JP3025096B2 - Fluorescence analysis - Google Patents

Fluorescence analysis

Info

Publication number
JP3025096B2
JP3025096B2 JP4082939A JP8293992A JP3025096B2 JP 3025096 B2 JP3025096 B2 JP 3025096B2 JP 4082939 A JP4082939 A JP 4082939A JP 8293992 A JP8293992 A JP 8293992A JP 3025096 B2 JP3025096 B2 JP 3025096B2
Authority
JP
Japan
Prior art keywords
substance
measured
fluorescent
fluorescence
biotin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4082939A
Other languages
Japanese (ja)
Other versions
JPH05249115A (en
Inventor
猛 小林
信司 飯島
憲一 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP4082939A priority Critical patent/JP3025096B2/en
Publication of JPH05249115A publication Critical patent/JPH05249115A/en
Application granted granted Critical
Publication of JP3025096B2 publication Critical patent/JP3025096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩基性条件下で蛍光物
質に最大励起波長より長波長である複数の種類のレーザ
ー光を照射すると、多光子吸収によって該蛍光物質が励
起され、吸収した光より短波長の蛍光を放射することを
利用して、小型の装置を用いて高感度に蛍光分析を行う
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for irradiating a fluorescent substance with a plurality of types of laser light having a wavelength longer than the maximum excitation wavelength under basic conditions, whereby the fluorescent substance is excited and absorbed by multiphoton absorption. The present invention relates to a method for performing fluorescence analysis with high sensitivity using a small device by utilizing emission of fluorescence having a shorter wavelength than light.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
蛍光性の生体試料、または蛍光色素で標識された生体試
料を蛍光分析法により分析するには、蛍光物質、特にフ
ルオレセイン、クマリン誘導体などに300〜600nm
の近紫外〜可視光を励起光として照射し、生じた蛍光を
測定して分析していた。しかし、このような従来の方法
の場合、一般に励起光と蛍光の波長差が20〜90nmし
かないので、蛍光分析を行う際、余分な励起光を吸収除
去するためのカットフィルターに一部蛍光も吸収損失を
受けるため、分析感度を充分に上げることが困難であっ
た。
2. Description of the Related Art
In order to analyze a fluorescent biological sample or a biological sample labeled with a fluorescent dye by a fluorescent analysis method, a fluorescent substance, particularly fluorescein, a coumarin derivative, or the like is used for 300 to 600 nm
Was irradiated as excitation light, and the resulting fluorescence was measured and analyzed. However, in the case of such a conventional method, since the wavelength difference between the excitation light and the fluorescence is generally only 20 to 90 nm, when performing the fluorescence analysis, a part of the fluorescence is also added to the cut filter for absorbing and removing excess excitation light. Due to absorption loss, it was difficult to sufficiently increase the analytical sensitivity.

【0003】一方、蛍光分析のための励起光源は、出力
が大きく、単色光であることが望ましく、また、その分
析装置を小型化し易くするために、励起光源は当然小型
であることが望ましい。これらの要求を満たしている光
源は半導体レーザーであるが、300〜600nm領域で
は励起光源として使用できる半導体レーザーがなかっ
た。
On the other hand, an excitation light source for fluorescence analysis preferably has a large output and is monochromatic light, and it is naturally desirable that the excitation light source be small in size in order to facilitate downsizing of the analyzer. A light source that satisfies these requirements is a semiconductor laser, but no semiconductor laser can be used as an excitation light source in the 300 to 600 nm region.

【0004】[0004]

【課題を解決するための手段】本発明者は、特願平3−
287858号において、塩基性条件下で蛍光物質を最
大励起波長の約2倍の波長(2λ±100(mm) )のレ
ーザー光で励起し、蛍光を測定する方法を見い出した
が、本発明はこれをさらに発展させ、最大励起波長より
小さいエネルギーの光子を複数個吸収して、1個の光子
を放出する、いわゆる多光子吸収による蛍光放射を測定
する方法に関する。
Means for Solving the Problems The present inventor has disclosed in Japanese Patent Application No. Hei.
In 287858, a method for exciting a fluorescent substance with a laser beam having a wavelength (2λ ± 100 (mm)) about twice the maximum excitation wavelength under basic conditions to measure fluorescence has been found. The present invention relates to a method for measuring fluorescence emission by so-called multiphoton absorption, in which a plurality of photons having energy smaller than the maximum excitation wavelength are absorbed and one photon is emitted.

【0005】すなわち、従来の300〜600nmの励起
光で蛍光を発する物質は、塩基性条件下では、最大励起
波長より長波長の光でも下記数式及びを満たすよう
な波長の集合ならば、各々の光を吸収して励起すること
ができる。そのときの蛍光物質は電子状態と振動状態の
相互作用によって生じるビブロニック状態を中間状態と
して経由すると考えられるので、300〜600nmで励
起されたときに放射される蛍光と同波長で、同程度の強
度を持った蛍光を発することができる。
That is, under basic conditions, a conventional substance which emits fluorescence by excitation light of 300 to 600 nm has a wavelength longer than the maximum excitation wavelength as long as it is a set of wavelengths satisfying the following formula and It can absorb and excite light. Since the fluorescent substance at that time is considered to pass through the vibronic state generated by the interaction between the electronic state and the vibration state as an intermediate state, the fluorescent substance has the same wavelength and the same intensity as the fluorescent light emitted when excited at 300 to 600 nm. Can emit fluorescent light.

【0006】この結果、市販の長波長発振の半導体レー
ザーにより高効率で蛍光物質を励起できるようになった
ため、分析装置を小型化することが可能となった。また
フィルターによる蛍光の吸収損失を低く抑えることがで
きるため、高感度化が実現できることを見いだした。
As a result, a fluorescent substance can be excited with high efficiency by a commercially available semiconductor laser having a long wavelength oscillation, so that the size of the analyzer can be reduced. In addition, the inventors have found that high sensitivity can be realized because the absorption loss of fluorescence by the filter can be suppressed low.

【0007】本発明で述べる最大励起波長(λnm) と
は、塩基性条件下で一光子吸収により発する蛍光の強度
が最大となる励起波長である。最大励起波長は主に塩基
性条件下における蛍光物質の極大吸収波長に相当する。
また、複数個の光子の吸収は2個以上の光子の吸収を意
味し、より好ましくは2個の光子の吸収(二光子吸収)
である。
The maximum excitation wavelength (λ nm) described in the present invention is an excitation wavelength at which the intensity of fluorescence emitted by one-photon absorption under basic conditions becomes maximum. The maximum excitation wavelength mainly corresponds to the maximum absorption wavelength of the fluorescent substance under basic conditions.
Further, the absorption of a plurality of photons means the absorption of two or more photons, and more preferably the absorption of two photons (two-photon absorption).
It is.

【0008】本発明において、数式及びを満たせ
ば、1種類の波長だけを励起波長として使用することが
できる。この場合、
In the present invention, only one type of wavelength can be used as the excitation wavelength, provided that the mathematical formulas and are satisfied. in this case,

【0009】[0009]

【数3】 (Equation 3)

【0010】[0010]

【数4】 (Equation 4)

【0011】を満たさなければならない。本発明の方法
は、次のような蛍光分析に利用することができる。
Must be satisfied. The method of the present invention can be used for the following fluorescence analysis.

【0012】(1)蛍光性被測定物質を、塩基性条件下
で、数式及びを満たす該蛍光物質の最大励起波長よ
り長波長の複数のレーザー光で励起し、蛍光を測定する
ことを特徴とする蛍光分析法。
(1) A fluorescent substance to be measured is excited under a basic condition by a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance which satisfies the formula and the fluorescence is measured. Fluorescence analysis.

【0013】(2)光ファイバー表面に免疫物質を固定
化し、 (a)該表面の免疫物質に対して、被測定物質、及び蛍
光物質で標識された被測定物質と同一の免疫反応を示す
物質を競合的に反応させるか、あるいは(b)該表面の
免疫物質に被測定物質を免疫反応させ、次いで蛍光物質
で標識された被測定物質と免疫反応する物質を反応させ
た後、塩基性条件下で、数式及びを満たす該蛍光物
質の最大励起波長より長波長の複数のレーザー光で励起
し、蛍光を測定することを特徴とする蛍光免疫分析法。
(2) An immunological substance is immobilized on the surface of an optical fiber, and (a) a substance exhibiting the same immune reaction as the substance to be measured and the substance to be measured labeled with a fluorescent substance is applied to the immunological substance on the surface. After a competitive reaction, or (b) immunoreacting the substance to be measured with the immune substance on the surface and then reacting a substance immunoreactive with the substance to be measured labeled with a fluorescent substance, A fluorescence immunoassay method characterized in that the fluorescence is measured by exciting with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance that satisfies the formula and the above.

【0014】(3)光ファイバー表面に免疫物質を固定
化し、 (a)該表面の免疫物質に対して、被測定物質、及びビ
オチンが結合した被測定物質と同一の免疫反応を示す物
質を競合的に反応させるか、あるいは(b)該表面の免
疫物質と被測定物質を免疫反応させ、次いでビオチンが
結合した被測定物質に免疫反応する物質を反応させた
後、蛍光物質で標識されたアビジンを反応させ、塩基性
条件下で、数式及びを満たす該蛍光物質の最大励起
波長より長波長の複数のレーザー光で励起し、蛍光を測
定することを特徴とする蛍光免疫分析法。
(3) Immobilizing an immunological substance on the surface of an optical fiber; (a) Competitively reacting the immunological substance on the surface with a substance to be measured and a substance showing the same immune reaction as the substance to be measured to which biotin is bound Or (b) immunoreacting the immunological substance on the surface with the analyte and then reacting the immunoreactive substance with the analyte to which biotin is bound, and then avidin labeled with a fluorescent substance is reacted with A fluorescent immunoassay method comprising reacting, under basic conditions, exciting with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance satisfying the mathematical formula and measuring the fluorescence.

【0015】蛍光物質としては、塩基に可溶性のフルオ
レセイン、クマリン誘導体、ローダミンB、ダンシル誘
導体などがあげられる。塩基性条件はpH8〜13が望
ましく、pHがこれより高くなると蛍光物質の加水分解
の恐れがあり、好ましくない。
Examples of the fluorescent substance include base-soluble fluorescein, coumarin derivatives, rhodamine B, dansyl derivatives and the like. The basic condition is desirably pH 8 to 13. If the pH is higher than this, the fluorescent substance may be hydrolyzed, which is not preferable.

【0016】方法(1)は、蛍光性被測定物質を、塩基
性条件下で、数式及びを満たす該蛍光物質の最大励
起波長より長波長の複数のレーザー光で励起し、蛍光を
測定するものである(実施例1参照)。蛍光性被測定物
質は、蛍光標識された被測定物質であってもよい。この
場合、被測定物質を蛍光標識する方法としては蛍光物質
を直接結合させる方法や、被測定物質と特異的に結合す
る物質またはアビジン−ビオチン等を介して結合させる
方法がある。
The method (1) comprises measuring a fluorescence by exciting a fluorescent substance to be measured under basic conditions with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance satisfying the formula and (See Example 1). The fluorescent substance to be measured may be a fluorescently labeled substance to be measured. In this case, as a method of fluorescently labeling the substance to be measured, there are a method of directly binding the fluorescent substance and a method of binding via a substance that specifically binds to the substance to be measured or avidin-biotin.

【0017】方法(2)は、競合法(a)とサンドイッ
チ法(b)に大別される。
The method (2) is roughly classified into a competitive method (a) and a sandwich method (b).

【0018】競合法(a)では、濃度既知である塩基に
可溶性の蛍光性物質で標識された被測定物質と同一の免
疫反応を示す物質(例えば抗原)と被測定物質とを混合
し、次いでこの溶液に免疫物質(例えば抗体)を固定化
した光ファイバーを浸漬し、競合的に反応させる。競合
法では、被測定物質の濃度が高いほど、蛍光性物質で標
識された被測定物質の光ファイバーへの結合量が少ない
ので、蛍光強度は低くなる(実施例2、4、6参照)。
In the competitive method (a), a substance (for example, an antigen) which shows the same immunoreactivity as the substance labeled with a fluorescent substance soluble in a base having a known concentration and a substance to be measured are mixed. An optical fiber on which an immunological substance (for example, an antibody) is immobilized is immersed in this solution to react competitively. In the competition method, the higher the concentration of the analyte, the lower the amount of binding of the analyte labeled with the fluorescent substance to the optical fiber, and thus the lower the fluorescence intensity (see Examples 2, 4, and 6).

【0019】サンドイッチ法(b)では、被測定物質
(例えば抗原)の溶液に免疫物質(例えば抗体)を固定
化した光ファイバーを浸漬して反応させ(抗原抗体反
応)、次いでこの光ファイバーを塩基に可溶性の蛍光性
物質で標識された被測定物質と免疫反応する物質(例え
ば抗体)の溶液に浸漬して反応させる。サンドイッチ法
では、光ファイバー上の免疫物質と、蛍光物質で標識さ
れた被測定物質と免疫反応する物質で、被測定物質がサ
ンドイッチされた状態となる。従って、この方法では被
測定物質の濃度が高いほど蛍光物質で標識された被測定
物質と免疫反応する物質の光ファイバーへの結合量も多
くなるので、蛍光強度は高くなる(実施例3、5、7参
照)。
In the sandwich method (b), an optical fiber on which an immunological substance (for example, an antibody) is immobilized is immersed in a solution of a substance to be measured (for example, an antigen) and reacted (antigen-antibody reaction), and then this optical fiber is dissolved in a base. And immersed in a solution of a substance (for example, an antibody) immunoreactive with the substance to be measured labeled with a fluorescent substance. In the sandwich method, the substance to be measured is sandwiched between the immunological substance on the optical fiber and the substance immunoreactive with the substance to be measured labeled with a fluorescent substance. Therefore, in this method, as the concentration of the analyte increases, the amount of the substance that immunoreacts with the analyte labeled with the fluorescent substance binds to the optical fiber, and the fluorescence intensity increases (Examples 3, 5, 7).

【0020】方法(2)によって被測定物質の濃度を測
定する場合、測定感度を向上させるために、免疫物質
(抗原または抗体)1分子当りの蛍光物質の結合量を増
やす必要がある。このため被測定物質と同一の免疫反応
を示す物質または被測定物質と免疫反応する物質がビオ
チンと結合し、該ビオチンは蛍光物質で標識されたアビ
ジンと結合しているか、あるいは複数の反応活性基を有
する物質に結合し、該複数の反応活性基にはビオチンを
介して塩基に可溶性の蛍光物質で標識されたアビジンが
結合していることが好ましい。
When the concentration of the substance to be measured is measured by the method (2), it is necessary to increase the binding amount of the fluorescent substance per molecule of the immunological substance (antigen or antibody) in order to improve the measurement sensitivity. Therefore, a substance exhibiting the same immune reaction as the substance to be measured or a substance immunoreactive with the substance to be measured is bound to biotin, and the biotin is bound to avidin labeled with a fluorescent substance, or a plurality of reactive groups. It is preferable that avidin labeled with a fluorescent substance soluble in a base is bound to the plurality of reactive groups via biotin.

【0021】これらの方法では、被測定物質と同一の免
疫反応を示す物質または被測定物質と免疫反応する物質
に蛍光物質で標識されたアビジンが多数結合しているの
で、被測定物質と同一の免疫反応を示す物質または被測
定物質と免疫反応する物質の1分子当りの蛍光物質の結
合量を増加させることができる。その結果、検出感度を
飛躍的に向上させるのに役立つ。アビジンとビオチンは
これらと同様の作用を有する化合物の組で置き換えるこ
とができる。例えば抗体−プロテインAなどである。
In these methods, since a large number of avidin labeled with a fluorescent substance is bound to a substance exhibiting the same immunoreactivity as the substance to be measured or a substance immunoreactive with the substance to be measured, the same substance as the substance to be measured is used. It is possible to increase the amount of the fluorescent substance bound per molecule of the substance exhibiting an immune reaction or the substance immunoreacting with the substance to be measured. As a result, it is useful to dramatically improve the detection sensitivity. Avidin and biotin can be replaced by a set of compounds having similar effects. For example, antibody-protein A and the like.

【0022】複数の反応活性基を有する物質としては、
ポリリジン、キトサン、ポリガラクトサミン、ポリノイ
ラミン酸のようなポリペプチド、またはアミノグリカン
などが用いられ、特にキトサンが好適である。反応活性
基は1分子当り20〜10万個、好ましくは4000〜
5000個が存在していることが望ましい。
Examples of the substance having a plurality of reactive groups include:
Polypeptides such as polylysine, chitosan, polygalactosamine and polyneuraminic acid, or aminoglycans are used, and chitosan is particularly preferred. 200 to 100,000 reactive active groups per molecule, preferably 4000 to 100
Desirably, there are 5,000.

【0023】方法(3)は不安定な蛍光物質を用いる場
合に適し、この方法にも、競合法(a)とサンドイッチ
法(b)がある。アビジンとビオチンが特異的に結合す
ることを利用して、ビオチンが直接結合しているか、あ
るいは複数の反応活性基にビオチンの結合した複数の反
応活性基を有する物質が結合している被測定物質と同一
の免疫反応を示す物質、または、被測定物質と免疫反応
する物質を光ファイバー上で先に免疫反応させ、次いで
蛍光物質で標識されたアビジンを結合させるものであ
る。これはある種の蛍光物質が水溶液中で加水分解や酸
化を受けやすいため、標識を測定直前に行えば蛍光物質
の減少が低く抑えられるからである。
The method (3) is suitable when an unstable fluorescent substance is used, and also includes a competitive method (a) and a sandwich method (b). Utilizing the specific binding of avidin and biotin, a substance to be measured in which biotin is directly bound or in which a substance having a plurality of reactive groups with biotin bound to a plurality of reactive groups is bound A substance exhibiting the same immune reaction as described above or a substance immunoreacting with the substance to be measured is first subjected to an immunoreaction on an optical fiber, and then avidin labeled with a fluorescent substance is bound thereto. This is because a certain fluorescent substance is susceptible to hydrolysis or oxidation in an aqueous solution, so that if the label is performed immediately before the measurement, the decrease in the fluorescent substance can be suppressed to a low level.

【0024】競合法(a)では、被測定物質とビオチン
が結合した被測定物質と同一の免疫反応を示す物質を混
合し、この溶液に免疫物質を固定化した光ファイバーを
浸漬して、競合的に免疫反応させる。次いで蛍光物質で
標識されたアビジンを反応させると、ビオチン−アビジ
ンを介して被測定物質と同一の免疫反応を示す物質が蛍
光物質で標識される。競合法では、被測定物質の濃度が
高いほど、蛍光性物質で標識された被測定物質の光ファ
イバーへの結合量が少ないので、蛍光強度は低くなる
(実施例8、10参照)。
In the competitive method (a), a substance to be measured and a substance exhibiting the same immunoreactivity as the substance to which biotin is bound are mixed, and an optical fiber on which the immunological substance is immobilized is immersed in this solution. Immune reaction. Next, when avidin labeled with a fluorescent substance is reacted, a substance exhibiting the same immunoreactivity as the substance to be measured is labeled with the fluorescent substance via biotin-avidin. In the competition method, the higher the concentration of the analyte, the lower the amount of binding of the analyte labeled with the fluorescent substance to the optical fiber, and thus the lower the fluorescence intensity (see Examples 8 and 10).

【0025】サンドイッチ法(b)では、被測定物質溶
液に免疫物質を固定化した光ファイバーを浸漬して免疫
反応させ、光ファイバー上の免疫物質と被測定物質を結
合させる。次いでこの光ファイバーをビオチンが結合し
た被測定物質と免疫反応する物質の溶液に浸漬する。光
ファイバー上の免疫物質と、ビオチンの結合した被測定
物質と免疫反応する物質が被測定物質をサンドイッチし
た状態で結合される。次にこの光ファイバーを塩基に可
溶性の蛍光物質で標識されたアビジンの溶液に浸漬する
と、ビオチン−アビジンを介して被測定物質と免疫反応
する物質が蛍光物質で標識される。サンドイッチ法では
被測定物質の濃度が高いほど蛍光物質で標識された被測
定物質と免疫反応する物質の光ファイバーへの結合量も
多くなるので、蛍光強度は高くなる(実施例9、11参
照)。
In the sandwich method (b), an optical fiber on which an immunological substance is immobilized is immersed in a substance to be measured solution to cause an immunoreaction, and the immunological substance on the optical fiber and the substance to be measured are bound. Next, this optical fiber is immersed in a solution of a substance immunoreactive with the substance to be measured to which biotin is bound. The immunological substance on the optical fiber and the substance immunoreactive with the biotin-bound substance to be measured are bound in a state where the substance to be measured is sandwiched. Next, when this optical fiber is immersed in a solution of avidin labeled with a fluorescent substance soluble in a base, a substance immunoreacting with the substance to be measured via biotin-avidin is labeled with the fluorescent substance. In the sandwich method, the higher the concentration of the substance to be measured, the larger the amount of a substance immunoreactive with the substance to be measured labeled with a fluorescent substance, which binds to the optical fiber, so that the fluorescence intensity increases (see Examples 9 and 11).

【0026】ビオチンは、方法(2)で述べた複数の反
応活性基を有する物質を介して被測定物質と同一の免疫
反応を示す物質または被測定物質と免疫反応する物質と
結合していることが望ましい。アビジンとビオチンはこ
れらと同様の作用を有する化合物の組で置き換えること
ができる。
Biotin is bound to a substance having the same immunoreactivity as the analyte or a substance immunoreactive with the analyte via the substance having a plurality of reactive groups described in the method (2). Is desirable. Avidin and biotin can be replaced by a set of compounds having similar effects.

【0027】方法(2)および方法(3)における被測
定物質と同一の免疫反応を示す物質または被測定物質と
免疫反応する物質が複数の反応活性基を有する物質に結
合し、該複数の反応活性基にビオチンを介して蛍光物質
で標識されたアビジンが結合したものは、次の方法で製
造することができる。すなわちビオチンを複数の反応活
性基を有する物質の大部分の活性基に反応させた後、被
測定物質と同一の免疫反応を示す物質または被測定物質
と免疫反応する物質と反応させ、次いでビオチンを蛍光
物質で標識されたアビジンと結合させて製造する。
In the method (2) and the method (3), a substance exhibiting the same immune reaction as the substance to be measured or a substance immunoreactive with the substance to be measured binds to a substance having a plurality of reactive groups, and the plurality of reactions are performed. An active group to which avidin labeled with a fluorescent substance is bound via biotin can be produced by the following method. That is, after reacting biotin with most of the active groups of the substance having a plurality of reactive groups, the biotin is reacted with a substance exhibiting the same immune reaction as the substance to be measured or a substance immunoreactive with the substance to be measured, and then biotin is reacted. It is produced by binding to avidin labeled with a fluorescent substance.

【0028】本発明の方法(2)および方法(3)の分
析法においては、図1、図3に示すような装置を用いる
ことができる。これらの装置は小型光源(半導体レーザ
ーなど)(4)、および、励起光または蛍光を伝搬する
ための光ファイバー(1)と免疫物質を固定化した検出
部(4)、並びに検出部で発生した蛍光を測定するため
の検出器(7)などからなっている。
In the analysis methods (2) and (3) of the present invention, an apparatus as shown in FIGS. 1 and 3 can be used. These devices include a small light source (such as a semiconductor laser) (4), an optical fiber (1) for transmitting excitation light or fluorescence, a detection unit (4) in which an immunological substance is immobilized, and fluorescence generated by the detection unit. And a detector (7) for measuring.

【0029】検出部は図2に示すように、競合法(a)
の場合、検出部表面に免疫物質が固定化されており、そ
れには免疫反応によって塩基に可溶性の蛍光性物質で標
識された被測定物質と同一の免疫反応を示す物質または
被測定物質が結合している。一方、サンドイッチ法
(b)の場合、検出部表面に固定化された免疫物質に被
測定物質、さらに塩基に可溶性の蛍光性物質で標識され
た被測定物質と免疫反応する物質が結合している。
As shown in FIG. 2, the detection unit uses the competitive method (a)
In the case of, an immunological substance is immobilized on the surface of the detection section, to which a substance exhibiting the same immunological reaction as the substance to be measured labeled with a fluorescent substance soluble in a base or a substance to be measured by the immune reaction is bound. ing. On the other hand, in the case of the sandwich method (b), the substance to be measured is bound to the immunological substance immobilized on the surface of the detection unit, and furthermore, the substance to be immunoreacted with the substance to be measured labeled with a fluorescent substance soluble in a base is bound. .

【0030】前記光ファイバーは樹脂製の方が低価格
で、かつ使用しやすいため、通常アクリル酸メチル、ア
クリル酸エチル、メタクリル酸メチルなどのモノマーと
スチレンなどのモノマーとの共重合体である樹脂製光フ
ァイバーが用いられる。前記樹脂製光ファイバーの表面
の免疫物質を固定化するには反応活性基としてホルミル
基を導入し、免疫物質を共有結合させる。
The optical fiber is usually made of a resin, which is a copolymer of a monomer such as methyl acrylate, ethyl acrylate, methyl methacrylate and a monomer such as styrene, because resin is cheaper and easier to use. Optical fibers are used. To immobilize the immunological substance on the surface of the resin optical fiber, a formyl group is introduced as a reactive group, and the immunological substance is covalently bonded.

【0031】[0031]

【発明の効果】本発明では600nmより長波長の半導体
レーザーを用いて蛍光分析ができるので、装置全体を小
型化することができる。また、フィルターによる蛍光の
吸収損失が少ないので、高感度化が実現できる。
According to the present invention, since fluorescence analysis can be performed using a semiconductor laser having a wavelength longer than 600 nm, the size of the entire apparatus can be reduced. Further, since the absorption loss of fluorescence by the filter is small, high sensitivity can be realized.

【0032】[0032]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらの実施例に限られるものではなく、広い範囲で適用
可能である。
Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments and can be applied in a wide range.

【0033】実施例1(貯蔵ピーナッツ中に存在するア
フラトキシンB1 の検出) (1)試料のピーナッツ1粒を3mlのメタノール中で粉
砕し、遠心分離にて上清を回収後、さらにこの上清をメ
ンブランフィルターでろ過した。 (2)前記(1)のろ液に、810nm、1130nm及び
1550nmの半導体レーザー光を照射し、425nmの蛍
光を測定した。 アフラトキシンB1 :Ex.362nm Em.425nm 27624=12346+8826+6452(cm-1) (3)6000検体中、11検体にアフラトキシンB1
の存在が認められた。
Example 1 (Detection of aflatoxin B 1 present in stored peanuts) (1) One peanut sample was ground in 3 ml of methanol, and the supernatant was recovered by centrifugation. Was filtered with a membrane filter. (2) The filtrate of (1) was irradiated with semiconductor laser light at 810 nm, 1130 nm and 1550 nm, and the fluorescence at 425 nm was measured. Aflatoxin B 1 : Ex. 362 nm Em. 425 nm 27624 = 12346 + 8826 + 6452 (cm -1 ) (3) Aflatoxin B 1 was contained in 11 of 6000 samples.
Was observed.

【0034】実施例2(競合法によるヒト膵アミラーゼ
抗体の測定) (1)20mMホウ酸緩衝液(pH7.5)1mlの中に、
ヤギ由来ヒト膵アミラーゼ抗体2mgと、7−ヒドロキシ
クマリン−3−カルボン酸(ウンベリフェロン)4mgを
溶解した。この溶液に水溶液カルボジイミド(CHM
C)10mgを添加し、遮光下室温に一晩放置後、陰イオ
ン交換クロマトグラフィーで分離精製して、ウンベリフ
ェロンで標識されたヒト膵アミラーゼ抗体(U−A.
b)溶液を得た。 (2)水0.5mlにNiSO4 10mgを溶解し、次いで
エタノール2.5mlを加えた。生成した白色沈澱を30
00rpm で遠心分離して得た上清をNi−エタノール溶
液とした。50mMKOHのエタノール溶液0.4mlに、
前記Ni−エタノール溶液0.1mlを加え、さらに50
%グルタルアルデヒド溶液50μl を添加し、反応液と
した。 (3)ポリメタクリル酸メチルを主成分とする直径1mm
の光ファイバーの断面を前記(2)の反応液に浸し、5
0℃で10分間反応させて、光ファイバー表面にホルミ
ル基を導入した。これを20mM塩酸及び水で洗浄した。 (4)ヒト膵アミラーゼ溶液2mgをリン酸緩衝生理食塩
(PBS)溶液1mlに溶かした溶液に、前記(3)の光
ファイバーを浸漬し、4℃で一晩放置した後、光ファイ
バーを取り出し、水洗浄後、1%NaBH4 水溶液に1
5分間浸漬し、さらに水及びPBS溶液で洗浄して、ヒ
ト膵アミラーゼ固定化センサーを作成した。 (5)測定対象の血清サンプル(ヒト由来ヒト膵アミラ
ーゼ抗体含有)20μlに前記(1)のU−A.b.溶
液20μl を混合した溶液に、前記(4)のセンサー部
分を浸漬し、30分室温に放置して、測定対象抗体と標
識抗体とを競合的に固定化抗原に反応させた後、トゥイ
ーン20含有PBS溶液で洗浄した。 (6)前記(5)のセンサー部分を1%炭酸ナトリウム
溶液に浸漬し、図3に示す装置を用いて、670nmと9
16nmの半導体レーザー光を照射し、450nmの蛍光を
測定した。 7−ヒドロキシクマリン−3−カルボン酸 Ex.3
87nm Ex.450nm 25840=14925+10915(cm-1) (387nm)(670nm) (916nm) (7)濃度既知のヒト膵アミラーゼ抗体溶液を標準とし
て、血清サンプル中の該抗体を30ng/ml まで検出でき
た。比較例として、窒素レーザーを用いた装置で同様の
測定を行ったところ、検出限界は40ng/ml であった。
またその装置は大型で高価なものとなった。
Example 2 (Measurement of Human Pancreatic Amylase Antibody by Competition Method) (1) In 1 ml of 20 mM borate buffer (pH 7.5),
2 mg of a goat-derived human pancreatic amylase antibody and 4 mg of 7-hydroxycoumarin-3-carboxylic acid (umbelliferone) were dissolved. An aqueous carbodiimide (CHM
C) 10 mg was added, and the mixture was allowed to stand at room temperature overnight under light shielding, then separated and purified by anion exchange chromatography, and a human pancreatic amylase antibody labeled with umbelliferone (UA.
b) A solution was obtained. (2) 10 mg of NiSO 4 was dissolved in 0.5 ml of water, and then 2.5 ml of ethanol was added. 30 white precipitates formed
The supernatant obtained by centrifugation at 00 rpm was used as a Ni-ethanol solution. To 0.4 ml of a 50 mM KOH ethanol solution,
0.1 ml of the Ni-ethanol solution was added, and 50
A 50% glutaraldehyde solution (50 μl) was added to prepare a reaction solution. (3) Diameter 1 mm mainly composed of polymethyl methacrylate
The cross section of the optical fiber is immersed in the reaction solution of (2), and
The mixture was reacted at 0 ° C. for 10 minutes to introduce a formyl group on the surface of the optical fiber. This was washed with 20 mM hydrochloric acid and water. (4) The optical fiber of (3) is immersed in a solution of 2 mg of human pancreatic amylase solution in 1 ml of a phosphate buffered saline (PBS) solution, left at 4 ° C. overnight, and then the optical fiber is taken out and washed with water. Then, 1% NaBH 4 aqueous solution
After immersion for 5 minutes and further washing with water and a PBS solution, a human pancreatic amylase-immobilized sensor was prepared. (5) 20 μl of the serum sample (containing a human-derived human pancreatic amylase antibody) to be measured was added to the UA. b. The sensor part of (4) was immersed in a solution obtained by mixing 20 μl of the solution, and allowed to stand at room temperature for 30 minutes to allow the antibody to be measured and the labeled antibody to react with the immobilized antigen competitively. Washed with PBS solution. (6) The sensor portion of (5) was immersed in a 1% sodium carbonate solution, and 670 nm and 9 nm were measured using the apparatus shown in FIG.
The semiconductor laser light of 16 nm was irradiated, and the fluorescence of 450 nm was measured. 7-hydroxycoumarin-3-carboxylic acid Ex. 3
87 nm Ex. 450 nm 25840 = 14925 + 10915 (cm -1 ) (387 nm) (670 nm) (916 nm) (7) Using a human pancreatic amylase antibody solution of known concentration as a standard, the antibody was detected up to 30 ng / ml in serum samples. As a comparative example, when the same measurement was performed using a device using a nitrogen laser, the detection limit was 40 ng / ml.
Also, the device became large and expensive.

【0035】実施例3(サンドイッチ法によるヒト膵ア
ミラーゼ抗体の測定) (1)実施例2の(1)と同様の方法で、ウンベリフェ
ロンで標識されたヤギ由来ヒト膵アミラーゼ抗体(U−
A.b.)溶液を得た。 (2)実施例2の(2)〜(4)と同様の方法で、ヒト
膵アミラーゼ固定化センサーを作成した。 (3)測定対象の血清サンプル(ヒト由来ヒト膵アミラ
ーゼ抗体含有)20μl中に、前記(2)のセンサー部
分を浸漬し、30分室温に放置して、固定化抗原に測定
対象抗体を反応させた後、トゥイーン20含有PBS溶
液で洗浄した。 (4)前記(3)のセンサー部分を前記(1)のU−
A.b.溶液に浸し、20分室温に放置して、測定対象
抗体を抗原として標識抗体を反応させた。 (5)実施例2の(6)〜(7)に従って、血清中のヒ
ト膵アミラーゼ抗体を測定したところ、該抗体を20ng
/ml まで検出できた。
Example 3 (Measurement of Human Pancreatic Amylase Antibody by Sandwich Method) (1) In the same manner as in (1) of Example 2, goat-derived human pancreatic amylase antibody labeled with umbelliferone (U-
A. b. ) A solution was obtained. (2) A human pancreatic amylase-immobilized sensor was prepared in the same manner as in (2) to (4) of Example 2. (3) The sensor part of (2) is immersed in 20 μl of a serum sample to be measured (containing a human-derived human pancreatic amylase antibody) and left at room temperature for 30 minutes to allow the antibody to be measured to react with the immobilized antigen. Then, the plate was washed with a PBS solution containing Tween 20. (4) The sensor part of (3) is replaced with the U-
A. b. The sample was immersed in the solution, left at room temperature for 20 minutes, and reacted with the labeled antibody using the antibody to be measured as an antigen. (5) When human pancreatic amylase antibody was measured in serum according to (6)-(7) of Example 2, the antibody was found to be 20 ng.
/ ml could be detected.

【0036】実施例4(競合法によるhCGの測定) (1)20mMホウ酸緩衝液(pH8)1mlに、ヒト絨毛
性性腺刺激ホルモン(hCG)100μg とビオチン2
mgを溶解し、水溶性カルボジイミド(CHMC)10mg
を添加して、4℃で一晩放置して反応させた後、ゲルろ
過法により分離精製し、ビオチン化hCG溶液を得た。 (2)エタノール1mlにアビジン1mgとトリエチルアミ
ン0.2mlを溶解した。次いでフルオレセインイソチオ
シアネート(フルオレセイン)1.8mgを溶解し、遮光
下室温で6時間反応させた。この反応液の溶媒を減圧除
去し、その残留物を50mM酢酸緩衝液(pH4.5)1
mlに懸濁した。これをゲルろ過法によって分離精製し
て、フルオレセインで修飾されたアビジンを得た。 (3)これを前記(1)のビオチン化hCGと混合し、
フルオレセイン+アビジン+ビオチンで標識されたhC
G(f−hCG)溶液を得た。 (4)実施例2の(2)〜(4)と同様の方法でhCG
抗体固定化センサーを作成した。 (5)各濃度の測定対象のhCG溶液10μl に、前記
(3)のf−hCG溶液を添加し、前記(4)のセンサ
ー部分を浸漬し、30分室温に放置して、測定対象のh
CGとf−hCGとを競合的に固定化hCG抗体に反応
させた。その後、トゥイーン20含有PBS溶液でセン
サー部分を洗浄した。 (6)前記(5)のセンサー部分を1%炭酸ナトリウム
溶液に浸漬し、図3の装置を用いて、780nmと136
2nmの半導体レーザー光を照射し、518nmの蛍光を測
定した。 フルオレセイン Ex.496nm Ex.518nm 20161=12821+7340(cm-1) (496nm) (780nm)(1362nm) 本分析法により、測定対象中のhCGを1.2ng/ml ま
で検出できた。比較例として、アルゴンレーザーを用い
た装置で同様の測定を行ったところ、検出限界は1.2
ng/ml であったが、装置は非常に大型で高価なものとな
った。
Example 4 (Measurement of hCG by Competition Method) (1) 100 μg of human chorionic gonadotropin (hCG) and biotin 2 in 1 ml of 20 mM borate buffer (pH 8)
mg of water-soluble carbodiimide (CHMC) 10 mg
Was added and left overnight at 4 ° C. to cause a reaction, followed by separation and purification by gel filtration to obtain a biotinylated hCG solution. (2) 1 mg of avidin and 0.2 ml of triethylamine were dissolved in 1 ml of ethanol. Next, 1.8 mg of fluorescein isothiocyanate (fluorescein) was dissolved and reacted at room temperature for 6 hours under light shielding. The solvent of the reaction solution was removed under reduced pressure, and the residue was subjected to 50 mM acetate buffer (pH 4.5) 1
suspended in ml. This was separated and purified by a gel filtration method to obtain avidin modified with fluorescein. (3) mixing this with the biotinylated hCG of (1),
HC labeled with fluorescein + avidin + biotin
A G (f-hCG) solution was obtained. (4) hCG by the same method as in (2) to (4) of Example 2.
An antibody-immobilized sensor was prepared. (5) The f-hCG solution of (3) is added to 10 μl of the hCG solution to be measured at each concentration, the sensor portion of (4) is immersed, and left at room temperature for 30 minutes, and the h
CG and f-hCG were competitively reacted with the immobilized hCG antibody. Thereafter, the sensor portion was washed with a PBS solution containing Tween 20. (6) The sensor portion of (5) was immersed in a 1% sodium carbonate solution, and 780 nm and 136 nm were measured using the apparatus shown in FIG.
The semiconductor laser light of 2 nm was irradiated, and the fluorescence of 518 nm was measured. Fluorescein Ex. 496 nm Ex. 518 nm 20161 = 12821 + 7340 (cm -1 ) (496 nm) (780 nm) (1362 nm) By this analysis method, hCG in the measurement object could be detected up to 1.2 ng / ml. As a comparative example, when the same measurement was performed using an apparatus using an argon laser, the detection limit was 1.2.
ng / ml, but the equipment was very large and expensive.

【0037】実施例5(サンドイッチ法によるhCGの
測定) (1)実施例4の(1)と同様の方法で、ビオチン化ヒ
ツジ由来hCG抗体溶液を得た。 (2)実施例4の(2)〜(3)と同様の方法で、フル
オレセインで修飾されたアビジンを得、これを前記
(1)のビオチン化hCG抗体と混合し、フルオレセイ
オン+アビジン+ビオチンで標識されたヒツジ由来hC
G抗体を得た。 (3)実施例2の(3)〜(4)と同様の方法で、ヒト
由来hCG抗体固定化センサーを作成した。 (4)各濃度の測定対象のhCG溶液10μl に、前記
(3)のセンサー部分を浸漬し、30分室温に放置し
て、固定化hCG抗体にhCGを抗原として反応させ
た。その後、トゥイーン20含有PBS溶液でセンサー
部分を洗浄した。 (5)次いで前記(2)の標識されたhGC抗体溶液に
センサー部分を浸漬し、測定対象のhGCを抗原として
標識抗体を反応させた。 (6)実施例4の(6)と同様の測定を行ったところ、
検出限界は1ng/ml で、装置は小さくすることができ
た。
Example 5 (Measurement of hCG by Sandwich Method) (1) An hCG antibody solution derived from biotinylated sheep was obtained in the same manner as in (1) of Example 4. (2) Fluorescein-modified avidin was obtained in the same manner as in (2) and (3) of Example 4, and this was mixed with the biotinylated hCG antibody of (1), and fluorescein + avidin + Sheep hC labeled with biotin
G antibody was obtained. (3) A human-derived hCG antibody-immobilized sensor was prepared in the same manner as in (3) and (4) of Example 2. (4) The sensor portion of (3) was immersed in 10 μl of the hCG solution to be measured at each concentration, allowed to stand at room temperature for 30 minutes, and reacted with the immobilized hCG antibody using hCG as an antigen. Thereafter, the sensor portion was washed with a PBS solution containing Tween 20. (5) Next, the sensor part was immersed in the labeled hGC antibody solution of the above (2), and the labeled antibody was reacted with the hGC to be measured as an antigen. (6) When the same measurement as (6) of Example 4 was performed,
The detection limit was 1 ng / ml and the device could be made smaller.

【0038】実施例6(キトサンを用いた競合法による
hGCの測定) (1)水100μl にNa2 CO3 4mgとビオチン10
mgを溶解した溶液と、1.8μM のキトサン(アミノ基
数は1分子当り平均4000個)溶液とを混合した。次
いでこれに水溶性カルボジイミド(CHMC)100mg
を添加し、撹拌しながら一晩室温で反応させた後、酢酸
を2〜3滴加えて反応を停止させた。次いで0.2g/ml
のNa2 CO3 と0.1g/mlのNaClの混合液4mlを
加えて、ビオチン化キトサン(b−c)を沈殿させた。
遠心分離にてこの沈澱を回収した後、この沈澱を0.1
g/mlNa2 CO3 と0.3g/mlのNaClの混合液で2
回洗浄した。さらにこの沈澱を10mMリン酸カリウム緩
衝液(pH7)2mlに懸濁し、さらに同緩衝液500ml
に4℃で一晩透析して、b−c懸濁液を得た。 (2)前記(1)のb−c懸濁液に測定対象のhCG1
00μg を加え、さらに水溶性カルボジイミド(CHM
C)10mgを添加して、4℃で6時間反応させた。反応
終了後、10mMリン酸カリウム緩衝液(pH7)に一晩
透析し、さらに陰イオン交換カラムを用いて未反応物を
除去し、hCGが結合したb−cを得た。 (3)フルオレセインイソチオシアネートの代わりにダ
ンシルクロリドを用いた以外は、実施例4の(2)と同
様の方法でダンシルで修飾されたアビジンを得た。これ
を前記(2)のhCGが結合したb−cと混合し、ダン
シル+アビジン+ビオチン+キトサンで標識されたhC
G(標識抗原)を得た。 (4)実施例の(2)〜(4)と同様の方法で、hCG
抗体固定化センサーを作成した。 (5)実施例4の(5)〜(7)と同様の方法で、測定
対象のhCGと前記(3)の標識抗原を前記(4)のh
CG抗体固定化センサーに競合的に反応させた。 (6)図1の装置を用いて、1020nm半導体レーザー
光を照射し、510nmの蛍光を測定した。 ダンシルクロリド Ex.340nm Ex.510nm 29412=9804(cm-1)×3 (340nm)(1020nm) その結果、この測定によるhGCの検出限界は0.7ng
/ml であった。
Example 6 (Measurement of hGC by Competition Method Using Chitosan) (1) 4 mg of Na 2 CO 3 and 10 g of biotin were added to 100 μl of water.
A solution in which mg was dissolved was mixed with a 1.8 μM solution of chitosan (the number of amino groups was 4000 on average per molecule). Next, 100 mg of water-soluble carbodiimide (CHMC) was added thereto.
Was added thereto, and the mixture was reacted overnight at room temperature with stirring. Then, the reaction was stopped by adding a few drops of acetic acid. Then 0.2g / ml
Adding a Na 2 CO 3 and mixtures 4ml of 0.1 g / ml of NaCl, precipitated biotinylated chitosan (b-c).
After collecting the precipitate by centrifugation,
g / ml Na 2 CO 3 and 0.3 g / ml NaCl
Washed twice. The precipitate was suspended in 2 ml of 10 mM potassium phosphate buffer (pH 7), and further suspended in 500 ml of the same buffer.
Was dialyzed overnight at 4 ° C. to obtain a bc suspension. (2) hCG1 to be measured is added to the bc suspension of (1).
Of water-soluble carbodiimide (CHM
C) 10 mg was added and reacted at 4 ° C. for 6 hours. After the completion of the reaction, the mixture was dialyzed overnight against a 10 mM potassium phosphate buffer (pH 7), and unreacted substances were removed using an anion exchange column to obtain hCG-bound bc. (3) Dansyl-modified avidin was obtained in the same manner as in (2) of Example 4, except that dansyl chloride was used instead of fluorescein isothiocyanate. This was mixed with the hCG-bound bc of (2) above, and the hC labeled with dansyl + avidin + biotin + chitosan was mixed.
G (labeled antigen) was obtained. (4) hCG was obtained in the same manner as in (2) to (4) of the embodiment.
An antibody-immobilized sensor was prepared. (5) In the same manner as in (5) to (7) of Example 4, the hCG to be measured and the labeled antigen of (3) were converted to the hCG of (4).
It was made to react competitively with the CG antibody immobilized sensor. (6) Using the apparatus shown in FIG. 1, the semiconductor laser light was irradiated at 1020 nm, and the fluorescence at 510 nm was measured. Dansyl chloride Ex. 340 nm Ex. 510 nm 29412 = 9804 (cm -1 ) x 3 (340 nm) (1020 nm) As a result, the detection limit of hGC by this measurement is 0.7 ng.
/ ml.

【0039】実施例7(キトサンを用いたサンドイッチ
法によるhCGの測定) (1)実施例6の(1)と同様の方法でビオチン化キト
サン(b−c)を得た。次にヤギ由来hCG抗体を用い
て、実施例6の(2)と同様の方法でヤギ由来のhCG
抗体が結合したb−cを得た。 (2)実施例6の(3)と同様の方法でダンシルで修飾
されたアビジンを得、前記(1)のhCG抗体が結合し
たb−cと混合し、ダンシル+アビジン+ビオチン+キ
トサンで標識されたhCG抗体(標識抗体)を得た。 (3)実施例5の(3)〜(4)と同様の方法で固定化
hCG抗体に測定対象のhCGを反応させ、次いで前記
(2)の標識抗体を反応させた。 (4)図1の装置を用い、810nm、942nm及び15
50nmの半導体レーザー光を照射し、510nmの蛍光を
測定した。 ダンシルクロリド Ex.340nm Em.510nm 29412=12346+10614+6452(cm-1) (340nm) (810nm)(942nm) (1550nm) その結果、この測定によるhCGの検出限界は0.3ng
/ml であった。比較例として、窒素レーザーを用いて同
様の測定を行ったところ、hCGの検出限界は0.3ng
/ml であったが、装置は非常に大型で高価なものとなっ
た。
Example 7 (Measurement of hCG by a sandwich method using chitosan) (1) Biotinylated chitosan (bc) was obtained in the same manner as in (1) of Example 6. Next, a goat-derived hCG antibody was prepared using the goat-derived hCG antibody in the same manner as in Example 6, (2).
Bc bound to the antibody was obtained. (2) An avidin modified with dansyl was obtained in the same manner as in (3) of Example 6, mixed with bc bound with the hCG antibody of (1), and labeled with dansyl + avidin + biotin + chitosan. The obtained hCG antibody (labeled antibody) was obtained. (3) The hCG to be measured was reacted with the immobilized hCG antibody in the same manner as in (3) and (4) of Example 5, and then the labeled antibody of (2) was reacted. (4) 810 nm, 942 nm and 15
The semiconductor laser light of 50 nm was irradiated, and the fluorescence of 510 nm was measured. Dansyl chloride Ex. 340 nm Em. 510 nm 29412 = 12346 + 10614 + 6452 (cm -1 ) (340 nm) (810 nm) (942 nm) (1550 nm) As a result, the detection limit of hCG by this measurement is 0.3 ng.
/ ml. As a comparative example, when the same measurement was performed using a nitrogen laser, the detection limit of hCG was 0.3 ng.
/ ml, but the equipment was very large and expensive.

【0040】実施例8(競合法によるカルシトニンの測
定) (1)hCGの代わりにカルシトニンを用いた以外は、
実施例4の(1)と同様の方法でビオチン化カルシトニ
ン溶液を得た。 (2)フルオレセインイソチオシアネートの代わりにロ
ーダミンBイソチオシアネートを用いた以外は、実施例
4の(2)〜(3)と同様の方法でローダミンBイソチ
オシアネートで修飾されたアビジン(r−a)溶液を得
た。 (3)実施例2の(2)〜(4)と同様の方法で、ヤギ
由来ヒトカルシトニン抗体固定化センサーを作成した。 (4)各濃度の測定対象のカルシトニン溶液10μl に
前記(1)のビオチン化カルシトニン溶液5μl を加
え、この溶液に前記(3)のセンサー部分を浸漬し、室
温に20分放置して、固定化カルシトニン抗体に測定対
象のカルシトニン及びビオチン化カルシトニンを反応さ
せた。その後、センサー部分をトゥイーン20含有PB
S溶液で洗浄した。 (5)次いで、前記(4)のセンサー部分を、前記
(2)のr−a溶液に5分浸漬して、ビオチンにアビジ
ンを反応させた。その後、トゥイーン20含有PBS溶
液でセンサー部分を洗浄した。 (6)次いで、50mMトリス−塩酸緩衝液(pH9.
5)に浸漬し、図3に示す装置を用いて、780nmと1
550nmの半導体レーザー光を照射し、627nmの蛍光
を測定した。 ローダミンB Ex.520nm Em.627nm 19231=12821+6452−42(cm-1 ) (520nm) (780nm) (1550nm) 本分析法による、カルシトニンの検出限界は1.3ng/m
l であった。
Example 8 (Measurement of Calcitonin by Competition Method) (1) Except that calcitonin was used instead of hCG,
A biotinylated calcitonin solution was obtained in the same manner as in (4) of Example 4. (2) An avidin (ra) solution modified with rhodamine B isothiocyanate in the same manner as in (2) to (3) of Example 4, except that rhodamine B isothiocyanate was used instead of fluorescein isothiocyanate I got (3) A goat-derived human calcitonin antibody-immobilized sensor was prepared in the same manner as in (2) to (4) of Example 2. (4) 5 μl of the biotinylated calcitonin solution of the above (1) is added to 10 μl of the calcitonin solution to be measured at each concentration, and the sensor portion of the above (3) is immersed in this solution and left at room temperature for 20 minutes to immobilize the solution. The calcitonin to be measured and biotinylated calcitonin were reacted with the calcitonin antibody. After that, the sensor part was replaced with Tween 20-containing PB
Washed with S solution. (5) Next, the sensor portion of (4) was immersed in the ra solution of (2) for 5 minutes to react avidin with biotin. Thereafter, the sensor portion was washed with a PBS solution containing Tween 20. (6) Then, a 50 mM Tris-HCl buffer (pH 9.
5) and 780 nm and 1 nm using the device shown in FIG.
The semiconductor laser light of 550 nm was irradiated, and the fluorescence of 627 nm was measured. Rhodamine B Ex. 520 nm Em. 627 nm 19231 = 12821 + 6452-42 (cm -1 ) (520 nm) (780 nm) (1550 nm) The detection limit of calcitonin by this analysis method is 1.3 ng / m.
l.

【0041】実施例9(サンドイッチ法によるカルシト
ニンの測定) (1)hCGの代わりにウサギ由来ヒトカルシトニン抗
体を用いた以外は、実施例4の(1)と同様の方法で、
ビオチン化ウサギ由来ヒトカルシトニン抗体を得た。 (2)フルオレセインイソチオシアネートの代わりにロ
ーダミンBイソチオシアネートを用いた以外は、実施例
4の(2)と同様の方法でローダミンBで修飾されたア
ビジン(r−a)を得た。 (3)実施例2の(2)〜(4)と同様の方法で、ヤギ
由来ヒトカルシトニン抗体固定化センサーを作成した。 (4)各濃度の測定対象のカルシトニン溶液10μl に
前記(3)のセンサー部分を浸漬し、室温に30分放置
して、固定化カルシトニン抗体に測定対象のカルシトニ
ンを反応させた。その後、センサー部分をトゥイーン2
0含有PBS溶液で洗浄した。さらに前記(1)のビオ
チン化ウサギ由来ヒトカルシトニン抗体溶液に20分浸
漬して、測定対象のカルシトニン(抗原)にビオチン化
ヒトカルシトニン抗体を反応させた。 (5)前記(4)のセンサー部分を、実施例8の(5)
と同様の方法で、前記(2)のr−a溶液に浸漬して、
ビオチンにアビジンを反応させた。 (6)この溶液に実施例8の(6)と同様の半導体レー
ザー光を照射し、627nmの蛍光を測定したところ、検
出限界は1ng/ml であった。
Example 9 (Measurement of Calcitonin by Sandwich Method) (1) A method similar to (1) of Example 4 was used except that a rabbit-derived human calcitonin antibody was used instead of hCG.
A human calcitonin antibody derived from a biotinylated rabbit was obtained. (2) Avidin (r-a) modified with rhodamine B was obtained in the same manner as in (2) of Example 4, except that rhodamine B isothiocyanate was used instead of fluorescein isothiocyanate. (3) A goat-derived human calcitonin antibody-immobilized sensor was prepared in the same manner as in (2) to (4) of Example 2. (4) The sensor part of (3) was immersed in 10 μl of the calcitonin solution to be measured at each concentration, and allowed to stand at room temperature for 30 minutes to react the calcitonin to be measured with the immobilized calcitonin antibody. After that, Tween 2
Washed with PBS solution containing 0. Further, the sample was immersed in the above-mentioned (1) human calcitonin antibody solution derived from a biotinylated rabbit for 20 minutes to react the calcitonin (antigen) to be measured with the biotinylated human calcitonin antibody. (5) The sensor part of (4) is replaced with (5) of Example 8.
In the same manner as described above, dipping in the ra solution of (2) above,
Avidin was reacted with biotin. (6) This solution was irradiated with the same semiconductor laser beam as in (6) of Example 8, and the fluorescence at 627 nm was measured. As a result, the detection limit was 1 ng / ml.

【0042】実施例10(ポリリジンを用いた競合法に
よるカルシトニンの測定) (1)キトサンの代わりにポリリジンを用いた以外は、
実施例6の(1)と同様の方法で、ビオチン化ポリリジ
ン(b−p1)懸濁液を得た。 (2)前記(1)のb−p1懸濁液にカルシトニン50
μg を加え、さらに水溶性カルボジイミド(CHMC)
10mgを添加して、4℃で6時間反応させた。反応終了
後、10mMリン酸カリウム緩衝液(pH7)に一晩透析
し、さらにイオン交換カラムを用いて未反応物を除去
し、カルシトニンの結合したb−p1を得た。 (3)フルオレセインイソチオシアネートの代わりにニ
トロベンゾオキサジアゾルクロリド(NBD)を用いた
以外は、実施例4の(2)と同様の方法で、NBDで修
飾されたアビジン(n−a)を得た。 (4)実施例8の(3)と同様の方法で、ヤギ由来ヒト
カルシトニン抗体固定化センサーとした。 (5)各濃度の測定対象のカルシトニン溶液10μl に
前記(2)のカルシトニンが結合したb−p1懸濁液5
μl を加えて撹拌し、この溶液に前記(4)のセンサー
部分を浸漬して、室温に30分放置し、固定化カルシト
ニン抗体に測定対象のカルシトニン及び前記(2)のカ
ルシトニンの結合したb−p1を競合的に反応させた。 (6)実施例8の(5)と同様の方法で、前記(5)の
センサー部分を前記(3)のn−a溶液に浸漬して、ビ
オチンにアビジンを結合させた。 (7)図3に示す装置を用いて、689nmと1550nm
の半導体レーザー光を照射し、540nmの蛍光を測定し
た。 NBD Ex.475nm Em.540nm 21053=14601+6452(cm-1) (475nm)(689nm)(1550nm) 本分析法によるカルシトニンの検出限界は0.7ng/ml
であった。
Example 10 (Measurement of Calcitonin by Competition Method Using Polylysine) (1) Except that polylysine was used instead of chitosan,
A biotinylated polylysine (b-p1) suspension was obtained in the same manner as in Example 6, (1). (2) Calcitonin 50 was added to the bp1 suspension of the above (1).
μg, and add water-soluble carbodiimide (CHMC)
10 mg was added and reacted at 4 ° C. for 6 hours. After completion of the reaction, the mixture was dialyzed overnight against a 10 mM potassium phosphate buffer (pH 7), and unreacted substances were removed using an ion exchange column to obtain calcitonin-bound bp1. (3) Avidin (na) modified with NBD was obtained in the same manner as in (2) of Example 4, except that nitrobenzoxadiazol chloride (NBD) was used instead of fluorescein isothiocyanate. Was. (4) A goat-derived human calcitonin antibody-immobilized sensor was obtained in the same manner as in Example 8, (3). (5) bp1 suspension 5 in which calcitonin of (2) was bound to 10 μl of the calcitonin solution to be measured at each concentration
Then, the sensor portion of (4) was immersed in this solution, and allowed to stand at room temperature for 30 minutes. The calcitonin to be measured and the calcitonin of (2) were bound to the immobilized calcitonin antibody. p1 was allowed to react competitively. (6) In the same manner as in (5) of Example 8, the sensor portion of (5) was immersed in the na solution of (3) to bind avidin to biotin. (7) Using the apparatus shown in FIG. 3, 689 nm and 1550 nm
Was irradiated, and the fluorescence at 540 nm was measured. NBD Ex. 475 nm Em. 540 nm 21053 = 14601 + 6452 (cm -1 ) (475 nm) (689 nm) (1550 nm) The detection limit of calcitonin by this analysis method is 0.7 ng / ml.
Met.

【0043】実施例11(ポリリジンを用いたサンドイ
ッチ法によるカルシトニンの測定) (1)実施例10の(1)と同様の方法でb−p1懸濁
液を得た。次にウサギ由来ヒトカルシトニン抗体を用い
て、実施例10の(2)と同様の方法で、ウサギ由来ヒ
トカルシトニン抗体の結合したb−p1を得た。 (2)実施例10の(3)〜(4)と同様の方法で、n
−a及びヤギ由来ヒトカルシトニン抗体固定化センサー
を作成した。 (3)各濃度の測定対象のカルシトニン溶液10μl に
前記(2)のセンサー部分を浸漬し、室温に30分放置
して、固定化カルシトニン抗体に測定対象のカルシトニ
ンを反応させた。その後、トゥイーン20含有PBS溶
液で洗浄し、さらに前記(1)のヒトカルシトニン抗体
の結合したb−p1懸濁液に20分浸漬して、測定対象
のカルシトニンを抗原としてカルントニン抗体の結合し
たb−p1を反応させた。 (4)実施例8の(5)と同様の方法で、前記(3)の
センサー部分を前記(2)のn−a溶液に浸漬し、ビオ
チンにアビジンを結合させた。 (5)図3に示す装置を用いて、689nmと1550nm
の半導体レーザー光を照射し、540nmの蛍光を測定し
た。その結果、カルシトニンの検出限界は0.4ng/ml
であった。
Example 11 (Measurement of calcitonin by a sandwich method using polylysine) (1) A bp1 suspension was obtained in the same manner as in Example 10, (1). Next, using a rabbit-derived human calcitonin antibody, b-p1 bound with a rabbit-derived human calcitonin antibody was obtained in the same manner as in Example 10, (2). (2) In the same manner as in (3) and (4) of Example 10, n
-A and a goat-derived human calcitonin antibody-immobilized sensor were prepared. (3) The sensor part of (2) was immersed in 10 μl of the calcitonin solution to be measured at each concentration, and allowed to stand at room temperature for 30 minutes to allow the calcitonin to react with the immobilized calcitonin antibody. Thereafter, the plate is washed with a PBS solution containing Tween 20 and further immersed in the bp1 suspension to which the human calcitonin antibody of the above (1) is bound for 20 minutes. p1 was reacted. (4) In the same manner as in (5) of Example 8, the sensor portion of (3) was immersed in the na solution of (2) to bind avidin to biotin. (5) Using the apparatus shown in FIG. 3, 689 nm and 1550 nm
Was irradiated, and the fluorescence at 540 nm was measured. As a result, the detection limit of calcitonin was 0.4 ng / ml.
Met.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3個の半導体レーザーを使用する蛍光測定系を
示す。
FIG. 1 shows a fluorescence measurement system using three semiconductor lasers.

【図2】上記装置における蛍光検出部を示す。FIG. 2 shows a fluorescence detection unit in the above device.

【図3】2つの半導体レーザーを使用した蛍光測定系を
示す。
FIG. 3 shows a fluorescence measurement system using two semiconductor lasers.

【符号の説明】[Explanation of symbols]

1 光ファイバー 2 半導体レーザー 3 光軸合わせのためのガイドレール 4 センサーチップ 5 サンプル注入セル 6 フィルター 7 検出器 8 ハーフミラー 9 免疫物質 10 被測定物質 11 蛍光物質で標識された被測定物質と同一の免疫反
応を示す物質 12 蛍光物質で標識された被測定物質と免疫反応する
物質
DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Semiconductor laser 3 Guide rail for optical axis alignment 4 Sensor chip 5 Sample injection cell 6 Filter 7 Detector 8 Half mirror 9 Immune substance 10 Substance to be measured 11 Same immunity as the substance to be measured labeled with fluorescent substance Substances that show a reaction 12 Substances that immunoreact with the substance to be measured labeled with a fluorescent substance

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛍光性被測定物質を、塩基性条件下で、
下記数式及びを満たす該蛍光物質の最大励起波長よ
り長波長の複数のレーザ光で励起し、蛍光を測定するこ
とを特徴とする蛍光分析法。 【数1】 【数2】
1. A method for producing a fluorescent substance under basic conditions,
A fluorescence analysis method comprising: exciting with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance satisfying the following formula and measuring fluorescence. (Equation 1) (Equation 2)
【請求項2】 光ファイバー表面に免疫物質を固定化
し、(a)該表面の免疫物質に対して、被測定物質、及
び蛍光物質で標識された被測定物質と同一の免疫反応を
示す物質を競合的に反応させるか、あるいは(b)該表
面の免疫物質に被測定物質を免疫反応させ、次いで蛍光
物質で標識された被測定物質と免疫反応する物質を反応
させた後、 塩基性条件下で、請求項1の数式及びを満たす該蛍
光物質の最大励起波長より長波長の複数のレーザー光で
励起し、蛍光を測定することを特徴とする蛍光免疫分析
法。
2. An immunological substance is immobilized on the surface of an optical fiber, and (a) competition is made between the immunological substance on the surface and the substance exhibiting the same immune reaction as the substance to be measured and the substance to be measured labeled with a fluorescent substance. Or (b) immunoreacting the substance to be measured with the immunological substance on the surface, and then reacting the substance to be immunoreacted with the substance to be measured labeled with a fluorescent substance. A fluorescence immunoassay method comprising: exciting with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance satisfying the formula of claim 1 and measuring the fluorescence.
【請求項3】 前記被測定物質と同一の免疫反応を示す
物質または被測定物質と免疫反応する物質がビオチンと
結合し、該ビオチンには蛍光物質で標識されたアビジン
が結合している請求項2記載の蛍光免疫分析法。
3. A substance exhibiting the same immunoreactivity as the substance to be measured or a substance immunoreactive with the substance to be measured is bound to biotin, and avidin labeled with a fluorescent substance is bound to the biotin. 3. The fluorescent immunoassay according to 2.
【請求項4】 前記被測定物質と同一の免疫反応を示す
物質または被測定物質と免疫反応する物質が複数の反応
活性基を有する物質と結合し、該複数の反応活性基には
ビオチンを介して蛍光物質で標識されたアビジンが結合
している請求項2記載の蛍光免疫分析法。
4. A substance exhibiting the same immunoreactivity as the substance to be measured or a substance immunoreactive with the substance to be measured binds to a substance having a plurality of reactive groups, and the plurality of reactive groups are mediated by biotin. The fluorescent immunoassay according to claim 2, wherein avidin labeled with a fluorescent substance is bound thereto.
【請求項5】 光ファイバー表面に免疫物質を固定化
し、(a)該表面の免疫物質に対して、被測定物質、及
びビオチンが結合した被測定物質と同一の免疫反応を示
す物質を競合的に反応させるか、あるいは(b)該表面
の免疫物質と被測定物質を免疫反応させ、次いでビオチ
ンが結合した被測定物質に免疫反応する物質を反応させ
た後、 蛍光物質で標識されたアビジンを反応させ、 塩基性条件下で、請求項1の数式及びを満たす該蛍
光物質の最大励起波長より長波長の複数のレーザー光で
励起し、蛍光を測定することを特徴とする蛍光免疫分析
法。
5. An immunological substance is immobilized on the surface of an optical fiber, and (a) a substance exhibiting the same immune reaction as the substance to be measured and the substance to be measured to which biotin is bound is competitively reacted with the immunological substance on the surface. Or (b) immunoreacting the immunological substance on the surface with the analyte and then reacting the immunoreactive substance with the analyte bound to biotin, and then reacting avidin labeled with a fluorescent substance. 2. A fluorescence immunoassay method, wherein the fluorescence is measured under basic conditions by exciting with a plurality of laser beams having a wavelength longer than the maximum excitation wavelength of the fluorescent substance that satisfies the formula of claim 1 and the fluorescence.
【請求項6】 前記被測定物質と同一の免疫反応を示す
物質または被測定物質と免疫反応する物質が複数の反応
活性基を有する物質と結合し、該複数の反応活性基にビ
オチンが結合している請求項5記載の蛍光免疫分析法。
6. A substance exhibiting the same immunoreactivity as the substance to be measured or a substance immunoreactive with the substance to be measured binds to a substance having a plurality of reactive groups, and biotin binds to the plurality of reactive groups. The fluorescent immunoassay according to claim 5, which comprises:
JP4082939A 1992-03-06 1992-03-06 Fluorescence analysis Expired - Fee Related JP3025096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082939A JP3025096B2 (en) 1992-03-06 1992-03-06 Fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082939A JP3025096B2 (en) 1992-03-06 1992-03-06 Fluorescence analysis

Publications (2)

Publication Number Publication Date
JPH05249115A JPH05249115A (en) 1993-09-28
JP3025096B2 true JP3025096B2 (en) 2000-03-27

Family

ID=13788198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082939A Expired - Fee Related JP3025096B2 (en) 1992-03-06 1992-03-06 Fluorescence analysis

Country Status (1)

Country Link
JP (1) JP3025096B2 (en)

Also Published As

Publication number Publication date
JPH05249115A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US4582809A (en) Apparatus including optical fiber for fluorescence immunoassay
US4666862A (en) Fluorescent energy transfer with phycobiliproteins
JPS6146783B2 (en)
US5449625A (en) Optical fiber based fluorescent immunoassay apparatus
US20210041428A1 (en) Immunoassay with enhanced sensitivity
JPH09500443A (en) Differential separation assay method and test kit
JP3130513B2 (en) Bioactive substance measurement device
JP3354975B2 (en) Fluorescent labeling reagent and fluorescent immunoassay
JP3025096B2 (en) Fluorescence analysis
Petrea et al. Fiber-optic time-resolved fluorimetry for immunoassays
US6010867A (en) Reagent for biomaterials assay, preparation method thereof, and assay method
JP3176163B2 (en) Fluorescent labeling reagent and fluorescent immunoassay
JP3025078B2 (en) Fluorescence analysis
Soini et al. Two-photon fluorescence excitation in detection of biomolecules
Ogasawara et al. Dynamically modified, biospecific optical fiber sensor for riboflavin binding protein based on hydrophobically associated 3-octylriboflavin
JP3167176B2 (en) Fluorescent enzyme immunoassay
JP2951398B2 (en) Reagent for measuring bioactive substance, its production method and measurement method
Silva et al. Development of an optical immunosensor based on the fluorescence of Cyanine-5 for veterinarian diagnostics
US5164321A (en) Process for the removal of non-specific turbidities
JPH0783925A (en) Fluorescent labeled reagent and fluorescent immunity measurement method
US5354574A (en) Method for producing optical fiber having formyl groups on core surface thereof
JPH03103765A (en) Immunoassay with fluorescent polarization by using immobilized antibody or antigen
WO1990013029A1 (en) Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying
JP3129482B2 (en) Phospholipid antibody measurement method, measurement chip and reagent
JP3294415B2 (en) Method for producing fluorescent labeling reagent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees