en) * 2009-05-11 2017-12-06 Hitachi High-Technologies Corporation Automatic analysis device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357494B2 (en) * 1995-02-13 2002-12-16 日本電子株式会社 Biochemical analyzer
DE19640121B4 (en) * 1996-09-28 2007-04-26 Dade Behring Marburg Gmbh Method for determining a time-dependent variable to be measured
JP2006337125A (en) * 2005-06-01 2006-12-14 Hitachi High-Technologies Corp Automatic analyzer, and analysis method using the automatic analyzer
US8119412B2 (en) * 2007-06-05 2012-02-21 Ecolab Usa Inc. Kinetic determination of peracid and/or peroxide concentrations
JP4654256B2 (en) * 2008-02-28 2011-03-16 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5193937B2 (en) * 2009-05-08 2013-05-08 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method
JP5599219B2 (en) 2010-04-20 2014-10-01 株式会社日立ハイテクノロジーズ Automatic analyzer and automatic analysis method
JP5216051B2 (en) * 2010-06-23 2013-06-19 株式会社日立ハイテクノロジーズ Automatic analyzer and automatic analysis method
EP3435089A1 (en) * 2011-11-11 2019-01-30 Axis-Shield AS Determination of non-hdl cholesterol in blood
WO2016147527A1 (en) * 2015-03-19 2016-09-22 テルモ株式会社 Component measurement device set and body fluid measurement chip
CN108474794B (en) * 2016-01-12 2022-02-11 泰尔茂株式会社 Component measuring device, component measuring method, and computer-readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431731A4 (en) * 2009-05-11 2017-12-06 Hitachi High-Technologies Corporation Automatic analysis device

Also Published As

Publication number Publication date
JPH06194313A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
CA1127865A (en) Method and device for analysis with color identification test paper
JP3027061B2 (en) Reaction measurement method
US3881992A (en) Optical rate measurement method
US3645691A (en) Method of quantitatively determining iodine and thyroid hormones
JPH0746111B2 (en) Sample analysis method and automatic analyzer using the same
JPS58109837A (en) Compensating method of calibration curve
JPH02216032A (en) Test carrier analysis and apparatus used therefor
US8068217B2 (en) Apparatus for testing component concentration of a test sample
JP3203798B2 (en) How to measure chromogen
US4939095A (en) Automatic chemical analyzer
US4318615A (en) Automatic rate analyzing method
US4877583A (en) Fluorescent analyzer
Harnly et al. Computer software for a simultaneous multi-element atomic-absorption spectrometer
JP2636051B2 (en) Particle measurement method and device
JPH0245150B2 (en)
JPH1073534A (en) Equipment for determining color developing matter
Ackers et al. Equilibrium gel permeation: a single-photon counting spectrophotometer for studies of protein interaction
JP3279756B2 (en) Quantitative calculator
JPH0257863B2 (en)
WO2024046267A1 (en) Method and apparatus for detecting prozone phenomenon in sample under test based on curvature of reaction curve
JPH0290041A (en) Method and apparatus for spectrochemical analysis
JP2611308B2 (en) Water determination using Karl Fischer reagent
JP3204697B2 (en) Automatic analysis method
JPS55106360A (en) Automatic chemical analyzer
JPH02223859A (en) Biochemical analysis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

EXPY Cancellation because of completion of term