WO1990013029A1 - Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying - Google Patents

Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying Download PDF

Info

Publication number
WO1990013029A1
WO1990013029A1 PCT/JP1990/000514 JP9000514W WO9013029A1 WO 1990013029 A1 WO1990013029 A1 WO 1990013029A1 JP 9000514 W JP9000514 W JP 9000514W WO 9013029 A1 WO9013029 A1 WO 9013029A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
substance
optical fiber
protein
fluorescent dye
Prior art date
Application number
PCT/JP1990/000514
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Kobayashi
Hiroyuki Honda
Kenichi Shimada
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2506243A priority Critical patent/JP2951398B2/en
Publication of WO1990013029A1 publication Critical patent/WO1990013029A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • Bioactive substance measurement reagent its production method, measurement method and
  • the present invention relates to a reagent which can be used for measuring a biologically active substance by an immunoassay, a method for producing the same, a resinous optical fiber necessary for utilizing the same, and a method using the optical fiber.
  • the present invention relates to a measuring device having a detecting section, and a method for measuring a biologically active substance using these reagents and devices.
  • labeling reagents such as radioisotopes, luminescent agents, enzyme-labeled antigens and antibodies have been developed.
  • Japanese Patent Application Laid-Open No. 58-61848 discloses an organic polymer compound to which a plurality of luminescent components are bonded.
  • An immunoreagent conjugated to either an antibody or an antigen and an immunoassay method using the same are described in U.S. Pat.No. 4,166,105.
  • Reagents have been proposed for detecting the first reactant (antibody) capable of reacting with a plurality of fluorescent dye molecules, respectively.
  • these reagents do not have sufficient amount of dye that can be bound, and the problem is that the detection sensitivity is not practical when a dye with low sensitivity that is excited at a long wavelength is used. There is.
  • Japanese Patent Application Laid-Open No. 60-252,265 discloses that a water-soluble organic polymer compound having a luminescent agent bound thereto is bound to avidin, and a biologically active substance is measured using the compound. The method is disclosed.
  • a large amount of bitin is bound around the antibody or antigen because the antibody or antigen is bound to avidin via low molecular weight piotin.
  • the immune activity may be reduced, and it is necessary to take a treatment to prevent this, and it is difficult to bind the water-soluble polymer to avidin due to steric hindrance. problem is there.
  • luminescence immunoassay a method of exciting a fluorescent dye (luminescent agent) using an optical fiber or transmitting fluorescence is effective, and various techniques have been disclosed.
  • P 1226-1230 (1987) describes a silane coupling agent for the silane group on the surface of a quartz optical fiber.
  • Resin light Fibers are inexpensive, easy to polish, flexible, and easy to handle, so it is desirable to have a method for binding proteins such as antigens and antibodies to resinous fibers. It is rare.
  • an immunoassay apparatus and method are disclosed in Japanese Patent Publication No. 59-501873 (US Pat. No. 4,582,809).
  • the optical fan is disclosed in Japanese Patent Application Laid-Open No. S2-123358, and Japanese Patent Application Laid-Open No. Sho 62-501102 (Sheet Patent Application No. 5306-684-5).
  • Each type of immunosensor has been proposed. However, these specifications do not describe any technology for performing high-sensitivity labeling of antigens and antibodies. Therefore, Hg lamps, Xe lamps, and Ae lamps are used as light sources. r There is a problem that only a fluorescent dye having high sensitivity such as that excited by a laser is used, and that the apparatus is large and expensive.
  • Japanese Patent Application Laid-Open No. Sho 60-244550 discloses a method in which a luminescent agent bound to an immune complex by a bitin-avidin bond.
  • Agent binding A method for measuring a biologically active substance that measures the amount of luminescence due to the luminescence reaction of avidin has been proposed. This method binds avidin-piotin between the luminescent agent and the antibody or antigen.
  • the amount of the dye that can be bound is small and a low-sensitivity dye cannot be used because it is not through another organic polymer compound.
  • the present inventor has found that in a method for measuring the concentration of a bioactive substance, in order to further improve the measurement sensitivity, the amount of a fluorescent dye bound per protein molecule must be reduced.
  • the present inventors have found that a bioactive substance is bound to a compound having a large number of reactive groups, and a compound having a large number of fluorescent dyes bound to each reactive group.
  • the development of a detection unit consisting of an optical fiber capable of efficiently condensing and measuring light emitted from a fluorescent dye, a device equipped with the same, and a measurement method using these reagents and devices succeeded in.
  • the fluorescent label binds to a compound having a plurality of reactive groups, and It is noted that a compound modified with a plurality of fluorescent dyes is bonded to the reactive group of the compound having a reactive group.
  • the fluorescent dye described in the present invention refers to a dye that cannot be excited by light, and does not mean a fluorescent dye that emits chemiluminescence or bioluminescence.
  • the light is desirably coherent light such as laser light.
  • the reagent for measuring a biologically active substance comprises a compound having a plurality of reactive groups in which a compound modified with a plurality of fluorescent dyes is bonded to most of the reactive groups of the compound having a plurality of reactive groups.
  • an active substance By binding to an active substance, the amount of fluorescent dye per biologically active substance is increased, thereby greatly improving detection sensitivity.
  • Examples thereof include an amino group, a thiol group, a hydroxyl group, a carboxyl group, and a formyl group, and an amino group is particularly desirable. The reason for this is that the amino group has a relatively high reaction activity and the generated bond is stable.
  • the number of the reactive groups be 20 to 100 000 per molecule.
  • the reason is that if the number is less than 2 ⁇ , improvement in detection sensitivity cannot be expected, and if the number is more than 1 Q 0 This is because it is difficult to dissolve the polymer in the solvent.
  • the number of the reactive groups is 30000 to 600 0 per molecule, which is more preferable than the force s, and is preferably 40000 to 500 000. .
  • the compound having a plurality of reactive groups is desirably a compound such as amimeglucan or polyaminopeptide.
  • the reason for this is that there are 40000 to 5000 amino groups in these compounds.
  • chitosan As the above-mentioned amino glucan, chitosan, polygalactosamine, polyinomyric acid, etc. can be used, but chitosan is used. This is preferred.
  • polyaminopeptidyl is an amino acid having two or more amino groups, which is polymerized by a peptide bond.
  • a resin for example, a resin.
  • the compound to be modified with the fluorescent dye used in the present invention may be a natural polymer compound having a molecular weight of semi-hight molecule or more with a molecular weight of about 1000 or more. Desirable.
  • Naturally occurring high molecular weight compounds such as avidin, protein A, antibodies, hormones, and hormone receptors, which are relatively easily available, are desirable.
  • the bonding between the compound having a plurality of reactive groups and the biologically active substance, and the bonding between the reactive group of the compound having a plurality of reactive groups and the compound modified with a plurality of fluorescent dyes are performed by using a suitable crosslinking agent. Can be used.
  • the compound is bonded to the compound having a plurality of reactive groups through a substance that specifically binds to the compound.
  • the plurality of reactions may be performed via a protein, an antibody, protein A, a hormone receptor, and a hormone, respectively.
  • a combination with a compound having an active group, particularly "avidin-biotin” is preferable.
  • the fluorescent dye may be bound to any of protein A and the antibody.
  • the avidin is a basic albumin-like crystal protein having a molecular weight of about 6800, and has an extremely high affinity for bitin selectively. Avidin is stable against heat, PH, chemical modification, etc. Avidin is suitable for modification with a fluorescent dye because it has a large number of amino groups on the molecular surface due to its electric point of 1 °.
  • Avidin has 36 amino groups, some of which contribute to the binding of biotin, so that 2 to 10 fluorescent dyes can be bound per avidin molecule. And are desirable.
  • the reagent for measuring a bioactive substance of the present invention can be obtained by labeling a complex of one or more reactive groups with a bioactive substance complex with the modified avidin.
  • Protein A is a protein having a molecular weight of 420, which occupies 5% of the cell wall of Staphylococcus aureus, and has a high affinity for immunoglobulin (antibody protein).
  • radioimmunoassay radio-immunoassay
  • the light is desirably laser light or LED light (light emitting diode), and the laser light is desirably a He—Ne laser or a semiconductor laser.
  • the above laser is smaller and less expensive than the Xe lamp or Ar laser.
  • SHG element second harmonic generation element: an element that reduces the wavelength of light
  • the fluorescent dye used in the present invention be excited by light having a wavelength of 200 to 800 nm.
  • fluorescent dye examples include coumarin derivatives such as emperiferon, polycyclic aromatic derivatives, rhodamine isothiocyanate, fluorescein isothiocyanate, cyanine dyes, and fiyne dyes. Copiritanno, ⁇ , dansyl derivatives, o-phthalaldehyde and the like can be used, and cyanine dyes are particularly preferred.
  • a cyanine dye has a structure in which a complex containing azonium ion is bound by a methine chain
  • ⁇ and ⁇ ′ represent 0, S, Se, one NH— or one CH CHCH—, and R and R ′ represent alkyl groups such as methyl, ethyl, and propyl. Or a carboxyalkyl group such as carboxyethyl; X represents a halogen atom; and n represents a natural number of 0 to 3).
  • These cyanine pigments are He—Ne lasers.
  • the size and cost can be reduced as compared with the case where an Ar laser or an Xe lamp is used or the case where a semiconductor laser combined with an expensive SHG element is used.
  • cyanine dye a cyanine dye represented by the formula (1) is particularly preferably used.
  • n 0, 1, 2 or 3. Particularly preferably, n is 2.
  • Labeling with a fluorescent dye targets biologically active substances, so the reaction is completed in a short time under mild conditions as much as possible, and binds to the reactive group without side reaction. It needs to be something like that.
  • a carbocyanine dye represented by the above formula (1) having a carboxyl group outside the conjugate system as a functional group is preferably used.
  • the bioactive substance used in the present invention includes saccharides and proteins, but proteins are particularly desirable.
  • the bioactive substance comprising the protein is preferably an antigen, an antibody, an enzyme, a habutene or an enzyme inhibitor.
  • the reagent for measuring a bioactive substance of the present invention be bound to an optical fiber and excited upon measurement.
  • the resin optical fiber of the present invention is a resin optical fiber having, on a core surface, a reactive active group capable of covalently bonding a substance that specifically binds to the bioactive substance measurement reagent. I need an inverter.
  • the optical fiber is made of resin
  • the resin optical fiber is inexpensive, has a larger polishing diameter than the glass optical fiber, and has a larger core diameter. Therefore, a large amount of light can be transmitted, and the flexibility can be maintained even if the core diameter is increased. This is because an optical fiber made of 'methyl polymethacrylate' has excellent transmission properties in the wavelength range of about 560 to 65 nm.
  • the density of the reactive group be 1.0 X 10 1 Q to 6.0 X 10 13 Zcm 2 .
  • the absolute number of reactive groups on the surface of the resin-made optical fiber decreases, and the measurement sensitivity is lowered, which is not practical, and is higher than the above range. In this case, the transmittance of the fluorescent light emitted from the fluorescent dye to the optical fiber becomes extremely poor. (See Fig. 7: In case of methyl polymethacrylate)
  • the resin constituting the resin optical fiber must be a material that does not adsorb bioactive substances and has good translucency.
  • a material that does not adsorb bioactive substances and has good translucency for example, polystyrene, polyacrylic acid, etc. Esters, polyesters, polyacrylamides, polyvinyl alcohols, polyethylene glycols, polycarbonates, or copolymers thereof. Can be used.
  • the resin optical fiber contains, as a main component, a resin having a structure that reacts with a crosslinking agent.
  • a resin having a structure that reacts with a crosslinking agent is desirable.
  • the surface of the optical fiber has reactive activity. This is because a crosslinking agent for introducing a group is easily reacted.
  • Examples of the structure that reacts with the cross-linking agent include an ester bond, an amide bond, an ester group, a carboxyl group, a formyl group, an amino group, a hydroxyl group, and an epoxy group. And a thiol group are preferred, but an ester structure such as an ester bond or an ester group is preferred.
  • the translucent resin having a structure or a functional group that reacts with the cross-linking agent a polyacrylic acid ester or a polyester is preferable.
  • the acrylate ester polymer has an ester structure among acrylic acid resins, and is, for example, a polymer derived from a polymer of an ester derivative such as acrylic acid or methacrylic acid. Specific examples thereof include polymers such as methyl acrylate, ethyl acrylate, and methyl methacrylate. Further, among the acrylate polymers, one particularly preferably used in the present invention is methyl polymethacrylate. Polymethyl methacrylate has better translucency than other resins.
  • Japanese Patent Application Laid-Open No. 59-501873. (US Pat. No. 4,582,809) describes an example in which an antigen and an antibody are bound to the surface of a nylon optical fiber using a cross-linking agent. Although it is not an optical fiber, Japanese Patent Application Laid-Open No. 56-12841 discloses that the surface of a cell for measuring the absorbance of methyl polymethacrylate or nylon is measured. Techniques for binding proteins are described.
  • the former technique uses an optical fiber made of nylon having low translucency, and the inventors of the present application have found that the propagation loss of the nylon fiber is large. In addition, high-sensitivity measurement as intended by the present inventors was difficult.
  • the latter technique involves binding proteins to the absorbance measurement cell, and is not a technique for immobilizing it on an optical fiber.
  • the resin optical fiber used in the present invention is, for example, a copolymer of a monomer such as methyl acrylate, ethyl acrylate, methyl methacrylate and a monomer such as styrene. It may be.
  • the reactive groups on the surface of the optical fiber include a formyl group, a carboxyl group, an amino group, a hydroxyl group, an epoxy group, a thiol group, an isocyanate group, and Examples thereof include a sothiocyanate group, and a formyl group is preferable.
  • the reason is common to the fiber of the present invention.
  • the substance to be bound is a bioactive substance and requires mild reaction conditions that do not reduce its activity, but the formyl group easily reacts with the bioactive substance, particularly the amino group of the protein. Because you do.
  • the resin of the resin optical fiber does not have a structure that reacts with the cross-linking agent, it has a structure that introduces a functional group into the resin and has a structure that reacts with the cross-linking agent.
  • a functional group is introduced into the part by reacting with an appropriate crosslinking agent.
  • a polyfunctional compound for example, aldehydes such as glutaraldehyde, succinaldehyde, adipoaldehyde, N,, and the like.
  • aldehydes such as glutaraldehyde, succinaldehyde, adipoaldehyde, N,, and the like.
  • cyan or diisothiocinart is used.
  • a formyl group can be introduced by reacting aldehyde.
  • the most preferable resin optical fiber for measuring a bioactive substance has a formyl group on the core surface of the resin optical fiber mainly composed of a resin having an ester structure. It is a form.
  • the optical fiber made of resin for measuring a bioactive substance is a nucleophilic reagent having a formyl group as a polyfunctional compound on the exposed core surface of the optical fiber made of resin. Is produced by introducing a formyl group on the core surface.
  • nucleophilic reagent having a formyl group a reagent represented by the formula (2) is preferable.
  • R 1 and R 2 each represent a hydrogen atom, an alkyl group or a formyl group, and n represents an integer of 0 to 5)
  • Examples of the reagent represented by the formula (2) include glutaraldehyde and succinaldehyde.
  • the reagent of the formula (2) reacts nucleophilically with the ester group of the resin (in the following reaction formula, methyl methacrylate) as shown in the following reaction formula.
  • the diameter of the optical fiber is usually 1 mm and the diameter of the core cross section is only 0.97 (cross-sectional area is 0.739 mm 2 ). This is because, in order to introduce a large amount, it is necessary to separate the cladding layer and increase the core surface area.
  • the polishing is preferably performed using alcohol as a lubricant.
  • the concentration of the base such as KOH is preferably 50 to 100 ntM.
  • the reason for adding the Ni salt is that the Ni salt promotes the reaction and at the same time prevents oxidation of the formyl group and addition of the OH group.
  • the core part of the resin optical fiber is immersed in the reaction reagent to react with the ester structure, and the reaction temperature is preferably adjusted appropriately.
  • the detection unit for measuring a biologically active substance of the present invention needs to covalently bond a substance that specifically binds to the substance to be measured to a reactive group of the resin optical fiber.
  • the substance that specifically binds to the analyte is preferably a protein, and may be an antigen, an antibody, an enzyme, a habutene, an enzyme inhibitor, or the like.
  • the reactive group of the resin optical fiber is a formyl group
  • the resin is methyl methacrylate
  • the detection unit of the present invention may be covered with a flow cell 5 as shown in FIG. 1, may be a facing type as shown in FIG. 3, or may be a type as shown in FIG. It may be a reflection type with a mirror 12 at the tip.
  • the excitation light is incident from the side opposite to the tip, and the fluorescent light propagates through the optical fiber 3 to which the detection unit is attached.
  • the excitation light propagates through the optical fiber 13 to which the detection unit is attached and is incident, and the excitation light is reflected by the mirror 12 at the tip, and Propagate fiber three.
  • the reagent for measuring a bioactive substance of the present invention is produced by various organic chemical reactions.To produce a protein modified with a plurality of fluorescent dyes of the present invention, a fluorescent dye is reacted with a protein. The residue obtained by removing the solvent from the reaction product is suspended in a buffer having a pH of 2 to 7 to separate and remove unreacted dye.
  • the buffer with a pH of 2 to 7 is labeled with a fluorescent dye.
  • the dissolved proteins dissolve, but the unreacted fluorescent dyes do not dissolve, so they can be easily separated.
  • the pH of the buffer is 2 or less, the protein is hydrolyzed, and when the pH is 7 or more, the fluorescent dye is dissolved.
  • the pH of the buffer is desirably 4.9 to 7.0, and is preferably 6.5 ⁇ 0.5, especially when avidin modified with a cyanine dye is produced. It is.
  • the fluorescent dye is desirably an acidic fluorescent dye exhibiting good solubility in a basic buffer.
  • the fluorescent dye be excited by laser light.
  • the fluorescent dye the above-mentioned cyanine dye, full-year-old resin, thiothiosinate, or the like is used.
  • the protein of the present invention may be various proteins, for example, neocarzinostan, an enzyme, a hormone, and the like, and is preferably a basic protein (a protein having PI ⁇ 7).
  • a basic protein a protein having PI ⁇ 7
  • the reason for this is that the basic protein exhibits good solubility in a buffer having a pH of 2 to 7 even when a hydrophobic fluorescent dye is bound thereto.
  • Avidin is preferred as the basic protein.
  • the reaction between the fluorescent dye and the protein is dicyclohexyl
  • a carbodimid reagent such as ruka rubomidide or di-p-toluene rubozimid
  • an amino group of a protein is condensed with a reactive group of a fluorescent dye.
  • the reaction solvent may be any as long as it can dissolve the fluorescent dye and protein.
  • the reaction is performed in a solvent such as an organic solvent or a basic aqueous solution.
  • reaction proceeds too much and the 0H group or SH group of the protein reacts with the fluorescent dye, resulting in the reaction specificity of the protein (antigen-antibody reaction or reactivity with bigtin when the protein is avidin) If necessary, stop the reaction with acetic acid or the like to prevent inactivation.
  • the solvent is distilled off under reduced pressure, removed and evaporated to dryness, and dissolved in a buffer solution having a pH of 2 to 7.
  • Unreacted fluorescent dye does not dissolve, so that the fluorescent dye can be easily separated by an appropriate separation means.
  • the unreacted dye can be removed by centrifugation and passing the supernatant through a tube filled with glass wool.
  • the biologically active substance binds to the compound having a plurality of reactive groups
  • the compound B binds to the reactive group of the compound having the plurality of reactive groups
  • the compound B has a plurality of reactive groups.
  • Compounds to which compound A modified with a fluorescent dye is bound for simplicity, hereinafter, fluorescent dye-compound A-compound B-compound having multiple reactive groups-bioactive substance
  • the compound B is reacted with most of the reactive groups of the compound having a plurality of reactive groups, the compound having the plurality of reactive groups is modified with the compound B, and then the biologically active substance is reacted.
  • Compound B-Compound having multiple reactive groups-Bioactive substance complex and then reacting with Compound A modified with fluorescent dye, Fluorescent dye compound A-Compound B-Multiple reactive activities A compound having a group-a bio-active substance complex is produced.
  • the combination of compound A and compound B be a protein and a compound that specifically binds to the protein.
  • avidin and biotin, and protein A And antibodies, antibodies and protein A is a combination of avidin and piotin.
  • chitosan (I) have a large number of amino groups in the molecule, and chitosan (I) is added with piotin (II) as a basic solution.
  • a dehydrating agent such as water-soluble carbodiimide (CHMC) or N-hydroxysuccinimide
  • bitin is combined with an acid amide to obtain a piotinylated chitosan (m).
  • biotinylated protein is reacted with the biotinylated chitosan ( ⁇ ) using the same dehydrating agent as described above, and the protein is bound to the remaining free amino group of chitosan (I).
  • the obtained chitinated chitosan (IV) is obtained.
  • avidin (V) modified with a fluorescent dye can be obtained by reacting a fluorescent dye, for example, a carboxyl group of a cyanine dye with an amino group of avidin, a protein, in the same manner as described above. And can be done.
  • the carboxyl group of the above cyanine dye can be easily formed by a conventional method using an amino group of avidin and a dehydrating condensing agent such as dicyclohexylcarbodiimide in an organic solvent. It can be condensed to form an amide bond. After completion of the reaction between the cyanine dye and avidin, it is preferable to remove any unreacted substances. For example, dialysis, centrifugation, gel filtration, or use of permeation material? It can be removed by using the law.
  • the acid amide bond formed by binding biotin to chitosan has a wavelength of 450 nm, 300 nm and 490 nm when the excitation wavelength is 25.5 at ⁇ 26. Each region has a characteristic fluorescence peak.
  • the measuring method using the reagent for measuring a biologically active substance of the present invention is performed by the following method.
  • the complex consisting of the fluorescent dye, avidin, and biotin, or the substance to be measured or a substance that specifically reacts with the substance to be measured is converted into a substance that specifically binds to the substance to be measured on the optical fiber.
  • test substance or the substance which specifically reacts with the test substance to which biotin is bound is combined with the substance or the test substance which specifically binds to the test substance on the optical fiber; After specific reaction, avidin modified with a fluorescent dye is reacted, and a complex is formed on the optical fiber by avidin-biotin bond.
  • a measuring method characterized by measuring the following.
  • the analyte or the substance that specifically reacts with the analyte binds to the compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups has a plurality of fluorescent light.
  • the reagent to which the compound modified with the dye is bound is specifically bound to the analyte on the optical fiber.
  • the substance to be measured or a substance that specifically reacts with the substance to be measured binds to a compound having a plurality of reactive groups.
  • the fluorescence is measured.
  • the compound A modified with the dye is reacted to form a complex by combining the compound A and the compound B on the optical fiber, and then the fluorescent dye is excited by light to emit a fluorescent light.
  • the measurement method 1) will be described.
  • the measurement method 1) it is necessary to use, as a reagent, a complex composed of a fluorescent dye, avidin, piotin, a substance to be measured, or a substance that specifically binds to the substance to be measured.
  • the reason for using the above reagent is that if a substance to be measured or a substance that specifically reacts with the substance to be measured is labeled with a fluorescent dye, the amount of the fluorescent dye bound is limited, and the binding of the fluorescent dye is limited. There is a risk that the binding site of the analyte or the substance that specifically reacts with the analyte may be damaged. You.
  • the reagent is excited by light after reacting specifically with a substance to be measured or a substance to be measured on the optical fiber.
  • the excitation on the optical fiber is because the optical fiber can transmit the excitation light and the fluorescent light, and can perform efficient measurement.
  • the fluorescent dye is preferably a cyanine dye.
  • cyanine dyes can be excited by a He--Ne laser (633 nm) or a semiconductor laser (636 nm), which reduces the size of the device and reduces the size. Costing is possible.
  • a carbocyanine dye represented by the following formula and having a carboxyl group in addition to a conjugate system as a functional group is preferably used.
  • the carboxyl group of the cyanine dye and the amino group of the protein are dissolved in an organic solvent in the presence of a dehydrating condensing agent such as carposimid. It is obtained by forming a metal bond. At this time, unreacted dye is separated.
  • the light source used in the present invention is desirably laser light or LED light.
  • the measurement methods are broadly classified into a competition method and a sandwich method.
  • a sample to be measured is mixed with a reagent having a known concentration consisting of a fluorescent dye, avidin, a biotin, and a substance to be measured, and a substance that specifically binds to the substance to be measured is immobilized thereon.
  • the immersed optical fiber is allowed to react specifically, and then is excited with light to measure the fluorescence.
  • the sample to be measured and the reagent consisting of the fluorescent dye, avidin, piotin and the substance to be measured are applied to the optical fiber in accordance with the respective concentration ratios. Join You.
  • the concentration of the sample to be measured is high, the binding amount of the reagent consisting of the fluorescent dye, avidin, piotin, and the substance to be measured is relatively reduced, the fluorescence intensity is reduced, and the concentration-fluorescence intensity calibration curve is obtained. The slope becomes negative.
  • an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured.
  • a substance to be measured is bound to the optical fiber according to the concentration.
  • the optical fiber to which the substance to be measured is bound is immersed in a solution of a reagent consisting of a fluorescent dye, avidin, biotin, and a substance that specifically binds to the substance to be measured.
  • a reagent consisting of a fluorescent dye, avidin-bitin, and a substance that specifically binds to an analyte is bound to the optical fiber.
  • a reagent consisting of the same number of fluorescent dyes, avidin, and biotin as substances to be measured is bound to the optical fins. I do.
  • the concentration of the sample to be measured is high, the amount of binding of the reagent consisting of the fluorescent dye avidin-bitin and the substance specifically binding to the substance to be measured increases, the fluorescence intensity increases, and the concentration-fluorescence increases.
  • the slope of the intensity calibration curve is positive.
  • the measuring method 2) basically has the same effect as the measuring method 1), but in this method, the substance to which biotin is first bound or a substance which specifically reacts with the substance to be measured is used. Is required to react specifically with a substance or an analyte that specifically binds to the analyte on the optical fiber, and then to react with avidin modified with a fluorescent dye. .
  • the reason for this is that the avidin modified with the fluorescent dye is bound last, so that the decrease in fluorescence intensity due to hydrolysis and oxidation of the fluorescent dye can be prevented, and highly reproducible measurement can be performed. It is.
  • the fluorescent dye is preferably a cyanine dye.
  • the light source used in the present invention is desirably laser light or LED light.
  • the measurement methods are roughly classified into a competitive method and a sandwich method.
  • a sample to be measured is mixed with a reagent of known concentration consisting of pyotin and the analyte, and an optical fiber on which a substance that specifically binds to the analyte is immobilized.
  • This method involves inserting a bar, reacting specifically, binding avidin modified with a fluorescent dye, exciting with light, and measuring.
  • the optical fiber is The reagent consisting of the measurement sample and the fluorescent dye avidin-bitin-substance is bound according to the respective concentration ratios.
  • the concentration of the sample to be measured is high, the binding amount of the reagent consisting of the fluorescent dye, avidin, piotin, and the substance to be measured is relatively reduced, the fluorescence intensity is reduced, and the concentration-fluorescence intensity calibration curve is obtained. Becomes negative.
  • an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured.
  • An analyte is bound to the optical fiber according to the concentration.
  • the optical fiber to which the substance to be measured is bound is immersed in a reagent solution composed of piotin and a substance that specifically binds to the substance to be measured.
  • a reagent consisting of a substance that specifically binds to piotin-to-be-measured substance binds to the fiber.
  • the avidin modified with a fluorescent dye is bound to the optical fiber to which the reagent comprising the substance that specifically binds to the above-mentioned piotin-substance to be measured is bound.
  • the optical fiber contains a substance that specifically binds to the same number of fluorescent dyes, avidin, piotin, and the analyte as the number of the measurement sample. Join.
  • the measuring method 3) is characterized in that a substance to be measured or a substance that specifically reacts with the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group of the compound having a plurality of reactive groups However, it is necessary to use a reagent to which a compound modified with a plurality of fluorescent dyes is bound.
  • the binding amount of the fluorescent dye per bioactive substance can be increased, and the detection sensitivity can be dramatically improved.
  • the fluorescent dye is a cyanine dye.
  • the compound modified with the plurality of fluorescent dyes is preferably avidin, and is bound to the reactive group of the compound having a plurality of reactive groups via piotin. Is desirable.
  • the compound having a plurality of reactive groups is desirably selected from aminoglucan, and chitosan is particularly preferred.
  • the light source for exciting the fluorescent dye may be It is desirable to use the light or LED light.
  • Tsuru-Ki measurement methods are broadly divided into the competitive method and the Sandwich method.
  • the analyte and the analyte bind to a compound having a plurality of reactive groups, and the reactive groups of the compound having the plurality of reactive groups are modified with a plurality of fluorescent dyes.
  • the reagent to which the compound is bound is mixed, and the optical fiber on which the substance that specifically binds to the analyte is immobilized is immersed and allowed to react specifically. This is a method of measuring fluorescence by exciting with light.
  • the sample to be measured and the reagent are bound to the optical fiber according to the respective concentration ratios.
  • the concentration of the sample to be measured is high, the amount of the reagent bound relatively decreases, the fluorescence intensity decreases, and the slope of the concentration-fluorescence intensity calibration curve becomes negative.
  • an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured.
  • An analyte is bound to the optical fiber according to the concentration.
  • the optical fiber to which the substance to be measured is bound is combined with a compound in which a substance that specifically binds to the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups is combined.
  • Has multiple The solution of the reagent to which the compound modified with the fluorescent dye is bound can be used.
  • the same number of measurement reagents as the measurement sample are bound to the optical fiber.
  • the concentration of the sample to be measured is high, the amount of binding of the measurement reagent increases, the fluorescence intensity increases, and the slope of the concentration-fluorescence intensity calibration curve becomes positive.
  • compound A and compound B when two kinds of substances that specifically bind to each other are referred to as compound A and compound B, first, the substance to be measured or a substance that specifically reacts with the substance to be measured is subjected to a plurality of reactions.
  • the amount of the fluorescent dye per substance to be measured can be increased, and a decrease in the fluorescence intensity due to hydrolysis or oxidation of the fluorescent dye can be prevented. This is because measurement with high reproducibility can be performed.
  • the fluorescent dye is not the desire that it is a Shianin dye 0
  • Compounds A and B are preferably a combination of avidin-biotin, protein A-antibody, and antibody-brotin A, and a combination of avidin-biotin is particularly preferred.
  • the antibody used as the compound A or the compound B does not cause a specific reaction with the substance to be measured.
  • the compound having a plurality of reactive groups is preferably selected from aminoglucan, and chitosan is particularly preferable.
  • the light source for exciting the fluorescent dye is laser light or LED light.
  • the measurement methods are broadly classified into a competition method and a sandwich method.
  • the analyte and the analyte bind to a compound having a plurality of reactive groups, and the reactive group is mixed with a reagent having a known concentration to which compound B is bound.
  • a reagent having a known concentration to which compound B is bound.
  • the sample to be measured and the reagent are bound to the optical fiber according to their respective concentration ratios. Therefore, if the concentration of the sample to be measured is high, the amount of reagent bound relatively decreases, the fluorescence intensity decreases, and the slope of the concentration-fluorescence intensity calibration curve becomes negative.
  • an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized is immersed in a sample to be measured.
  • a substance to be measured binds to the optical fiber according to its concentration.
  • the optical fiber to which the substance to be measured is bound is bound to a compound in which a substance that specifically binds to the substance to be measured has a plurality of reactive groups, and compound B is bound to the reactive group.
  • a reagent binds to the fiber.
  • the substance that specifically binds to the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group is bound to an optical fiber to which a reagent to which compound B is bound is bound.
  • the compound A modified with a fluorescent dye is bound.
  • the bioactive substance has a plurality of reactive activities.
  • the compound having a plurality of reactive groups is bonded to the compound having a group, and the reactive group of the compound having a plurality of reactive groups is determined by using the above-mentioned bioactive substance measurement test in which a compound modified with a plurality of fluorescent dyes is bonded.
  • This is a device for measuring bioactive substances.
  • the apparatus of the present invention has at least the following constitutions: a small light source and an optical fiber for transmitting excitation light or fluorescence, and a core surface at one end surface thereof is exposed.
  • the reason for using the optical fiber which is characterized in that the optical fiber is composed of a counter, is that the optical fiber allows the excitation light and the fluorescent light to propagate, and the optical fiber has no light loss. Efficient measurement can be performed.
  • the optical fiber is made of resin. This is because resin is cheaper and easier to use.
  • the resinous fiber has a structure that reacts with a crosslinking agent.
  • a bioactive substance can be covalently bonded to form a detection portion by using a cross-linking agent.
  • the structure that reacts with the crosslinking agent is preferably an ester structure.
  • a (meth) acrylic ester resin such as methyl polymethacrylate or a polyester resin is preferable.
  • the bioactive substance binds to a compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups is modified with a plurality of fluorescent dyes. It is necessary that the biologically active substance measurement reagent to which the obtained compound is bound is bound at the time of measurement.
  • the fluorescent dye is a cyanine dye.
  • the cyanine dye can be pumped by He—Ne laser light (630 nm) or the shortest wavelength semiconductor laser currently transmitting (636 nm), so that it is large in size. It is not necessary to use expensive and expensive Xe lamps or Ar lasers or expensive SHG elements (elements that reduce the wavelength of light), so can a cheap and small device be obtained? It is.
  • the detection section be detachable from an optical fiber that propagates excitation light or fluorescence by a coupler.
  • a guide rail type as shown in FIG. 3 is preferable.
  • the light source of the apparatus of the present invention must be small and inexpensive, and can be a He—Ne laser, a semiconductor laser, a laser combining a semiconductor laser and an SHG element, or an LED (light emitting diode). C) is desirable.
  • the mechanism for extracting only the fluorescent light may be a half mirror, a filter, or the like, but a filter is preferable.
  • the reason for this is that when a half mirror is used, a space for arranging the optical system is required, which makes it difficult to reduce the size.
  • the half mirror is mainly used when the detection unit is of a reflection type, and the filter is mainly used when the detection unit is of a facing type.
  • the detection unit is of a facing type.
  • the optical fiber made of the resin (12) was immersed in the reaction solution prepared in the above (13) at 50 ° C. for 10 minutes and washed with water.
  • the (15) pair was immersed in a 20 mM hydrochloric acid solution for 5 to 10 minutes, washed with water, and a formyl group was introduced on the surface of the core portion of the resin optical fiber.
  • FIG. 6 (b) shows the relationship between the treatment temperature and the amount of immobilizable enzyme (protein) when a formyl group was introduced to the surface of the optical fiber by the above method.
  • Figure (a) shows the relationship between the processing temperature and the optical transmission rate of the fiber.
  • FIG. 7 shows the relationship between the density of the formyl group on the surface of the fiber and the light transmission reduction rate.
  • the optical fiber made of methyl polymethacrylate improves the light transmission rate by heat treatment, but the higher the reaction temperature, the higher the density of the formyl group to be bonded. The transmission rate decreases. For this reason, as shown in FIG. 6 (a), the most preferable temperature is around 50 ° C.
  • the detection unit 5 was immersed in a biotinylated chitosan solution to which the antibody obtained in the above (8) was bound, and then washed with phosphate buffered saline.
  • the detection limit was measured from the calibration curve, and this is shown in Table 1.
  • Binding of the antibody protein] 3-1, 4 An anti-mouse IgG (Y) solution and CHMC were added to the Samin suspension and reacted at 4 ° C overnight. After completion of the reaction, dialysis is performed for 12 hours, and unreacted substances are removed using an anion exchange column.
  • Example 13 (12) In Example 13 (13), succindialdehyde was used in place of glutaraldehyde, and instead of the optical fiber made of methyl methacrylate. Using an optical fiber containing a polyester, the detection unit shown in FIG. 1 was prepared in the same manner as in (12) to (18) of Example 1.
  • the complex solution of (Y) was mixed at a ratio of 1: 1 and passed through a flow cell 5 shown in FIG. 1 and then washed with a phosphate buffered saline, and then the apparatus of the present invention shown in FIG. Fluorescence was measured with a He-Ne laser optics with a spectrofluorometer 8. The same measurement was repeated while changing the concentration of anti-mouse IgG (Y), and the relationship between the concentration of anti-mouse IgG (Y) and the fluorescence intensity was examined to prepare a calibration curve. The detection limit was measured from the calibration curve and is shown in Table 1.
  • the detection limit was measured from the calibration curve and is shown in Table 1.
  • the obtained precipitate is suspended in 10 mM potassium phosphate buffer. did.
  • the sodium sulfate crystals were removed by centrifugation, and the supernatant was dialyzed and concentrated for use.
  • the detection limit was measured from the calibration curve and is shown in Table 1.
  • Example 1 50 mg of CHMC was added and dissolved in the solution obtained in (1) of Example 1, and the solution was allowed to stand at 12 ° C for 2 hours. Using this solution, (2) of Example 1 was used. The following processing was performed. The detection limit was measured from the calibration curve and is shown in Table 1.
  • Example 1 a polylysine was used in place of the chitosan of Example 1.
  • the reaction conditions are the same as those in Example 1.
  • the detection limit was measured from the calibration curve and is shown in Table 1.
  • Example 2 The detection section of Example 1 was immersed in a mouse IgG (antigen) solution at 4 ° C for 12 hours.
  • the detection part was immersed in an anti-mouse IgG solution of known concentration, and washed with phosphate buffered saline.
  • Example 7 The solution of (1) in Example 7 was reacted with the bitinylated antibody to prepare a detection reagent, and this reagent and an anti-mouse IgG solution of known concentration were mixed at a ratio of 1.1.
  • the detection part of Example 7 was immersed, measured, and a calibration curve was prepared. From this, the detection limit was measured, and this is shown in Table 1.
  • Example 1 (1) The treatments (9) to (11) of Example 1 were performed to obtain a solution of avidin modified with NK116.
  • mice IgG was dehydrated and condensed in the presence of carposimid to prepare the detection unit 5.
  • the detection limit was determined from the calibration curve and is shown in Table 1.
  • FIGS. 1-10 Embodiments of the apparatus of the present invention are shown in FIGS.
  • FIG. 1 shows that the cladding layer 2 on the surface of the optical fiber 1 is eliminated, the antigen 4 is bound to the exposed core surface 3, and the core surface is removed.
  • 3 is a detection unit having a structure surrounded by a flow cell 5.
  • FIG. 2 shows a reflection type detection unit, which is provided with a mirror 12 at the tip.
  • Fig. 3 shows the structure of the opposed fluorescence detector. is there.
  • the fluorescence detector (sensing tip) 9 is fixed by the guide 11 for optical axis alignment, and since it is not bonded, the fluorescence detector 9 can be freely attached and detached, which is extremely convenient for practical use. Is good. Since the fluorescence detector 9 is replaced every time the measurement is performed, it is preferable that the fluorescence detector 9 be a resin optical fiber from the viewpoint of cost.
  • a reactive group is introduced into the resin optical fiber by various methods.
  • the above-mentioned resin optical fiber preferably has an ester structure such as a polyacrylic acid ester, and is used when the fluorescent detection section is formed by a resin optical fiber. Reacts a compound having a CH> CH0 structure with this ester group under basic conditions, introduces a formyl group, and binds the formyl group to a protein such as an antigen or an antibody. You.
  • the excitation light is emitted from the fiber facing the detection surface.
  • a laser beam enters the fluorescence detector 9 from the plate side 10, and the incident light and the fluorescence have a guide hole 11 having a guide 11 for optical axis alignment. Then, only the fluorescence is extracted by the filter 7 and measured by the spectrophotometer 8.
  • FIG. 5 shows an apparatus using a flow cell type detector.
  • the reagent for measuring a bioactive substance of the present invention can be used for immunoassay for a bioactive substance such as an antigen, an antibody or an enzyme contained in a very small amount in blood or body fluid in medical diagnosis. Since the amount of fluorescent dye per individual is large, detection sensitivity can be greatly improved.
  • the optical fiber for measuring a bioactive substance of the present invention can realize small size, low cost, and high sensitivity.
  • the measuring method of the present invention using the reagent and the device for measuring a bioactive substance, simple and quick measurement can be realized, so that it can be used for disease diagnosis in the medical field.
  • Figures 1 to 3 show the fluorescence detection unit using the fluorescence labeling method.
  • Figures 4 and 5 show a fluorescence measurement system using a He-Ne laser or a semiconductor laser.
  • Fig. 6 (a) shows the relationship between the processing temperature and the optical transmission rate of an optical fiber made of methyl polymethacrylate.
  • FIG. 6 shows the relationship between the treatment temperature and the amount of enzyme that can be bound.
  • the horizontal axis in the figure is the processing temperature (C °)
  • the vertical axis in the figure is the fiber light transmission rate (%)
  • the vertical axis in the figure is the amount of enzyme immobilization per area (tg / cm 2 )
  • the horizontal axis in the figure shows the concentration of bitinylated anti-mouse antibody (mgZ), and the vertical axis shows the number of counts.
  • FIG. 6 (c) shows a calibration curve of the concentration of the piotinylated anti-mouse antibody and the fluorescence intensity.
  • Figure 7 shows the relationship between the optical transmission rate and the density of the formyl group of an optical fiber made of methyl polymethacrylate.
  • the horizontal axis shows the number of holmyl groups (Zcni 2 ), and the vertical axis shows the fiber transmission reduction rate (%).
  • Fig. 8 (a) shows the calibration curve of the Sandwich method, and (b) shows the calibration curve of the competition method.
  • the horizontal axis indicates the anti-mouse IgG (mg / mg), and the vertical axis indicates the number of counts.
  • Figure 9 shows the responsiveness of the sensor.
  • 1 is an optical fiber
  • 2 is a cladding layer
  • 3 is a core surface
  • 4 is an antigen
  • 5 is a flow cell
  • Y is a fluorescently labeled antibody of the present invention
  • Y is an antibody in a sample
  • 6 is a He-Ne laser generator or a laser generator combining a semiconductor laser and an SHG element
  • 7 is a filter
  • 8 is a spectrofluorometer
  • 9 is a sensing chip
  • 10 is a plate
  • 1 1 is a guide rail for optical axis alignment
  • 1 2 is a mirror

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A reagent for assaying a biologically active substance comprising a combination of (fluorochrome)n- avidin-a compound having a number of reactive groups, or one wherein avidin is bound via biotin to the compound having a number of reactive groups; a method of producing the reagent; an optical fiber made of a resin necessary for utilizing the reagent; an apparatus for assaying provided with a detecting unit utilizing the optical fiber; and a method of assaying the biologically active substance with the use of the above reagent and apparatus. This assaying method can be employed in the immunoassay of trace amounts of biologically active substances contained in blood or a humor for medical diagnosis, such as antigens, antibodies or enzymes, with a remarkably improved sensitivity of detection.

Description

明 細 書  Specification
生体活性物質測定用試薬、 その製法、 測定方法及び  Bioactive substance measurement reagent, its production method, measurement method and
[技術分野 ] [Technical field ]
本発明は、 免疫測定法に よる生体活性物質の測定に 使用でき る試薬、 その製法、 これを利用するために必 要な樹脂性光フ ァイ バ一、 この光フ ァイ バ一を利用 し た検出部を有する測定装置、 及びこれら試薬と装置を 用いる生体活性物質の測定方法に関する。  The present invention relates to a reagent which can be used for measuring a biologically active substance by an immunoassay, a method for producing the same, a resinous optical fiber necessary for utilizing the same, and a method using the optical fiber. The present invention relates to a measuring device having a detecting section, and a method for measuring a biologically active substance using these reagents and devices.
[背景技術 ]  [Background Art]
従来、 医療診断、 臨床検査などの研究分野において 極微量成分を検出する方法と して、 種々の免疫測定法 が知られてお り 、 これに関 しては色素で標識された試 薬、 測定方法、 あるいは装置などについて様々 な技術 が提案されている。  Conventionally, various immunoassays have been known as methods for detecting trace components in research fields such as medical diagnosis and clinical examination, and in this regard, dye-labeled reagents and assays have been known. Various techniques have been proposed for methods or devices.
1 ) 標 B成 5式  1) Mark B type 5
標識試薬には、 従来、 放射性同位元素、 発光剤、 酵素で標識 さ れた抗原、 抗体な どが開発さ れて き た。  Conventionally, labeling reagents such as radioisotopes, luminescent agents, enzyme-labeled antigens and antibodies have been developed.
この中で、 最も感度が高いものは、 放射性同位元素 で標識されたものであるが、 取り扱いが容易でない。 ま た酵素で標識されたものは、 一部の物質に対しての み有効である。 このため、 発光剤標識試薬の高感度化 が望まれている。 Of these, the most sensitive ones are labeled with radioisotopes, but are not easy to handle. Those labeled with enzymes are only effective for some substances. For this reason, the sensitivity of luminescent agent labeling reagent Is desired.
このよ うな、 発光免疫測定法に使用でき る高感度試 薬と して特開昭 5 8 — 6 1 4 6 8号には、 複数個のル ミ ネセ ン 卜が結合した有機高分子化合物と抗体又は抗 原のいずれかと結合した免疫試薬及びそれを用いた免 疫定量法が、 また米国特許 4 1 6 6 1 0 5号には、 多 盲能性ポ リ マー骨格分子アナライ ト体と特異的に反応 可能な第一反応体 (抗体) で、 多数の蛍光染料分子が 結合したアナライ 卜体の検出試薬がそれぞれ提案され ている。 しかしながら、 これらの試薬は、 結合させる こ とができ る色素の量が充分ではないため、 長波長で 励起される感度の低い色素を用いた場合には、 検出感 度が実用的でないと いう問題がある。  As such a highly sensitive reagent that can be used in a luminescence immunoassay, Japanese Patent Application Laid-Open No. 58-61848 discloses an organic polymer compound to which a plurality of luminescent components are bonded. An immunoreagent conjugated to either an antibody or an antigen and an immunoassay method using the same are described in U.S. Pat.No. 4,166,105. Reagents have been proposed for detecting the first reactant (antibody) capable of reacting with a plurality of fluorescent dye molecules, respectively. However, these reagents do not have sufficient amount of dye that can be bound, and the problem is that the detection sensitivity is not practical when a dye with low sensitivity that is excited at a long wavelength is used. There is.
また、 特開昭 6 0 — 2 5 2 2 6 5号には、 発光剤が 結合した水溶性有機高分子化合物をアビジンに結合さ せ、 これを'用いた生物学的に活性な物質の測定方法が 開示さ れている。 しか しなが ら、 この試薬及び方法 は、 抗体あるいは抗原を分子量の小さいピオチ ンを介 してア ビジンに結合させているため、 抗体あるいは抗 原のまわ り に多量のビ才チンが結合し、 免疫活性を減 退させる可能性があ り 、 これを防ぐ処理を講ずる必要 がある こ と、 また、 水溶性高分子をアビジンに結合さ せるのは立体障害によ り結合させにく いと いう 問題が ある。 Also, Japanese Patent Application Laid-Open No. 60-252,265 discloses that a water-soluble organic polymer compound having a luminescent agent bound thereto is bound to avidin, and a biologically active substance is measured using the compound. The method is disclosed. However, in this reagent and method, a large amount of bitin is bound around the antibody or antigen because the antibody or antigen is bound to avidin via low molecular weight piotin. However, there is a possibility that the immune activity may be reduced, and it is necessary to take a treatment to prevent this, and it is difficult to bind the water-soluble polymer to avidin due to steric hindrance. problem is there.
2 ) 発光免疫分析用光フ ァ イ バ一  2) Optical fiber for luminescence immunoassay
発光免疫分析では、 光フ ァイバ一を利用 して蛍光色 素 (発光剤) を励起した り 、 蛍光を伝播する方法が有 効であ り 、 種々 の技術が開示されている。  In luminescence immunoassay, a method of exciting a fluorescent dye (luminescent agent) using an optical fiber or transmitting fluorescence is effective, and various techniques have been disclosed.
光フ ァイ バ一をセンサーと して使用するためには、 抗原、 抗体を光フ ァイ バ一に固定化する必要があ り 、 このための技術と して、 セロ フ ァ ンなどの膜に抗原、 抗体などを固定化させる膜固定化法、 アク リ ルア ミ ド ゲルなどの空隙に抗原、 抗体などを封じ込める包括法 などがあるが、 前者は、 光散乱による感度低下が、 後 者は、 応答性が悪いと いう問題があっ た。 このため、 光フ ァイ バ一に直接抗原、 抗体などを共有結合させる 方法 と して、 Analitical Chemistry Vol . 59 No. 8 In order to use an optical fiber as a sensor, it is necessary to immobilize antigens and antibodies on the optical fiber. Techniques for this purpose include cellophane and the like. There are a membrane immobilization method in which antigens and antibodies are immobilized on the membrane, and an inclusive method in which antigens and antibodies are sealed in pores such as acrylamide gel.The former reduces the sensitivity due to light scattering, but the latter Had a problem of poor responsiveness. For this reason, Analytical Chemistry Vol. 59 No. 8 describes a method for directly covalently binding antigens, antibodies, etc., to optical fibers.
P 1226-1230 ( 1987 )には、 石英製光フ ァ イ バ一の表 面の シ ラ ノ ール基に シ ラ ン 力 ッ プ リ ン グ剤で あ るP 1226-1230 (1987) describes a silane coupling agent for the silane group on the surface of a quartz optical fiber.
( 3 — グ リ シ ド キ シプロ ピル) 卜 リ メ ト キ シ シ ラ ン(3 — Glycidoxypropyl) Trimoxysilane
( G 0 P S ) を反応させ、 次いでこれを H I 0 4 で処 理して、 石英製光フ ァイ バ一の表面にホルミ ル基を導 入し、 このホルミ ル基に蛋白質のア ミ ノ 基を反応させ て固定化する方法が開示されている。 しかしながら、 こ の方法は 、 石英フ ァ イ バーにのみ有効な方法であ り 、 樹脂製光フ ァ イ バ一には使用できない。 樹脂製光 フ ァイ バ一は、 値段も安価で、 研磨加工しやす く 、 柔 軟であ り 、 取 り扱いやすいため、 樹脂製フ ァ イ バ一に 抗原や抗体などの蛋白質を結合させる方法が望まれて いる。 (G 0 PS) were reacted to which was then processed by HI 0 4, quartz light off § Lee bar one introduced City, formyl groups on the surface, protein A Mi to the formyl group Roh A method for reacting a group and immobilizing the same is disclosed. However, this method is effective only for quartz fiber, and cannot be used for resin-made optical fiber. Resin light Fibers are inexpensive, easy to polish, flexible, and easy to handle, so it is desirable to have a method for binding proteins such as antigens and antibodies to resinous fibers. It is rare.
ま た 、 光フ ァ イ バ一を 用 い た装置 と し て は、 特 開昭 5 9 — 5 0 1 8 7 3号 (米国特許 4 5 8 2 8 0 9 ) に 免疫検定装置及び方法が 、 ま た特 開 昭 S 2 - 1 2 3 3 5 8号、 特開昭 6 2 — 5 0 1 1 0 2号 (スィ ス特許出願 5 3 0 6ノ 8 4— 5号) に光フ ァイ バ一型 免疫センサーがそれぞれ提案されてい'る。 しかしなが ら、 これらの明細書には、 抗原、 抗体の高感度標識を 行う ための技術は何ら記載されておらず、 このため、 光源と して、 H gラ ンプ、 X eランプや A r レーザで 励起する よ う な感度の高い蛍光色素を用いた場合に し か利用できず、 また、 装置が大型で、 高価なものにな る と いう 問題がある。  As an apparatus using an optical fiber, an immunoassay apparatus and method are disclosed in Japanese Patent Publication No. 59-501873 (US Pat. No. 4,582,809). The optical fan is disclosed in Japanese Patent Application Laid-Open No. S2-123358, and Japanese Patent Application Laid-Open No. Sho 62-501102 (Sheet Patent Application No. 5306-684-5). Each type of immunosensor has been proposed. However, these specifications do not describe any technology for performing high-sensitivity labeling of antigens and antibodies. Therefore, Hg lamps, Xe lamps, and Ae lamps are used as light sources. r There is a problem that only a fluorescent dye having high sensitivity such as that excited by a laser is used, and that the apparatus is large and expensive.
3 ) 測定方法  3) Measurement method
発光剤を使用 した免疫測定の方法も種々提案され、 例えば、 特開昭 6 0 — 2 4 4 5 0号には、 ビ才チ ン一 ア ビジ ン結合によ り免疫複合体に結合した発光剤結合 アビジンの発光反応による発光量を測定する生物学的 に活性な物質の測定方法が提案されている。 こ の方法 は発光剤と抗体又は抗原の間にアビジン一ピオチ ン結 合を介しているが、 他の有機高分子化合物を介してい ないため、 結合でき る色素量が少なく 、 低感度の色素 を使用でき ないと いう問題がある。 また、 ピオチン一 ア ビジ ン結合を用 いた試薬と しては、 特開昭 5 8 — 3 0 6 6 7号 (スイ ス特許出願 6 9 8 9ノ 8 1 - 0 1 号) に檩識化された免疫活性物質が提案されている。 しか し 、 こ の技術は免疫物質が酵素で標識させてお り 、 酵素活性を測定するための処理が面倒である と い う 問題がある。 Various methods of immunoassay using a luminescent agent have been proposed. For example, Japanese Patent Application Laid-Open No. Sho 60-244550 discloses a method in which a luminescent agent bound to an immune complex by a bitin-avidin bond. Agent binding A method for measuring a biologically active substance that measures the amount of luminescence due to the luminescence reaction of avidin has been proposed. This method binds avidin-piotin between the luminescent agent and the antibody or antigen. However, there is a problem that the amount of the dye that can be bound is small and a low-sensitivity dye cannot be used because it is not through another organic polymer compound. Also, a reagent using a biotin-avidin bond has been recognized in Japanese Patent Application Laid-Open No. 58-30667 (Swiss Patent Application No. 6989 / 81-01-1). Immunologically active substances have been proposed. However, this technique has a problem in that the immunological substance is labeled with an enzyme, and the process for measuring the enzyme activity is troublesome.
[発明の開示 ]  [Disclosure of the Invention]
本発明者は、 鋭意研究した結果、 生体活性物質の濃 度を測定する方法において、 測定感度をさ らに向上さ せるためには、 蛋白分子 1 個あた り の蛍光色素の結合 量を增やす必要があ り 、 こ のために、 生体活性物質を 反応活性基を多数有する化合物に結合させ、 各反応活 性基に蛍光色素が多数結合した化合物を結合させる こ と に想達した。 また、 蛍光色素の発する光を効率良く 集光し、 測定でき る よ う な光フ ァ イ バ一からなる検出 部と 、 これを具備する装置、 及びこれら試薬と装置を 使用 した測定方法の開発に成功した。  As a result of intensive studies, the present inventor has found that in a method for measuring the concentration of a bioactive substance, in order to further improve the measurement sensitivity, the amount of a fluorescent dye bound per protein molecule must be reduced. For this purpose, the present inventors have found that a bioactive substance is bound to a compound having a large number of reactive groups, and a compound having a large number of fluorescent dyes bound to each reactive group. In addition, the development of a detection unit consisting of an optical fiber capable of efficiently condensing and measuring light emitted from a fluorescent dye, a device equipped with the same, and a measurement method using these reagents and devices succeeded in.
(生体活性物質測定試薬)  (Bioactive substance measurement reagent)
本発明の生体活性物質測定試薬は、 蛍光標識体が複 数の反応活性基を有する化合物に結合し、 該複数の反 応活性基を有する化合物の反応活性基には、 複数の蛍 光色素で修飾された化合物が結合している こ と を特徵 と し て レヽ る 。 In the reagent for measuring a bioactive substance of the present invention, the fluorescent label binds to a compound having a plurality of reactive groups, and It is noted that a compound modified with a plurality of fluorescent dyes is bonded to the reactive group of the compound having a reactive group.
本発明で述べる と こ ろの蛍光色素とは、 光にて励起 ざれる色素を指し、 化学発光や生物発光する蛍光色素 を意味しない。 前記光は、 レーザ光などのコ ヒーレ ン 卜光が望ま しい。  The fluorescent dye described in the present invention refers to a dye that cannot be excited by light, and does not mean a fluorescent dye that emits chemiluminescence or bioluminescence. The light is desirably coherent light such as laser light.
前記生体活性物質測定試薬は、 複数の反応活性基を 有する化合物の反応活性基の大部分に、 複数の蛍光色 素で修飾された化合物が結合した該複数の反応活性基 を有する化合物を、 生体活性物質と結合させる こ と に よ り、 生体活性物質当 り の蛍光色素の結合量を増やす こ と によ り 、 検出感度を飛躍的に向上させる ものであ 前記反応活性基と しては、 アミ ノ基、 チオール基、 ヒ ドロキシル基、 カルボキシル基、 ホルミ ル基な どが 挙げ られるが、 特にア ミ ノ 基が望ま しい。 こ の理由 は、 ァ ミ ノ基ば比較的反応活性が高く 、 生成した結合 が安定なためである。  The reagent for measuring a biologically active substance comprises a compound having a plurality of reactive groups in which a compound modified with a plurality of fluorescent dyes is bonded to most of the reactive groups of the compound having a plurality of reactive groups. By binding to an active substance, the amount of fluorescent dye per biologically active substance is increased, thereby greatly improving detection sensitivity. Examples thereof include an amino group, a thiol group, a hydroxyl group, a carboxyl group, and a formyl group, and an amino group is particularly desirable. The reason for this is that the amino group has a relatively high reaction activity and the generated bond is stable.
ま た 、 前記反応活性基 は 、 1 分子あた り 2 0 〜 1 0 0 0 0 0個存在している こ とが望ま しい。 こ の理 由は、 2 Ό個よ り少ない場合は、 検出感度の向上が期 待できず、 1 Q 0 0 0 0個よ り多い場合、 このよ う な 高分子を溶媒に溶解させる こ と が困難なためである。 前記反応活性基は 、 1 分子当 り 3 0 0 0 〜 6 0 0 〇 個 存在 し て レヽ る こ と 力 s よ り 好 ま し く 、 4 0 0 0 〜 5 0 0 0個が好適である。 Further, it is desirable that the number of the reactive groups be 20 to 100 000 per molecule. The reason is that if the number is less than 2Ό, improvement in detection sensitivity cannot be expected, and if the number is more than 1 Q 0 This is because it is difficult to dissolve the polymer in the solvent. The number of the reactive groups is 30000 to 600 0 per molecule, which is more preferable than the force s, and is preferably 40000 to 500 000. .
前記複数の反応活性基を有する化合物は、 ア ミ メ グ ルカ ンある いはポ リ ア ミ ノ ペプチ ドな どの化合物であ る こ と が望ま し い。 この理由は、 これらの化合物には 4 0 0 0〜 5 0 0 0個のア ミ ノ 基が存在しているため である。  The compound having a plurality of reactive groups is desirably a compound such as amimeglucan or polyaminopeptide. The reason for this is that there are 40000 to 5000 amino groups in these compounds.
前記ア ミ ノ グルカ ン と しては、 キ ト サン、 ポ リ ガラ ク ト サ ミ ン、 ポ リ ノ ィ ラ ミ ン酸な どを用いる こ と がで き るが、 キ ト サ ンを用いる こ とが好適である。  As the above-mentioned amino glucan, chitosan, polygalactosamine, polyinomyric acid, etc. can be used, but chitosan is used. This is preferred.
ま た 、 前記ポ リ ア ミ ノ ペプチ ド と は、 ア ミ ノ 基を 2 つ以上有 す る ア ミ ノ 酸がぺ プチ ド 結合 に よ り 重 合 し た も の で あ っ て 、 ポ リ リ ジ ン な ど が挙 げ ら れ る。  Further, the above-mentioned polyaminopeptidyl is an amino acid having two or more amino groups, which is polymerized by a peptide bond. For example, a resin.
本発 明 で使 用 す る 蛍光色素で修飾 さ れ る 化合物 は 、 分子量 1 0 0 0 程度の準高分子 ( semi -high t molecule)以上の分子量を もつ天然高分子化合物であ る こ と が望ま し い。  The compound to be modified with the fluorescent dye used in the present invention may be a natural polymer compound having a molecular weight of semi-hight molecule or more with a molecular weight of about 1000 or more. Desirable.
天然高分子化合物は比較的容易に入手で き る ア ビジ ン、 プロ テイ ン A、 抗体、 ホルモン、 ホルモ ン レセブ ターな どが望ま し い。 前記複数の反応活性基を有する化合物と生体活性物 質との結合、 及び複数の反応活性基を有する化合物の 反応活性基と複数の蛍光色素で修飾された化合物との 結合は、 適当な架橋剤を用いる こ とができ る。 Naturally occurring high molecular weight compounds such as avidin, protein A, antibodies, hormones, and hormone receptors, which are relatively easily available, are desirable. The bonding between the compound having a plurality of reactive groups and the biologically active substance, and the bonding between the reactive group of the compound having a plurality of reactive groups and the compound modified with a plurality of fluorescent dyes are performed by using a suitable crosslinking agent. Can be used.
また、 前記化合物は、 該化合物と特異的に結合する 物質を介して、 前記複数の反応活性基を有する化合物 に結合されていている こ とが好ま しい。  Further, it is preferable that the compound is bonded to the compound having a plurality of reactive groups through a substance that specifically binds to the compound.
例えば、 前記化合物が、 ア ビジン、 プロテイ ン A 、 抗体、 ホルモ ン又はホルモン レセブターである場合、 それぞれビ才チ ン、 抗体、 プロ テイ ン A、 ホルモ ン レ セブター、 ホルモンを介して前記複数の反応活性基を 有する化合物と結合し、 特に 「アビジン一 ピオチン」 の組合せが好適である。—  For example, when the compound is avidin, protein A, an antibody, a hormone, or a hormone receptor, the plurality of reactions may be performed via a protein, an antibody, protein A, a hormone receptor, and a hormone, respectively. A combination with a compound having an active group, particularly "avidin-biotin" is preferable. —
前記 「ア ビジ ン一ピオチン」 の組合せを用いた場合 は、 ア ビジ ンの表面に多数存在するァ ミ ノ 基に蛍光色 素を結合させる。  In the case of using the combination of “avidin-pyotin”, a fluorescent dye is bonded to a large number of amino groups present on the surface of avidin.
また、 前記 「プロテイ ン A—抗体」 なる組合せを用 いた場合は、 蛍光色素をプロテイ ン A、 抗体、 いずれ に結合させてもよい。  When the combination of “protein A—antibody” is used, the fluorescent dye may be bound to any of protein A and the antibody.
前記ア ビジ ンは、 分子量約 6 8 0 0 0 の塩基性のァ ルブミ ン様の結晶蛋白であっ て、 ビ才チ ンに対 して選 択的に非常に高い親和性を持っている。 ま たァ ビジン は、 熱、 PH、 化学修飾などに対して安定である上、 等 電点が 1 ◦ である こ と か ら、 分子表面に多く のァ ミ ノ 基を もつので、 ア ビジ ンは蛍光色素で修飾するのに適 する。 The avidin is a basic albumin-like crystal protein having a molecular weight of about 6800, and has an extremely high affinity for bitin selectively. Avidin is stable against heat, PH, chemical modification, etc. Avidin is suitable for modification with a fluorescent dye because it has a large number of amino groups on the molecular surface due to its electric point of 1 °.
ア ビジンのァ ミ ノ基の数は 3 6個で、 そのう ち ピオ チン との結合に寄与する ものもあるので、 ア ビジン 1 分子あた り 2〜 1 0個の蛍光色素を結合させる こ と が 望ま しい。  Avidin has 36 amino groups, some of which contribute to the binding of biotin, so that 2 to 10 fluorescent dyes can be bound per avidin molecule. And are desirable.
さ らに前記修飾ア ビジンで、 ビ才チン一複数の反応 活性基を有する化合物 -生体活性物質複合体を標識す る こ と に よ り 、 本発明の生体活性物質測定試薬が得ら れる。  Further, the reagent for measuring a bioactive substance of the present invention can be obtained by labeling a complex of one or more reactive groups with a bioactive substance complex with the modified avidin.
また、 前記プロテイ ン Aは、 黄色ぶどう球菌の細胞 壁の 5 %を占める分子量 4 2 0 0 0 の蛋白であ り 、 免 疫グロブ リ ン (抗体蛋白) と高い親和性をもっため、 蛍光色素で修飾されたプロテイ ン Aで、 抗体蛋白 ー複 数の反応活性基を有する化合物 -生体活性物質複合体 を標識する こ と に よ り 、 本発明の生体活性物質測定試 薬が得られる。  Protein A is a protein having a molecular weight of 420, which occupies 5% of the cell wall of Staphylococcus aureus, and has a high affinity for immunoglobulin (antibody protein). By labeling the antibody protein-compound having a plurality of reactive groups-bioactive substance complex with the protein A modified with, the reagent for measuring a bioactive substance of the present invention can be obtained.
前記プロ テイ ン A と抗体は、 いずれも被測定物質 で あ る 生体活性物質 と 反応 し な い こ と が必要で あ る。  It is necessary that neither the protein A nor the antibody react with the biologically active substance to be measured.
このよ う に、 複数の蛍光色素で修飾された化合物を 結合させる こ と によ り 、 一つの反応活性基に複数の蛍 光色素を結合させる こ とができ、 感度を飛躍的に向上 させる こ とができ る。 In this way, by binding a compound modified with a plurality of fluorescent dyes, a plurality of fluorescent groups can be added to one reactive group. A photopigment can be bound, and the sensitivity can be dramatically improved.
本発明においては、 蛍光色素の励起を光によ り行う こ とが必要である。  In the present invention, it is necessary to excite the fluorescent dye with light.
この理由は、 光によ り励起するこ とによ り 、 従来技 術である放射性同位元素によ る免疫測定 (ラジオィ ム ノ ア ッ セィ ) に比べ、 遥かに安全な測定がで き 、 ま た、 化学発光や生物発光における面倒な発光処理を省 略でき、 よ り短時間で精度が高く 、 再現性のよい測定 を実現でき るからである。  The reason for this is that, by excitation with light, it is possible to perform a much safer measurement than radioimmunoassay (radio-immunoassay), which is a conventional technique. In addition, it is possible to omit troublesome luminescence processing in chemiluminescence and bioluminescence, and to achieve highly accurate and reproducible measurement in a shorter time.
前記光は、 レーザ光ある いは L E D光 (発光ダイ オー ド) である こ とが望ま し く 、 該レーザ光は H e — N e レーザ、 あるいは半導体レーザである こ と が望ま しい。 この理由は、 上記レーザは、 X e ラ ンプや A r レーザに比べ、 小型で、 値段も安価なためである。 上 記半導体レーザを使用する場合は、 S H G素子 (第 2 高調波発生素子 : 光の波長を にする素子) と組み合 わせる こ と により 、 短波長領域のレーザ光を発信でき る。  The light is desirably laser light or LED light (light emitting diode), and the laser light is desirably a He—Ne laser or a semiconductor laser. The reason is that the above laser is smaller and less expensive than the Xe lamp or Ar laser. When the above-mentioned semiconductor laser is used, laser light in a short wavelength region can be emitted by combining with an SHG element (second harmonic generation element: an element that reduces the wavelength of light).
本発明に使用される蛍光色素は、 2 0 0〜 8 0 0 nm の光にて励起される こ とが望ま しい。  It is desirable that the fluorescent dye used in the present invention be excited by light having a wavelength of 200 to 800 nm.
, この理由は、 上記波長よ り短い波長の場合は、 エネ ルギ一が高すぎるため化学結合を破壊して し ま い、 該 範囲 よ り 長い波長の場合は、 量子収率が低すぎて実用 的でないからである。 The reason for this is that if the wavelength is shorter than the above wavelength, the energy is too high and the chemical bond is destroyed. If the wavelength is longer than the range, the quantum yield is too low to be practical.
前記蛍光色素 と しては、 ゥ ンベ リ フ ァ ロ ンな どのク マ リ ン誘導体、 多環芳香族誘導体、 ローダ ミ ンイ ソチ オ シァネー ト 、 フルォ レセイ ンイ ソチオシナネ一 卜 、 シァニ ン色素、 フ ィ コ ピ リ タ ンノ、' ク 、 ダ ン シル誘導 体、 o —フ タルアルデヒ ド な どが使用でき るが、 特に シァニ ン色素が好適である。  Examples of the fluorescent dye include coumarin derivatives such as emperiferon, polycyclic aromatic derivatives, rhodamine isothiocyanate, fluorescein isothiocyanate, cyanine dyes, and fiyne dyes. Copiritanno, 、, dansyl derivatives, o-phthalaldehyde and the like can be used, and cyanine dyes are particularly preferred.
シァニン色素は、 ァゾニゥ ムイ オ ンを含む複素璟を メ チ ン鎖で結合 した構造、  A cyanine dye has a structure in which a complex containing azonium ion is bound by a methine chain,
例えば、  For example,
Figure imgf000013_0001
Figure imgf000013_0001
(式中、 丫及び丫 ' は、 0、 S、 S e、 一 N H —又は 一 C H = C H - を表し、 R及び R ' は、 メ チル、 ェチ ル、 プロ ピルの よ う なアルキル基ま たは、 カ ルボキシ ェチルの よ う なカ ルボキシアルキル基を表 し、 Xは、 ハロゲン原子を表し、 nは 0〜 3の自然数) で表さ れ る ものを指す。 (Wherein, 丫 and 丫 ′ represent 0, S, Se, one NH— or one CH CHCH—, and R and R ′ represent alkyl groups such as methyl, ethyl, and propyl. Or a carboxyalkyl group such as carboxyethyl; X represents a halogen atom; and n represents a natural number of 0 to 3).
こ れ ら の シ ァ ニ ン 色 素 は 、 H e — N e レ ー ザ These cyanine pigments are He—Ne lasers.
( 6 3 3 nm) や 、 現在発信 し て い る最 も短い波長の 半導体 レ ーザ ( 6 3 8 nm ) で励起す る こ と がで き る。 (633 nm) or the shortest wavelength currently being transmitted It can be excited by a semiconductor laser (638 nm).
従って、 A r レーザや X e ラ ンプを用いる場合や、 高価な S H G素子と組み合わせた半導体レーザを使用 する場合に比べて、 小型化、 低コス ト化を図る こ とが でき る。  Therefore, the size and cost can be reduced as compared with the case where an Ar laser or an Xe lamp is used or the case where a semiconductor laser combined with an expensive SHG element is used.
前記シァニン色素と しては、 特に式 ( 1 ) で示され るシァニン色素が好適に用いられる。  As the cyanine dye, a cyanine dye represented by the formula (1) is particularly preferably used.
Figure imgf000014_0001
式中、 n は 0 、 1 、 2又は 3 を表す。 特に好ま し く は、 n は 2 である。
Figure imgf000014_0001
In the formula, n represents 0, 1, 2 or 3. Particularly preferably, n is 2.
蛍光色素による標識は、 生物活性を有する ものが対 象と なるため、 でき るだけ温和な条件で反応が短時間 のう ちに終結し、 かつ副反応が起こ らないで反応活性 基と結合し う る ものである こ とが必要である。 そのた めに官能基と して共役系外にカルボキシル基をもつ上 記式 ( 1 ) で示されるカルボシァニン系の色素が好適 に使用される。  Labeling with a fluorescent dye targets biologically active substances, so the reaction is completed in a short time under mild conditions as much as possible, and binds to the reactive group without side reaction. It needs to be something like that. For this purpose, a carbocyanine dye represented by the above formula (1) having a carboxyl group outside the conjugate system as a functional group is preferably used.
また、 前記シァニン色素と して、 次に示す ものも使 用で き る
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Figure imgf000015_0004
本発明で使用される生体活性物質は、 糖類や蛋白質 などがあるが、 特に蛋白質が望ま しい。
In addition, the following compounds are used as the cyanine dye. Can use
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Figure imgf000015_0004
The bioactive substance used in the present invention includes saccharides and proteins, but proteins are particularly desirable.
前記蛋白質からなる生体活性物質と しては、 抗原、 抗体、 酵素、 ハブテ ン又は酵素阻害剤である こ とが望 ま しい。  The bioactive substance comprising the protein is preferably an antigen, an antibody, an enzyme, a habutene or an enzyme inhibitor.
本発明の生体活性物質測定試薬は、 測定の際に、 光 'フ ァ イ バ一に結合さ れて、 励起さ れる こ と が望ま し い  It is desirable that the reagent for measuring a bioactive substance of the present invention be bound to an optical fiber and excited upon measurement.
(樹脂製光フ ァイ バ一)  (Resin optical fiber)
本発明の樹脂製光フ ァイ バ一は、 前記生体活性物質 測定試薬を特異的に結合する物質を共有結合させる こ とのでき る反応活性基を、 コ ア表面に有する樹脂製光 フ ァイ バ一が必要である。  The resin optical fiber of the present invention is a resin optical fiber having, on a core surface, a reactive active group capable of covalently bonding a substance that specifically binds to the bioactive substance measurement reagent. I need an inverter.
前記光フ ァイ バ一が樹脂製である理由は、 樹脂製光 フ ァイ バ一は、 価格が安く 、 ガラス製光フ ァ イ バ一に 比べて研磨加工がしゃす く 、 コア径を大き く でき るの で多く の光量を伝送でき 、 かつコア径を大き く して も フ レキシビ リ テ ィ ーが保てる特徴がある。 特にポ リ メ タ ク リ ル酸'メチル製の光フ ァイ バ一の場合、 5 6 0〜 6 5 0 nm付近の波長領域の伝送性に優れているからで ある。  The reason that the optical fiber is made of resin is that the resin optical fiber is inexpensive, has a larger polishing diameter than the glass optical fiber, and has a larger core diameter. Therefore, a large amount of light can be transmitted, and the flexibility can be maintained even if the core diameter is increased. This is because an optical fiber made of 'methyl polymethacrylate' has excellent transmission properties in the wavelength range of about 560 to 65 nm.
前記反応活性基の密度は、 1 . 0 X 1 0 1 Q〜 6 . 0 X 1 0 1 3個 Z c m 2 である こ と が望ま し い。 こ の理由 は、 前記範囲 よ り 密度が低い場合、 樹脂製光フ ア イ バー表面の反応活性基の絶対数が少なく な り 、 測定感 度が低下するため実用的ではなく 、 また、 前記範囲よ り高い場合、 蛍光色素が発する茧光の光フ ァ イ バ一へ の透過率が非常に悪く なるためである。 (第 7 図参照 : ポ リ メ タ ク リ ル酸メ チルの場合) It is desirable that the density of the reactive group be 1.0 X 10 1 Q to 6.0 X 10 13 Zcm 2 . The reason If the density is lower than the above range, the absolute number of reactive groups on the surface of the resin-made optical fiber decreases, and the measurement sensitivity is lowered, which is not practical, and is higher than the above range. In this case, the transmittance of the fluorescent light emitted from the fluorescent dye to the optical fiber becomes extremely poor. (See Fig. 7: In case of methyl polymethacrylate)
さ ら に前記反応活性基の密度は 3 . 0 X 1 0 1 2〜 4 . 0 X 1 0 1 3個 / c m 2 で あ る こ と が好 ま し く 、 1 . 5 X 1 0 1 3〜 3 . 5 X 1 0 1 3個/ cm 2 である こ と が好適である。 この理由は、 前記範囲よ り密度が高い 場合は、 反応活性基間の距離が短く なるため、 前記生 体活性物質測定試薬の立体障害のため、 再現性が低下 し始めるか らである。 3 density of the reactive groups in is found. 0 X 1 0 1 2 ~ 4. 0 X 1 0 1 3 pieces / cm 2 Ah Ru and this is good or teeth rather in, 1. 5 X 1 0 1 3 It is preferable that the ratio be 3.5 × 10 13 pieces / cm 2 . The reason is that when the density is higher than the above range, the distance between the reactive groups becomes shorter, and the reproducibility starts to decrease due to the steric hindrance of the reagent for measuring a bioactive substance.
前記樹脂製光フ ァ イ バ一を構成する樹脂は、 生体活 性物質を吸着しない材質で透光性のよいものが必要で あ り 、 例えば、 ボ リ スチ レ ン、 ポ リ アク リ ル酸エステ ル、 ポ リ エステル、 ポ リ アク リ ルア ミ ド、 ポ リ ビ二ル アルコ ール、 ポ リ エチ レ ンテ レフ 夕 レー ト 、 ポ リ カ ー ボネ一 卜 、 あるいはこれらの共重合体などが使用でき る。  The resin constituting the resin optical fiber must be a material that does not adsorb bioactive substances and has good translucency. For example, polystyrene, polyacrylic acid, etc. Esters, polyesters, polyacrylamides, polyvinyl alcohols, polyethylene glycols, polycarbonates, or copolymers thereof. Can be used.
前記樹脂製光フ ァイ バ一は、 架橋剤と反応する よ う な構造を有している樹脂を主成分と している こ とが望 ま しい。 こ の理由は、 光フ ァイ バ一の表面に反応活性 基を導入するための架橋剤を反応させやすいか らであ る。 Desirably, the resin optical fiber contains, as a main component, a resin having a structure that reacts with a crosslinking agent. The reason for this is that the surface of the optical fiber has reactive activity. This is because a crosslinking agent for introducing a group is easily reacted.
前記架橋剤 と反応する よ う な構造と しては、 エステ ル結合、 ア ミ ド結合、 エステル基、 カルボキシル基、 ホル ミ ル基、 ア ミ ノ 基、 ヒ ド ロ キ シル基、 エポキ シ 基、 チオール基な どが望ま し いが、 エス テル結合あ る い は エ ス テ ル基 な ど のエス テ ル構造が好適で あ る。  Examples of the structure that reacts with the cross-linking agent include an ester bond, an amide bond, an ester group, a carboxyl group, a formyl group, an amino group, a hydroxyl group, and an epoxy group. And a thiol group are preferred, but an ester structure such as an ester bond or an ester group is preferred.
前記架橋剤 と反応する よ う な構造あるいは官能基を 有する透光性樹脂と しては、 ポ リ アク リ ル酸エステル あるいはポ リ エステルな どが好ま しい。  As the translucent resin having a structure or a functional group that reacts with the cross-linking agent, a polyacrylic acid ester or a polyester is preferable.
前記ア ク リ ル酸エステルポ リ マーは、 アク リ ル酸樹 脂の内、 エステル構造を有する ものであっ て、 例えば アク リ ル酸、 メ タ ク リ ル酸な どのエステル誘導体の重 合体か らなる合成樹脂であ り 、 具体的には、 ア ク リ ル 酸メ チル、 アク リ ル酸ェチル、 メ タ ク リ ル酸メ チルな どの重合体である。 ま た、 前記アク リ ル酸エステルポ リ マーの内、 本発明において特に好適に用レ、 られる も のは、 ポ リ メ タ ク リ ル酸メ チルである。 ポ リ メ タ ク リ ル酸メ チルは他の樹脂に比べ、 透光性がよ いか らであ る。  The acrylate ester polymer has an ester structure among acrylic acid resins, and is, for example, a polymer derived from a polymer of an ester derivative such as acrylic acid or methacrylic acid. Specific examples thereof include polymers such as methyl acrylate, ethyl acrylate, and methyl methacrylate. Further, among the acrylate polymers, one particularly preferably used in the present invention is methyl polymethacrylate. Polymethyl methacrylate has better translucency than other resins.
と こ ろで、 樹脂製光フ ァ イ バ一の表面に、 蛋白質を 結合 さ せ る 技術 は 、 特開昭 5 9 — 5 0 1 8 7 3 号 (米国特許 4 5 8 2 8 0 9号) に、 ナイ ロ ン製光フ ァ ィ バーの表面に、 架橋剤を用いて抗原、 抗体を結合さ せた例が記載されている。 また、 光フ ァイ バ一ではな いが、 特開昭 5 6 - 1 2 9 8 4 1 号には、 ポ リ メ タ ク リ ル酸メ チルやナイ ロ ンの吸光度測定セルの表面に蛋 白質を結合させる技術が記載されている。 Meanwhile, a technique for binding a protein to the surface of a resin optical fiber is disclosed in Japanese Patent Application Laid-Open No. 59-501873. (US Pat. No. 4,582,809) describes an example in which an antigen and an antibody are bound to the surface of a nylon optical fiber using a cross-linking agent. Although it is not an optical fiber, Japanese Patent Application Laid-Open No. 56-12841 discloses that the surface of a cell for measuring the absorbance of methyl polymethacrylate or nylon is measured. Techniques for binding proteins are described.
しかしながら、 前者の技術は、 透光性が低いナイ 口 ン製光フ ァイ バ一を使用 してお り 、 本発明者らが試し たと こ ろ、 ナイ ロ ンフ ァイ バーの伝播損失が大き く 、 本発明者 らが意図する と こ ろ の高感度測定は困難で あっ た。  However, the former technique uses an optical fiber made of nylon having low translucency, and the inventors of the present application have found that the propagation loss of the nylon fiber is large. In addition, high-sensitivity measurement as intended by the present inventors was difficult.
また、 後者の技術は、 吸光度測定セルに蛋白質を結 合させる もので、 光フ ァイ バ一に固定化するための技 術ではない。  The latter technique involves binding proteins to the absorbance measurement cell, and is not a technique for immobilizing it on an optical fiber.
本発明において用いられる樹脂製光フ アイ バーは、 例えば、 アク リ ル酸メチル、 アク リ ル酸ェチル、 メ タ ク リ ル酸メ チルなどのモノ マーと スチレンなどのモノ マーと の共重合体であって も よい。  The resin optical fiber used in the present invention is, for example, a copolymer of a monomer such as methyl acrylate, ethyl acrylate, methyl methacrylate and a monomer such as styrene. It may be.
前記光フ ァイ バ一表面の反応活性基と しては、 ホル ミ ル基、 カ ルボキシル基、 ア ミ ノ 基、 ヒ ド ロ キシル 基、 エポキシ基、 チオール基、 イ ソシアナ一 ト基、 ィ ソチオシアナー ト基などが挙げられるが、 ホルミ ル基 が好適である。 こ の理由は、 本発明のフ ァ イ バ一に共 有結合される物質は、 生体活性物質であ り 、 その活性 を低下させない温和な反応条件が必要であるが、 ホル ミ ル基は前記生体活性物質、 特に蛋白質のァ ミ ノ基と 容易に反応するからである。 The reactive groups on the surface of the optical fiber include a formyl group, a carboxyl group, an amino group, a hydroxyl group, an epoxy group, a thiol group, an isocyanate group, and Examples thereof include a sothiocyanate group, and a formyl group is preferable. The reason is common to the fiber of the present invention. The substance to be bound is a bioactive substance and requires mild reaction conditions that do not reduce its activity, but the formyl group easily reacts with the bioactive substance, particularly the amino group of the protein. Because you do.
本発明の樹脂製光フ アイ バーの製造方法を以下に説 明する。  The method for producing the resin optical fiber of the present invention will be described below.
樹脂製光フ ァイ バ一の樹脂が架橋剤と反応する構造 を有していない場合は、 樹脂に官能基を導入し、 架橋 剤と反応する構造を有している場合には、 該構造部に 適当な架橋剤 ¾反応させる こ と によ り官能基を導入す る。  If the resin of the resin optical fiber does not have a structure that reacts with the cross-linking agent, it has a structure that introduces a functional group into the resin and has a structure that reacts with the cross-linking agent. A functional group is introduced into the part by reacting with an appropriate crosslinking agent.
前記架橋剤には、 多官能性化合物を用いる こ とが望 ま し ぐ、 例えば.、 グル—タルアルデヒ ド、 スク シンジァ ルデ ヒ ド 、 ア ジポ アルデ ヒ ド な どのジ ァルデ ヒ ド 、 N ,,-· N ' —エチ レ ン ビスマ レイ ミ ド、 N , N ' - o - フ エ二レンジマ レイ ミ ド、 ビスジァゾベンゼン、 ある いはへキサメ チ レ ンジィ ソ シアナ一卜 な どのジィ ソ シ ア ナ一 卜 又は ジイ ソ チ オ シナー 卜 な どが用 い ら れ る。  It is desirable to use a polyfunctional compound as the cross-linking agent, for example, aldehydes such as glutaraldehyde, succinaldehyde, adipoaldehyde, N,, and the like. -· N'—Ethylene bismuth resin, N, N'-o-Phenylene dimers, bisdiazobenzene, or hexamethyl benzene For example, cyan or diisothiocinart is used.
前記架橋剤を用いた具体的な導入法と しては、 例え ば、 ポ リ スチレン製光フ ァ イ バ一にホルミ ル基を導入 する場合、 側鎖であるベンゼン環をニ ト ロ化し、 次い で還元を行い、 これをァ ミ ノ基と した後、 グル夕ルァ ルデヒ ドを反応させる こ と によ り ホルミ ル基を導入で き る。 As a specific introduction method using the crosslinking agent, for example, when a formyl group is introduced into a polystyrene optical fiber, a benzene ring as a side chain is nitrated, Next, reduction is performed, and this is converted into an amino group. A formyl group can be introduced by reacting aldehyde.
本発明において、 最も好適な生体活性物質測定用 樹脂製光フ ァイ バ一は、 エステル構造を有する樹脂を 主成分とする樹脂製光フ ァイ バ一のコ ア表面にホルミ ル基を持っ た形態である。  In the present invention, the most preferable resin optical fiber for measuring a bioactive substance has a formyl group on the core surface of the resin optical fiber mainly composed of a resin having an ester structure. It is a form.
前記生体活性物質測定用樹脂製光フ ァイ バ一は、 樹 脂製光フ ァ イ バ一の露出したコア表面に、 多官能性化 合物と して、 ホルミ ル基を有する求核試薬を反応させ て、 コ ア表面にホルミ ル基を導入する こ と に よ り製造 される。  The optical fiber made of resin for measuring a bioactive substance is a nucleophilic reagent having a formyl group as a polyfunctional compound on the exposed core surface of the optical fiber made of resin. Is produced by introducing a formyl group on the core surface.
前記ホルミ ル基を有する求核試薬と して、 式 ( 2 ) で表される試薬が好適である。  As the nucleophilic reagent having a formyl group, a reagent represented by the formula (2) is preferable.
式 R1- (CH2)„-CH-CH0 Formula R 1- (CH 2 ) „-CH-CH0
I ( 2 )  I (2)
R2 R 2
(式中 R 1 および R 2 は、 それぞれ水素原子、 アルキ ル基又はホル ミ ル基を表し、 nは 0〜 5 の整数を表 す) (Wherein R 1 and R 2 each represent a hydrogen atom, an alkyl group or a formyl group, and n represents an integer of 0 to 5)
前記式 ( 2 ) で表される試薬と しては、 グルタルァ ルデヒ ド、 スク シンァルデヒ ドが挙げられる。  Examples of the reagent represented by the formula (2) include glutaraldehyde and succinaldehyde.
式 ( 2 ) の試薬は、 次の反応式に示す よ う に樹脂 (下記反応式では、 ポ リ メ 夕ク リ ル酸メチル) のエス テル基に求核的に反応する。 CH: CH- H2- R1- (CH2) n-C-CHO -→-|-CH2-C +-
Figure imgf000022_0001
The reagent of the formula (2) reacts nucleophilically with the ester group of the resin (in the following reaction formula, methyl methacrylate) as shown in the following reaction formula. CH: CH- H 2 -R 1- (CH 2 ) nC-CHO-→-| -CH 2 -C +-
Figure imgf000022_0001
0=C-0CH3 ( 2 ) 0 = C-0CH 3 (2)
0=C-C-CHO
Figure imgf000022_0002
前記架橋剤を反応させる場合、 光フ ァ イ バ一のク ラ ッ ド層を剥離してコア表面を露出させる こ とが望ま しい。
0 = CC-CHO
Figure imgf000022_0002
When reacting the cross-linking agent, it is desirable that the cladding layer of the optical fiber be peeled off to expose the core surface.
こ の理由 は、 通常光フ ァ イ バ一の直径は 1 mmで、 コ ア断面の直径は 0 . 9 7關位 (断面積は 0 . 7 3 9 mm2 )しかないので、 活性基を多く導入するためには、 クラ ッ ド層を剥離してコア表面積を増やす必要がある ためである。 The reason for this is that the diameter of the optical fiber is usually 1 mm and the diameter of the core cross section is only 0.97 (cross-sectional area is 0.739 mm 2 ). This is because, in order to introduce a large amount, it is necessary to separate the cladding layer and increase the core surface area.
前記光フ ァイ バ一の端面は、 研磨してお く こ とが望 ま しい。 前記研磨は、 アルコールを潤滑材とする こ と が好ま しい。  It is desirable that the end face of the optical fiber be polished. The polishing is preferably performed using alcohol as a lubricant.
前記ホルミル基を有する求核試薬は、 K 0 Hなどの 塩基、 エ タ ノ ールな どの ア ル コ ール系有機溶媒、 N i S O 4 のよ う な N i 塩のエタノ ール溶液、 および ホルミ ル基を有する求核試薬を添加溶解させて調製す る こ とが望ま しい。 Nucleophile having the formyl group, K 0 base such as H, et motor Roh Lumpur of which A Le co Lumpur based organic solvents, N i ethanol solution of Yo I Do N i salt SO 4, It is desirable to add and dissolve a nucleophilic reagent having a formyl group.
前記 K 0 Hなどの塩基の濃度は、 5 0〜 1 0 0 ntMが 好ま しい。 前記 N i塩を加える理由は、 N i塩は反応を促進さ せる と 同時に、 ホルミル基の酸化や 0 H基の付加を防 止するからである。 The concentration of the base such as KOH is preferably 50 to 100 ntM. The reason for adding the Ni salt is that the Ni salt promotes the reaction and at the same time prevents oxidation of the formyl group and addition of the OH group.
前記反応試薬に前記樹脂製光フ ァイ バ一のコ ア部分 を浸漬して、 エステル構造に反応させるが、 反応温度 は適宜調節する こ とが望ま しい。  The core part of the resin optical fiber is immersed in the reaction reagent to react with the ester structure, and the reaction temperature is preferably adjusted appropriately.
前記反応処理後、 水で洗浄し、 H C ·6などの酸に浸 漬する と 、 ァセタール化したアルコールが脱離して、 ホル ミ ル基が結合 した樹脂製光フ ア イ バ一が得られ る。 (下記反応式参照) 0Η  After the above-mentioned reaction treatment, washing with water and immersion in an acid such as HC-6 removes the acetalized alcohol to obtain a resin optical fiber with a formyl group bonded thereto. . (See the following reaction formula)
/  /
-CH -→ -CH0 + C2H50H -CH-→ -CH0 + C 2 H 5 0H
\  \
0C2H5 0C 2 H 5
(測定用検出部) (Measurement detector)
本発明の生体活性物質測定用の検出部は、 前記樹脂 製光フ ア イ バーの反応活性基に被測定物質と特異的に 結合する物質を共有結合させる こ とが必要である。  The detection unit for measuring a biologically active substance of the present invention needs to covalently bond a substance that specifically binds to the substance to be measured to a reactive group of the resin optical fiber.
前記被測定物質と特異的に結合する物質は、 蛋白質 である こ と が望ま し く 、 抗原、 抗体、 酵素、 ハブテ ン、 酵素阻害物などが考え られる。  The substance that specifically binds to the analyte is preferably a protein, and may be an antigen, an antibody, an enzyme, a habutene, an enzyme inhibitor, or the like.
前記樹脂製光フ ァイ バ一の反応活性基が、 ホルミ ル 基の場合、 被測定物質と特異的に結合する物質を反応 させた後、 固定化処理を行う こ とが望ま しい。 この理 由ほ-、 固定化処理を行わない場合、 被測定物質と特異 的に結合する物質が可逆反応で離脱しやすいからであ る。 In the case where the reactive group of the resin optical fiber is a formyl group, it is preferable to carry out an immobilization treatment after reacting a substance that specifically binds to the substance to be measured. This reason This is because, if the immobilization treatment is not performed, the substance that specifically binds to the analyte is easily released by a reversible reaction.
前記固定化処理を、 前記被測定物質と特異的に結合 する物質と して蛋白質を選んだ場合について、 以下に 説明する。  The case where a protein is selected as the substance that specifically binds to the substance to be measured in the immobilization treatment will be described below.
まず、 ホルミル基を導入した樹脂製光フ ァイ バ一を 蛋白溶液中に浸漬する と、 ホルミル基が蛋白質のア ミ ノ塞と反応して結合部位はィ ミ ノ基となる。 これを水 で洗浄後、 適当な濃度の還元剤、 例えば N a B H 4 な どで処理する こ と によ り 、 ィ ミ ノ基が還元されて不活 性化し、 蛋白質が固定化される。 First, when a resin optical fiber into which a formyl group is introduced is immersed in a protein solution, the formyl group reacts with the amino block of the protein, and the binding site becomes an imino group. After washing it with water, a reducing agent of a suitable concentration, for example Ri by the and this treatment with etc. N of a BH 4, I Mi cyano group is reduced to inactivated activatable protein is immobilized.
(下記反応式参照。 樹脂はポ リ メ タ ク リ ル酸メ チ ル  (Refer to the following reaction formula. The resin is methyl methacrylate)
CH: CH;  CH: CH;
CH2-CCH 2 -C
Figure imgf000024_0001
Figure imgf000024_0001
R2 R 2
I H  I H
0=C-C-CH0 0=C-C-C=N-蛋白質  0 = C-C-CH0 0 = C-C-C = N-protein
(CH2)'D-R (CH2) Π -R 1 CH :
Figure imgf000025_0001
(CH 2 ) ' D -R (CH 2 ) Π -R 1 CH:
Figure imgf000025_0001
0 = C - C - CH 2 - NH- 蛋白質0 = C-C-CH 2 -NH- protein
Figure imgf000025_0002
Figure imgf000025_0002
本発明の検出部は、 第 1 図に示すよ う にフ ローセル 5 にて覆われていて も よ く 、 第 3図に示すよ う な対向 型でも よ く 、 また、 第 2 図に示すよ う な先端に ミ ラー 1 2 のついた反射型でも よい。  The detection unit of the present invention may be covered with a flow cell 5 as shown in FIG. 1, may be a facing type as shown in FIG. 3, or may be a type as shown in FIG. It may be a reflection type with a mirror 12 at the tip.
前記対向型の場合は、 励起光は先端に対向する側か ら入射さ れ、 蛍光は検出部が取 り つけ られて いる光 フ ァイ バー 3 を伝播する。 一方、 反射型は、 励起光は 検出部が取 り つけられている光フ ァイ バ一 3 を伝播し て入射され、 励起光は、 先端のミ ラー 1 2 にて反射さ れ、 前記光フ ァ イ バ一 3 を伝播する。  In the case of the opposed type, the excitation light is incident from the side opposite to the tip, and the fluorescent light propagates through the optical fiber 3 to which the detection unit is attached. On the other hand, in the reflection type, the excitation light propagates through the optical fiber 13 to which the detection unit is attached and is incident, and the excitation light is reflected by the mirror 12 at the tip, and Propagate fiber three.
(生体活性物質測定試薬の製造方法)  (Production method of bioactive substance measurement reagent)
本発明の生体活性物質測定用試薬は、 種々 の有機化 学反応にて製造されるが、 本発明の複数の蛍光色素で 修飾された蛋白質を製造するには、 蛍光色素と蛋白質 と を反応させて、 反応生成物から溶媒を除去した残留 物を pHが 2〜 7 の緩衝液に懸濁させ、 未反応色素を分 離除去する ものである。  The reagent for measuring a bioactive substance of the present invention is produced by various organic chemical reactions.To produce a protein modified with a plurality of fluorescent dyes of the present invention, a fluorescent dye is reacted with a protein. The residue obtained by removing the solvent from the reaction product is suspended in a buffer having a pH of 2 to 7 to separate and remove unreacted dye.
前記 P Hが 2〜 7 の緩衝液では、 蛍光色素で標識され た蛋白質は溶解するが、 未反応の蛍光色素は溶解しな いため、 容易に分離でき るからである。 The buffer with a pH of 2 to 7 is labeled with a fluorescent dye. The dissolved proteins dissolve, but the unreacted fluorescent dyes do not dissolve, so they can be easily separated.
前記緩衝液の PHが 2以下の場合は、 蛋白質は加水分 解を起こ して しまい、 また PHが 7以上の場合は、 蛍光 色素が溶解して しま う ためである。  When the pH of the buffer is 2 or less, the protein is hydrolyzed, and when the pH is 7 or more, the fluorescent dye is dissolved.
前記緩衝液の PHは、 4 . 9〜 7 . 0である こ とが望 ま し く 、 特にシァニン色素で修飾されたア ビジンを製 造する場合には、 6 . 5 ± 0 . 5が好適である。  The pH of the buffer is desirably 4.9 to 7.0, and is preferably 6.5 ± 0.5, especially when avidin modified with a cyanine dye is produced. It is.
前記蛍光色素は、 塩基性緩衝液に良好な溶解性を示 す酸性蛍光色素である こ とが望ま しい。  The fluorescent dye is desirably an acidic fluorescent dye exhibiting good solubility in a basic buffer.
前記蛍光色素は、 レーザ光で励起される ものである こ とが望ま しい。  It is desirable that the fluorescent dye be excited by laser light.
前記蛍光色素と しては、 前記シァニン色素、 フル才 レセィ ンィ ソチオシァネー ト などが用いられる。  As the fluorescent dye, the above-mentioned cyanine dye, full-year-old resin, thiothiosinate, or the like is used.
本発明の蛋白質は、 種々の蛋白質、 例えばネオカル チノ スタ ン、 酵素、 ホルモンなどが考え られるが、 塩 基性蛋白質 ( P I ≥ 7 なる蛋白質) である こ とが望ま しい。 こ の理由は、 前記塩基性蛋白質は、 疎水性の蛍 光色素が結合していても、 前記 PHが 2〜 7 の緩衝液中 で良好な溶解性を示すからである。  The protein of the present invention may be various proteins, for example, neocarzinostan, an enzyme, a hormone, and the like, and is preferably a basic protein (a protein having PI ≥7). The reason for this is that the basic protein exhibits good solubility in a buffer having a pH of 2 to 7 even when a hydrophobic fluorescent dye is bound thereto.
前記塩基性蛋白質 と しては、 ア ビジ ンが好適であ る。  Avidin is preferred as the basic protein.
前記蛍光色素と蛋白質との反応は、 ジシク ロへキシ ルカ ルボジィ ミ ド 、 ジ 一 p — ト ルオイ ルカ ルボジィ ミ ドのよ う なカルボジィ ミ ド試薬を用いる こ と に よ り 、 蛋白質のァ ミ ノ基と蛍光色素の反応活性基と を縮合さ せる。 The reaction between the fluorescent dye and the protein is dicyclohexyl By using a carbodimid reagent such as ruka rubomidide or di-p-toluene rubozimid, an amino group of a protein is condensed with a reactive group of a fluorescent dye.
反応溶媒は、 蛍光色素及び蛋白質を溶解させる もの であればよ く 、 例えばメ タ ノ ール、 エタノ ール、 メ チ ルァ ミ ン、 ェチルァ ミ ン、 ジェチルァ ミ ン、 ト リ ェチ ルァ ミ ンのよ う な有機溶媒又は塩基性水溶液のよ う な 溶媒中で行う 。  The reaction solvent may be any as long as it can dissolve the fluorescent dye and protein. For example, methanol, ethanol, methylamine, ethylamine, getylamine, triethylamine, etc. The reaction is performed in a solvent such as an organic solvent or a basic aqueous solution.
反応が進みすぎて蛋白質の 0 H基や S H基と蛍光 色素が反応を起こ し、 蛋白質の持つ反応特異性 (抗原 抗体反応や、 蛋白質がア ビジンの場合にビ才チンに対 する反応性) が失活して し まわないよ う に、 必要によ り酢酸などを用いて反応を停止させる。  The reaction proceeds too much and the 0H group or SH group of the protein reacts with the fluorescent dye, resulting in the reaction specificity of the protein (antigen-antibody reaction or reactivity with bigtin when the protein is avidin) If necessary, stop the reaction with acetic acid or the like to prevent inactivation.
反応終了後、 溶媒を減圧下に留去して取り 除き乾固 させ、 pHが 2〜 7 の緩衝液に溶解させる。  After the completion of the reaction, the solvent is distilled off under reduced pressure, removed and evaporated to dryness, and dissolved in a buffer solution having a pH of 2 to 7.
未反応の蛍光色素は溶解しないので、 適当な分離手 段によ り 、 蛍光色素を容易に分離でき る。  Unreacted fluorescent dye does not dissolve, so that the fluorescent dye can be easily separated by an appropriate separation means.
未反応色素の分離手段と しては、 遠心分離を行い、 上澄み液をガラスウールを充填した管に通すこ と によ り 、 除去でき る。  The unreacted dye can be removed by centrifugation and passing the supernatant through a tube filled with glass wool.
次に、 本発明の生体活性物質測定試薬のう ち、 特異 的に結合する 2種類の化合物、 化合物 A と化合物 B を 含.み、 生体活性物質が複数の反応活性基を有する化合 物に結合し、 該複数の反応活性基を有する化合物の反 応活性基には化合物 Bが結合し、 該化合物 B には複数 の蛍光色素で修飾された化合物 Aが結合したもの (簡 略ィ tの為、 以後、 蛍光色素 -化合物 A -化合物 B - 複数の反応活性基を有す る化合物 -生体活性物質 と い う ) は 、 以下の方法で製造す る こ と が望 ま し い。 Next, among the reagents for measuring a bioactive substance of the present invention, two kinds of compounds that specifically bind, Compound A and Compound B, were used. The biologically active substance binds to the compound having a plurality of reactive groups, the compound B binds to the reactive group of the compound having the plurality of reactive groups, and the compound B has a plurality of reactive groups. Compounds to which compound A modified with a fluorescent dye is bound (for simplicity, hereinafter, fluorescent dye-compound A-compound B-compound having multiple reactive groups-bioactive substance) However, it is desirable to manufacture it by the following method.
すなわち、 化合物 Bを複数の反応活性基を有する化 合物の大部分の反応活性基に反応させ、 複数の反応活 性基を有する化合物を化合物 Bで修飾した後、 生体活 性物質を反応させ、 化合物 B -複数の反応活性基を有 する化合物 -生体活性物質複合体と した後、 蛍光色素 で修飾された化合物 Aを反応させて、 蛍光色素一化合 物 A -化合物 B -複数の反応活性基を有する化合物 - 生体'活性物質複合体を製造する。  That is, the compound B is reacted with most of the reactive groups of the compound having a plurality of reactive groups, the compound having the plurality of reactive groups is modified with the compound B, and then the biologically active substance is reacted. , Compound B-Compound having multiple reactive groups-Bioactive substance complex, and then reacting with Compound A modified with fluorescent dye, Fluorescent dye compound A-Compound B-Multiple reactive activities A compound having a group-a bio-active substance complex is produced.
記製造方法が望ま しい理由は、 反応順序を変えた 場合、 副反応がおき、 収率が低下して しま うからであ る。—  The reason why the above production method is desirable is that if the reaction sequence is changed, side reactions occur and the yield decreases. —
上記製造方法において、 化合物 Aと化合物 Bの組み 合わせは、 蛋白質と該蛋白質と特異的に結合する化合 物である こ とが望ま し く 、 具体的には、 ァ ビジン と ビ ォチン、 プロテイ ン A と抗体、 抗体とプロ テイ ン Aな どが好ま し く 、 特にア ビジン と ピオチ ンの組み合わせ が最適である。 In the above production method, it is desirable that the combination of compound A and compound B be a protein and a compound that specifically binds to the protein. Specifically, avidin and biotin, and protein A And antibodies, antibodies and protein A Most preferred is a combination of avidin and piotin.
これらの反応を よ り 具体的に説明する。  These reactions will be described more specifically.
複数の反応活性基を有する化合物、 例えばキ ト サン ( I ) は分子中に多数のア ミ ノ 基を有してお り 、 キ ト サ ン ( I ) に ピオチ ン ( II ) を塩基性溶液中、 水溶性 カ ルポジイ ミ ド ( C H M C ) 、 N — ヒ ド ロ キシス ク シ ンイ ミ ド のよ う な脱水剤の存在下で反応さ せる と 、 大 部分のキ ト サ ンのァ ミ ノ 基に ビ才チンが酸ア ミ ド結合 して ピオチ ン化キ ト サン ( m ) を得る。 こ の ピオチ ン 化キ ト サ ン ( ΠΙ ) に生体活性物質である蛋白質を上記 と 同様の脱水剤を用いて反応させ、 キ ト サン ( I ) の 残余の遊離ア ミ ノ 基に蛋白質が結合したピオチ ン化キ 卜 サン ( IV ) を得る。  Compounds having a plurality of reactive groups, for example, chitosan (I) have a large number of amino groups in the molecule, and chitosan (I) is added with piotin (II) as a basic solution. When reacted in the presence of a dehydrating agent such as water-soluble carbodiimide (CHMC) or N-hydroxysuccinimide, most of the chitosan amino groups Then, bitin is combined with an acid amide to obtain a piotinylated chitosan (m). The biotinylated protein is reacted with the biotinylated chitosan (ΠΙ) using the same dehydrating agent as described above, and the protein is bound to the remaining free amino group of chitosan (I). The obtained chitinated chitosan (IV) is obtained.
一方、 蛍光色素で修飾 したア ビジン ( V ) は、 蛍光 色素、 例えばシァニ ン色素のカ ルボキシル基と蛋白質 であるア ビジンのァ ミ ノ 基 と を上記と 同様の方法で反 応させて得る こ と がで き る。  On the other hand, avidin (V) modified with a fluorescent dye can be obtained by reacting a fluorescent dye, for example, a carboxyl group of a cyanine dye with an amino group of avidin, a protein, in the same manner as described above. And can be done.
次に 、 上記蛋白質が結合 し た ピオチ ン化キ ト サ ン Next, a biotinylated chitosan bound to the above protein
( IV ) に上記蛍光色素で修飾したア ビジン ( V ) を反 応さ せる と 、 ア ビジ ンは ピオチ ン と選択的に非常に高 い親和 力 を持 っ て結合 し 、 本発明 の蛍光標識蛋 白When avidin (V) modified with the above fluorescent dye is reacted with (IV), avidin selectively binds to piotin with a very high affinity, and the fluorescent label of the present invention Protein
( VI ) を得る こ と がで き る。
Figure imgf000030_0001
(VI) can be obtained.
Figure imgf000030_0001
キ卜サン (I) ピオチン (Π)
Figure imgf000030_0002
Chitosan (I) Piotin (Π)
Figure imgf000030_0002
Figure imgf000030_0003
Figure imgf000031_0001
上記シァニ ン色素のカ ルボキシル基は、 ァ ビジ ンの ァ ミ ノ 基 と有機溶媒中で、 例えばジシク ロ へキシルカ ルボジイ ミ ドの よ う な脱水縮合剤を用いて、 常法に よ り 容易に縮合させてア ミ ド結合させる こ と ができ る。 シァニン色素と ア ビジン と の反応終了後、 未反応物は なるべ く 除去する こ と が好ま し く 、 例えば透析法、 遠 心分離法、 ゲル 戶過法又は^過材を用いる '?戸過法な ど に よ っ て除 く こ と ができ る。
Figure imgf000030_0003
Figure imgf000031_0001
The carboxyl group of the above cyanine dye can be easily formed by a conventional method using an amino group of avidin and a dehydrating condensing agent such as dicyclohexylcarbodiimide in an organic solvent. It can be condensed to form an amide bond. After completion of the reaction between the cyanine dye and avidin, it is preferable to remove any unreacted substances. For example, dialysis, centrifugation, gel filtration, or use of permeation material? It can be removed by using the law.
なお、 キ ト サン に ピオチンを結合させて形成さ れる 酸ア ミ ド結合は、 ρΗ 6 で励起波長 2 2 5 . 5 の と き 、 4 5 0 nm、 3 0 0 nm及び 4 9 0 nmの各付近に特徴 的な蛍光ピーク を もつ。  The acid amide bond formed by binding biotin to chitosan has a wavelength of 450 nm, 300 nm and 490 nm when the excitation wavelength is 25.5 at ρ 26. Each region has a characteristic fluorescence peak.
そ して、 4 5 8 nmと 3 0 0 nmの蛍光強度の差 と 酸ァ ミ ド結合の濃度間 と は、 直線関係があるので、 こ の特 性を利用 して 卜 サンの検量線を作成し、 ピオチ ン化 量を酸ア ミ ド結合量から推定でき る。 (生体活性物質の測定法) Since there is a linear relationship between the difference between the fluorescence intensities at 458 nm and 300 nm and the concentration of the acid amide bond, a calibration curve for Tosan can be obtained using this characteristic. It can be prepared and the amount of piotinylation can be estimated from the amount of acid amide binding. (Method of measuring bioactive substances)
本発明の生体活性物質測定用試薬を使用 した測定方 法について説明する。  A measuring method using the reagent for measuring a bioactive substance of the present invention will be described.
本発明の生体活性物質測定用試薬を使用 した測定方 法は、 次のよ う な方法で行われる。  The measuring method using the reagent for measuring a biologically active substance of the present invention is performed by the following method.
1 ) 蛍光色素一アビジン一 ピオチン一被測定物質又 は被測定物質と特異的に反応する物質からなる複合体 を、 光フ ァイ バ一上の被測定物質と特異的に結合する 物貧又は被測定物質と 、 特異的に反応させた後、 光に て励起 し、 蛍光を測定する こ と を特徴 と す る測定方 法。  1) The complex consisting of the fluorescent dye, avidin, and biotin, or the substance to be measured or a substance that specifically reacts with the substance to be measured is converted into a substance that specifically binds to the substance to be measured on the optical fiber. A measurement method characterized by specifically reacting with a substance to be measured, exciting with light, and measuring fluorescence.
2 ) ビ:ォチ ンが結合した被測定物質又は被測定物質 と特異的に反応する物質を、 光フ ァイ バ一上の被測定 物質と特異的に結合する物質又は被測定物質と、 特異 的に反応させた後、 蛍光色素で修飾されたア ビジンを 反応させ、 光フ ァイ バ一上にアビジン一ビォチン結合 によ り複合体を形成させた後、 光にて励起し、 蛍光を 測定する ことを特徴とする測定方法。  2) The test substance or the substance which specifically reacts with the test substance to which biotin is bound is combined with the substance or the test substance which specifically binds to the test substance on the optical fiber; After specific reaction, avidin modified with a fluorescent dye is reacted, and a complex is formed on the optical fiber by avidin-biotin bond. A measuring method characterized by measuring the following.
3 ) 被測定物質又は被測定物質と特異的に反応する 物霄が、 複数の反応活性基を有する化合物に結合し、 該複数の反応活性基を有する化合物の反応活性基に は、 複数の蛍光色素で修飾された化合物が結合してい る試薬を、 光フ ァイ バ一上の被測定物質と特異的に結 合す る物質又は被測定物質 と 、 特異的に反応さ せた 後、 光にて励起し、 蛍光を測定する こ と を特徴とする 測定方法。 3) The analyte or the substance that specifically reacts with the analyte binds to the compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups has a plurality of fluorescent light. The reagent to which the compound modified with the dye is bound is specifically bound to the analyte on the optical fiber. A measurement method characterized by specifically reacting with a substance to be combined or a substance to be measured, and then exciting with light and measuring fluorescence.
4 ) 互いに特異的に結合する 2種類の物質を化合物 A、 化合物 B とする と き、 被測定物質あるいは被測定 物質と特異的に反応する物質が、 複数の反応活性基を 有する化合物に結合し、 該反応活性基には化合物 B が 結合している試薬を、 光フ ァイ バ一上の被測定物質と 特異的に結合する物質又は被測定物質と特異的に反応 さ せた後、 蛍光色素で修飾さ れた化合物 A を反応さ せ、 光フ ァイ バ一上に化合物 A—化合物 Bの結合によ り 、 複合体を形成させた後、 蛍光色素を光にて励起 し、 蛍光を測定する こ と を特徴とする測定方法。  4) When two types of substances that specifically bind to each other are compound A and compound B, the substance to be measured or a substance that specifically reacts with the substance to be measured binds to a compound having a plurality of reactive groups. After reacting the reagent to which the compound B is bound with the reactive group with the substance specifically binding to the analyte or the analyte on the optical fiber, the fluorescence is measured. The compound A modified with the dye is reacted to form a complex by combining the compound A and the compound B on the optical fiber, and then the fluorescent dye is excited by light to emit a fluorescent light. A measurement method characterized by measuring
前記測定方法 1 ) について説明する。  The measurement method 1) will be described.
前記測定方法 1 ) では、 蛍光色素一ア ビジ ン一ピオ チン一被測定物質又は被測定物質と特異的に結合する 物質からなる複合体を試薬と して用いる こ と が必要で ある。  In the measurement method 1), it is necessary to use, as a reagent, a complex composed of a fluorescent dye, avidin, piotin, a substance to be measured, or a substance that specifically binds to the substance to be measured.
前記試薬を使用する理由は、 蛍光色素で直接被測定 物質又は被測定物質と特異的に反応する物質を標識と する と、 蛍光色素の結合量は限られ、 また蛍光色素の 結合に よ っ て被測定物質又は被測定物質と特異的に 反応す る物質の結合活性部位が損傷す る恐れが あ る。 The reason for using the above reagent is that if a substance to be measured or a substance that specifically reacts with the substance to be measured is labeled with a fluorescent dye, the amount of the fluorescent dye bound is limited, and the binding of the fluorescent dye is limited. There is a risk that the binding site of the analyte or the substance that specifically reacts with the analyte may be damaged. You.
このため、 前記アビジン一ピオチンを介する こ と に よ り 、 結合活性部位を損傷する こ となく 、 多 く の蛍光 色素を結合させる こ と ができる。  For this reason, a large number of fluorescent dyes can be bound without damaging the binding active site through the avidin-biotin.
前記試薬は、 光フ ァイ バ一上の被測定物質と特異的 に結合する物質又は被測定物質と特異的に反応させた 後、 光にて励起させる。  The reagent is excited by light after reacting specifically with a substance to be measured or a substance to be measured on the optical fiber.
光フ ァ イ バ一上で励起させるのは、 光フ ァ イ バ一に よ り 、 励起光と蛍光を伝播でき、 効率的な測定が可能 であるからである。  The excitation on the optical fiber is because the optical fiber can transmit the excitation light and the fluorescent light, and can perform efficient measurement.
前記蛍光色素は、 シァニン色素である こ と が望ま し い  The fluorescent dye is preferably a cyanine dye.
こ の理由は、 シ ァニ ン色素は、 H e — N e レ一ザ ( 6 3 3 nm ) や半導体レーザ ( 6 3 8 nm ) で励起する こ と がで き 、 装置の小型化や低コ ス ト 化が可能であ る。  The reason for this is that cyanine dyes can be excited by a He--Ne laser (633 nm) or a semiconductor laser (636 nm), which reduces the size of the device and reduces the size. Costing is possible.
前記シァニン色素をア ビジンに結合させるには、 で き るだけ温和な条件で反応が短時間のう ちに終結し、 かつ副反応が起こ らないで反応活性基と結合し う る も のである こ と が必要であ り 、 そのために官能基 と し て、 共役系外にカルボキシル基をもつ下記式で示され るカルボシァニン系の色素が好適に使用される。
Figure imgf000035_0001
In order for the cyanine dye to bind to avidin, the reaction is completed in a short time under mild conditions as much as possible, and binds to the reactive group without causing side reactions. This is necessary. For this purpose, a carbocyanine dye represented by the following formula and having a carboxyl group in addition to a conjugate system as a functional group is preferably used.
Figure imgf000035_0001
(式中、 nは 0、 1 、 2又は 3 を表す) (Where n represents 0, 1, 2, or 3)
シァニン色素で修飾されたア ビジンを得るには、 シ ァニン色素のカルボキシル基と蛋白質のア ミ ノ基を有 機溶媒中で、 カルポジイ ミ ドのよ う な脱水縮合剤の存 在化でア ミ ド結合を形成させる こ と に よ り得られる。 この際、 未反応の色素は分離する。  In order to obtain avidin modified with a cyanine dye, the carboxyl group of the cyanine dye and the amino group of the protein are dissolved in an organic solvent in the presence of a dehydrating condensing agent such as carposimid. It is obtained by forming a metal bond. At this time, unreacted dye is separated.
本発明において使用される光源は、 レーザ光あるい は L E D光である こ とが望ま しい。  The light source used in the present invention is desirably laser light or LED light.
前記測定方法は、 競合法とサン ドイ ッ チ法に大別さ れる。  The measurement methods are broadly classified into a competition method and a sandwich method.
前記競合法は、 被測定試料と、 蛍光色素ー ァ ビジン 一ピオチン一被測定物質からなる濃度既知の試薬を混 合し、 そ こ に、 被測定物質と特異的に結合する物質が 固定化された光フ ァイ バ一を浸漬し、 特異的に反応さ せた後、 光にて励起し、 蛍光を測定する方法である。 前記競合法の場合、 光フ ァ イ バ一には、 被測定試料 と 、 蛍光色素一ア ビジ ン一 ピオチ ン一被測定物質か ら な る試薬が、 そ れぞれの濃度比 に従 っ て結合す る。 In the competition method, a sample to be measured is mixed with a reagent having a known concentration consisting of a fluorescent dye, avidin, a biotin, and a substance to be measured, and a substance that specifically binds to the substance to be measured is immobilized thereon. In this method, the immersed optical fiber is allowed to react specifically, and then is excited with light to measure the fluorescence. In the case of the above-mentioned competitive method, the sample to be measured and the reagent consisting of the fluorescent dye, avidin, piotin and the substance to be measured are applied to the optical fiber in accordance with the respective concentration ratios. Join You.
従って、 被測定試料の濃度が高ければ、 蛍光色素一 ア ビジン一ピオチ ン一被測定物質からなる試薬の結合 量が相対的に減り 、 蛍光強度は低下し、 濃度 -蛍光強 度の検量線の傾きは負になる。  Therefore, when the concentration of the sample to be measured is high, the binding amount of the reagent consisting of the fluorescent dye, avidin, piotin, and the substance to be measured is relatively reduced, the fluorescence intensity is reduced, and the concentration-fluorescence intensity calibration curve is obtained. The slope becomes negative.
前記サン ドイ ッ チ法は、 被測定試料に、 被測定物質 と特異的に結合する物質が固定化された光フ ァイ バ一 を入れる。 前記光フ ァイ バ一には、 その濃度に従って 被測定物質が結合される。 該被測定物質が結合された 光フ ァイ バ一を、 蛍光色素一アビジン一ピオチン一被 測定物質と特異的に結合する物質からなる試薬の溶液 に ½漬する。 前記光フ ァイ バ一には、 蛍光色素一ア ビ ジンー ビ才チン一被測定物質と特異的に結合する物質 からなる試薬が結合する。  In the sandwich method, an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured. A substance to be measured is bound to the optical fiber according to the concentration. The optical fiber to which the substance to be measured is bound is immersed in a solution of a reagent consisting of a fluorescent dye, avidin, biotin, and a substance that specifically binds to the substance to be measured. A reagent consisting of a fluorescent dye, avidin-bitin, and a substance that specifically binds to an analyte is bound to the optical fiber.
前記サ ン ドィ ツ チ法においては、 光フ ァ イ ノ 一に は、 測定試料と 同 じ数の蛍光色素一アビジ ン一ビォチ ンー被測定物質と特異的に結合する物質からなる試薬 が結合する。  In the Sandwich method, a reagent consisting of the same number of fluorescent dyes, avidin, and biotin as substances to be measured is bound to the optical fins. I do.
従って、 被測定試料の濃度が高ければ、 蛍光色素一 ァ ビジンー ビ才チ ン一被測定物質と特異的に結合する 物質か ら なる試薬の結合量が増え、 蛍光強度は増加 し、 濃度一蛍光強度の検量線の傾きは正になる。  Therefore, when the concentration of the sample to be measured is high, the amount of binding of the reagent consisting of the fluorescent dye avidin-bitin and the substance specifically binding to the substance to be measured increases, the fluorescence intensity increases, and the concentration-fluorescence increases. The slope of the intensity calibration curve is positive.
次いで測定方法 2 ) について説明する。  Next, the measurement method 2) will be described.
% 前記測定方法 2 ) は、 基本的には、 測定方法 1 ) と 同様の効果を有するが、 この方法では、 初めにビォチ ンが結合した被測定物質又は被測定物質と特異的に反 応する物質を、 光フ ァイ バ一上の被測定物質と特異的 に結合する物質又は被測定物質と、 特異的に反応させ た後、 蛍光色素で修飾されたアビジンを反応させる こ とが必要である。 % The measuring method 2) basically has the same effect as the measuring method 1), but in this method, the substance to which biotin is first bound or a substance which specifically reacts with the substance to be measured is used. Is required to react specifically with a substance or an analyte that specifically binds to the analyte on the optical fiber, and then to react with avidin modified with a fluorescent dye. .
こ の理由は、 蛍光色素で修飾されたアビジ ンを最後 に結合させるため、 蛍光色素の加水分解や酸化に伴う 蛍光強度の低下を防止でき、 再現性の高い測定を行う こ とができ るからである。  The reason for this is that the avidin modified with the fluorescent dye is bound last, so that the decrease in fluorescence intensity due to hydrolysis and oxidation of the fluorescent dye can be prevented, and highly reproducible measurement can be performed. It is.
前記蛍光色素は、 シァニン色素である こ とが望ま し い  The fluorescent dye is preferably a cyanine dye.
本発明において使用される光源は、 レーザ光あるい は L E D光である こ とが望ま しい。  The light source used in the present invention is desirably laser light or LED light.
前記測定方法は、 競合法とサン ドイ ッチ法に大別さ れる。  The measurement methods are roughly classified into a competitive method and a sandwich method.
前記競合法は、 被測定試料と、 ピオチン一被測定物 質からなる濃度既知の試薬を混合し、 そ こに被測定物 質 と 特異的に結合する物質が固定化さ れた光フ ア イ バーを入れ、 特異的に反応させた後、 蛍光色素で修飾 されたア ビジンを結合させ、 光にて励起、 測定する方 法である。 前記競合法の場合、 光フ ァイ バ一には、 被 測定試料と 、 蛍光色素一ア ビジンー ビ才チ ン —被測定 物質からなる試薬が、 それぞれの濃度比に従っ て結合 する。 In the competitive method, a sample to be measured is mixed with a reagent of known concentration consisting of pyotin and the analyte, and an optical fiber on which a substance that specifically binds to the analyte is immobilized. This method involves inserting a bar, reacting specifically, binding avidin modified with a fluorescent dye, exciting with light, and measuring. In the case of the competitive method, the optical fiber is The reagent consisting of the measurement sample and the fluorescent dye avidin-bitin-substance is bound according to the respective concentration ratios.
従って、 被測定試料の濃度が高ければ、 蛍光色素一 ア ビジン一ピオチ ン一被測定物質からなる試薬の結合 量が相対的に減 り 、 蛍光強度は低下し、 濃度一蛍光強 度の検量線の傾きは負になる。  Therefore, when the concentration of the sample to be measured is high, the binding amount of the reagent consisting of the fluorescent dye, avidin, piotin, and the substance to be measured is relatively reduced, the fluorescence intensity is reduced, and the concentration-fluorescence intensity calibration curve is obtained. Becomes negative.
前記サン ドイ ッ チ法は、 被測定試料に、 被測定物質 と特異的に結合する物質が固定化された光フ ァイ バ一 を入れる。 前記光フ ァ イ バ一には、 その濃度に従つ て、 被測定物質が結合される。 該被測定物質が結合さ れた光フ ァイ バ一を、 ピオチ ン一被測定物質と特異的 に結合する物質からなる試薬の溶液に浸漬する。 前記 フ ァイ バーには、 ピオチ ン一被測定物質と特異的に結 合する物質からなる試薬が結合する。 前記ピオチ ン一 被測定物質と特異的に結合する物質からなる試薬が結 合した光フ ァイ バ一に、 蛍光色素で修飾されたァ ビジ ンを結合させる。  In the sandwich method, an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured. An analyte is bound to the optical fiber according to the concentration. The optical fiber to which the substance to be measured is bound is immersed in a reagent solution composed of piotin and a substance that specifically binds to the substance to be measured. A reagent consisting of a substance that specifically binds to piotin-to-be-measured substance binds to the fiber. The avidin modified with a fluorescent dye is bound to the optical fiber to which the reagent comprising the substance that specifically binds to the above-mentioned piotin-substance to be measured is bound.
前記サ ン ド イ ッ チ法においては、 光フ ァ イ バ一に は、 測定試料 と 同 じ数の蛍光色素一ア ビジ ン一 ピオ チ ン一被測定物質 と特異的に結合す る物質が結合す る。  In the above-described sandwich method, the optical fiber contains a substance that specifically binds to the same number of fluorescent dyes, avidin, piotin, and the analyte as the number of the measurement sample. Join.
従って、 被測定試料の濃度が高ければ、 蛍光色素一 ア ビジ ンー ビ才チン一被測定物質と特異的に結合する 物質の結合量が増え、 蛍光強度は増加し、 濃度 -蛍光 強度の検量線の傾きは正になる。 Therefore, if the concentration of the sample to be measured is high, Avidin-bitin-The binding amount of the substance that specifically binds to the analyte increases, the fluorescence intensity increases, and the slope of the concentration-fluorescence intensity calibration curve becomes positive.
次いで測定方法 3 ) について説明する。  Next, the measuring method 3) will be described.
前記測定方法 3 ) は、 被測定物質又は被測定物質と 特異的に反応する物質が、 複数の反応活性基を有する 化合物に結合し、 該複数の反応活性基を有する化合物 の反応活性基には、 複数の蛍光色素で修飾された化合 物が結合 し て い る試薬を使用 す る こ と が必要で あ る。  The measuring method 3) is characterized in that a substance to be measured or a substance that specifically reacts with the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group of the compound having a plurality of reactive groups However, it is necessary to use a reagent to which a compound modified with a plurality of fluorescent dyes is bound.
前記試薬を使用する こ と によ り 、 生体活性物質当 り の蛍光色素の結合量を增やすこ とができ、 検出感度を 飛躍的に向上させる—こ と ができ る。  By using the reagent, the binding amount of the fluorescent dye per bioactive substance can be increased, and the detection sensitivity can be dramatically improved.
前記蛍光色素は、 シァニン色素である こ と が望ま し い。  Preferably, the fluorescent dye is a cyanine dye.
また、 前記複数の蛍光色素で修飾された化合物はァ ビジ ンである こ と が好ま し く 、 ピオチ ンを介 して複数 の反応活性基を有する化合物の反応活性基に結合して いる こ と が望ま しい。  Further, the compound modified with the plurality of fluorescent dyes is preferably avidin, and is bound to the reactive group of the compound having a plurality of reactive groups via piotin. Is desirable.
ま た、 前記複数の反応活性基を有する化合物は、 ァ ミ ノ グルカ ンから選ばれる こ とが望ま し く 、 特にキ ト サンが好適である。  Further, the compound having a plurality of reactive groups is desirably selected from aminoglucan, and chitosan is particularly preferred.
また、 前記蛍光色素を励起するための光源は、 レー ザ光あるいは L E D光である こ とが望ま しい。 The light source for exciting the fluorescent dye may be It is desirable to use the light or LED light.
鶴-記測定方法は、 競合法とサン ドイ ッ チ法に大別さ れる。  Tsuru-Ki measurement methods are broadly divided into the competitive method and the Sandwich method.
前記競合法は、 被測定試料と、 被測定物質が複数の 反応活性基を有する化合物に結合し、 該複数の反応活 性基を有する化合物の反応活性基には、 複数の蛍光色 素で修飾された化合物が結合している試薬を混合し、 そこに、 被測定物質と特異的に結合する物質が固定化 さ れた光フ ァ イ バ一を浸漬 し、 特異的に反応させた 後、 光にて励起し、 蛍光を測定する方法である。 前記 競合法の場合、 光フ ァ イ バ一には、 被測定試料と 、 前記試薬 と が、 それぞれの濃度比に従 っ て結合す る。  In the competition method, the analyte and the analyte bind to a compound having a plurality of reactive groups, and the reactive groups of the compound having the plurality of reactive groups are modified with a plurality of fluorescent dyes. The reagent to which the compound is bound is mixed, and the optical fiber on which the substance that specifically binds to the analyte is immobilized is immersed and allowed to react specifically. This is a method of measuring fluorescence by exciting with light. In the case of the competition method, the sample to be measured and the reagent are bound to the optical fiber according to the respective concentration ratios.
従って、 被測定試料の濃度が高ければ、 前記試薬の 結合量が相対的に減り 、 蛍光強度は低下し、 濃度 -蛍 光強度の検量線の傾きは負になる。  Therefore, if the concentration of the sample to be measured is high, the amount of the reagent bound relatively decreases, the fluorescence intensity decreases, and the slope of the concentration-fluorescence intensity calibration curve becomes negative.
前記サン ドイ ッチ法は、 被測定試料に、 被測定物質 と特異的に結合する物質が固定化された光フ ァイ バ一 を入れる。 前記光フ ァイ バ一には、 その濃度に従って 被測定物質が結合する。 該被測定物質を結合 した光 フ ァ イ バーを、 被測定物質と特異的に結合する物質が 複数の反応活性基を有する化合物に結合し、 該複数の 反応活性基を有する化合物の反応活性基には、 複数の 蛍光色素で修飾された化合物が結合している試薬の溶 液に人れる。 In the sandwich method, an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized on a sample to be measured. An analyte is bound to the optical fiber according to the concentration. The optical fiber to which the substance to be measured is bound is combined with a compound in which a substance that specifically binds to the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups is combined. Has multiple The solution of the reagent to which the compound modified with the fluorescent dye is bound can be used.
前記サ ン ド イ ッ チ法においては、 光フ ァ イ バ一に は、 測定試料と 同 じ数の測定試薬が結合する。  In the sandwich method, the same number of measurement reagents as the measurement sample are bound to the optical fiber.
従って、 被測定試料の濃度が高ければ、 測定試薬の 結合量が増え、 蛍光強度は増加し、 濃度 -蛍光強度の 検量線の傾き は正になる。  Therefore, if the concentration of the sample to be measured is high, the amount of binding of the measurement reagent increases, the fluorescence intensity increases, and the slope of the concentration-fluorescence intensity calibration curve becomes positive.
次いで測定方法 4 ) について説明する。  Next, the measuring method 4) will be described.
前記測定方法は、 互いに特異的に結合する 2種類の 物質を化合物 A、 化合物 B とする と き、 最初に、 被測 定物質又は被測定物質と特異的に反応する物質が、 複 数の反応活性基を有する化合物に結合し、 該反応活性 基には化合物 Bが結合している試薬を、 光フ ァ イ バ一 上の被測定物質と特異的に結合する物質又は被測定物 質と 、 特異的に反応させた後、 蛍光色素で修飾された 化合物 Aを反応させる こ とが必要である。  In the above measurement method, when two kinds of substances that specifically bind to each other are referred to as compound A and compound B, first, the substance to be measured or a substance that specifically reacts with the substance to be measured is subjected to a plurality of reactions. A reagent that binds to a compound having an active group, and to which a compound B is bound, is attached to the reaction active group with a substance or an analyte that specifically binds to the analyte on the optical fiber; After specific reaction, it is necessary to react with Compound A modified with a fluorescent dye.
このよ う な方法を用いる こ と によ り 、 被測定物質当 り の蛍光色素量を増やすこ と ができ 、 なお且つ、 蛍光 色素の加水分解や酸化に伴う蛍光強度の低下を防止で き 、 再現性の高い測定を行う こ と がで き るか らであ る。  By using such a method, the amount of the fluorescent dye per substance to be measured can be increased, and a decrease in the fluorescence intensity due to hydrolysis or oxidation of the fluorescent dye can be prevented. This is because measurement with high reproducibility can be performed.
前記蛍光色素は、 シァニン色素である こ と が望ま し い 0 また、 前記化合物 A、 化合物 B はそれぞれ、 ァ ビジ ン ー ピオチ ン、 プロ テイ ン A—抗体、 抗体ー ブロ ティ ン Aの組合せが望ま し く 、 特にアビジン一 ピオチンの 組合せが好適である。 The fluorescent dye is not the desire that it is a Shianin dye 0 Compounds A and B are preferably a combination of avidin-biotin, protein A-antibody, and antibody-brotin A, and a combination of avidin-biotin is particularly preferred.
前記化合物 A、 化合物 B と して用いられる抗体は、 被測定物質と特異反応をおこさないものである こ とが 必要である。  It is necessary that the antibody used as the compound A or the compound B does not cause a specific reaction with the substance to be measured.
また、 前記複数の反応活性基を有する化合物は、 ァ ミ ノ グルカ ンから選ばれる こ とが好ま し く 、 特にキ ト サンが好適である。  Further, the compound having a plurality of reactive groups is preferably selected from aminoglucan, and chitosan is particularly preferable.
また、 前記蛍光色素を励起するための光源は、 レー ザ光あるいは L E D光であるこ とが望ま しい。  Further, it is desirable that the light source for exciting the fluorescent dye is laser light or LED light.
前記測定方法は、 競合法とサン ドイ ッ チ法に大別さ れる。  The measurement methods are broadly classified into a competition method and a sandwich method.
前記競合法は、 被測定物質と、 被測定物質が複数の 反応活性基を有する化合物に結合し、 該反応活性基に は化合物 Bが結合している濃度既知の試薬を混合し、 そこに、 被測定物質と特異的に結合する物質が固定化 さ れた光フ ァ イ バ一を浸漬 し、 特異的に反応させた 後、 蛍光色素で修飾された化合物 Aを結合させ、 光に て励起し、 蛍光を測定する方法である。 前記競合法の 場合、 光フ ァ イ バ一には、 被測定試料 と 前記試薬と が、 それぞれの濃度比に従って結合する。 従って、 被測定試料の濃度が高ければ、 試薬の結合 量が相対的に減 り 、 蛍光強度は低下し、 濃度 -蛍光強 度の検量線の傾き は負になる。 In the competition method, the analyte and the analyte bind to a compound having a plurality of reactive groups, and the reactive group is mixed with a reagent having a known concentration to which compound B is bound. After immersing an optical fiber on which a substance that specifically binds to the analyte is immobilized and allowing it to react specifically, bind the compound A modified with a fluorescent dye and excite with light And a method of measuring fluorescence. In the case of the competition method, the sample to be measured and the reagent are bound to the optical fiber according to their respective concentration ratios. Therefore, if the concentration of the sample to be measured is high, the amount of reagent bound relatively decreases, the fluorescence intensity decreases, and the slope of the concentration-fluorescence intensity calibration curve becomes negative.
前記サン ドィ ツ チ法は、 被測定試料に、 被測定物質 と特異的に結合する物質が固定化された光フ アイ バー を浸漬する。 前記光フ ァイ バ一には、 その濃度に従つ て被測定物質が結合する。 該被測定物質を結合した光 フ ァ イ バ一を、 被測定物質と特異的に結合する物質が 複数の反応活性基を有する化合物に結合し、 該反応活 性基には化合物 B が結合 している試薬の溶液に入れ る。 前記フ ァ イ バーには試薬が結合する。 前記被測定 物質と特異的に結合する物質が複数の反応活性基を有 する化合物に結合し、 該反応活性基には化合物 Bが結 合している試薬が結合した光フ ァイ バ一に、 蛍光色素 で修飾された化合物 Aを結合させる。  In the Sandwich method, an optical fiber on which a substance that specifically binds to a substance to be measured is immobilized is immersed in a sample to be measured. A substance to be measured binds to the optical fiber according to its concentration. The optical fiber to which the substance to be measured is bound is bound to a compound in which a substance that specifically binds to the substance to be measured has a plurality of reactive groups, and compound B is bound to the reactive group. Into the reagent solution. A reagent binds to the fiber. The substance that specifically binds to the substance to be measured binds to a compound having a plurality of reactive groups, and the reactive group is bound to an optical fiber to which a reagent to which compound B is bound is bound. Then, the compound A modified with a fluorescent dye is bound.
前記サン ド イ ッ チ法においては、 光フ ア イ ノ 一に は、 測定試料と 同 じ数の試薬が結合する。  In the above-mentioned sandwich method, the same number of reagents as the measurement sample are bound to the optical fiber.
従って、 被測定試料の濃度が高ければ、 試薬の結合 量が増え、 蛍光強度は増加し、 濃度 -蛍光強度の検量 線の傾き は正になる。  Therefore, when the concentration of the sample to be measured is high, the amount of the reagent bound increases, the fluorescence intensity increases, and the slope of the concentration-fluorescence intensity calibration curve becomes positive.
(生体活性物質測定装置)  (Bioactive substance measuring device)
次に装置について説明する  Next, the device will be described.
本発明の装置は、 生体活性物質が、 複数の反応活性 基を有する化合物に結合し、 該複数の反応活性基を有 する化合物の反応活性基には、 複数の蛍光色素で修飾 された化合物が結合している前記生体活性物質測定試 薄を利用 して生体活性物質を測定するための装置であ る。 In the device of the present invention, the bioactive substance has a plurality of reactive activities. The compound having a plurality of reactive groups is bonded to the compound having a group, and the reactive group of the compound having a plurality of reactive groups is determined by using the above-mentioned bioactive substance measurement test in which a compound modified with a plurality of fluorescent dyes is bonded. This is a device for measuring bioactive substances.
'本発明の装置は、 少な く と も以下の構成、 即ち、 小 型光源及び励起光又は蛍光を伝播するための光フ アイ バーと 、 その一方の端面のコ ア表面を露出させ、 その 表面に被測定物質と特異的に結合する物資を固定化し た検出部 ; 検出部で励起された蛍光のみを取り 出す機 構 ; 並びに検出部で励起された蛍光の強度を測定す る ためのフ ォ ト カ ウンターか らなる こ と を特徴と す 前記光フ ァイ バ一を使用する理由は、 光フ ァ イ バ一 によ って、 励起光と蛍光を伝播でき、 光損失がな く 、 効率の良い測定ができ る。  'The apparatus of the present invention has at least the following constitutions: a small light source and an optical fiber for transmitting excitation light or fluorescence, and a core surface at one end surface thereof is exposed. A detector that immobilizes a substance that specifically binds to the substance to be measured; a mechanism for extracting only the fluorescence excited by the detector; and a forme for measuring the intensity of the fluorescence excited by the detector. The reason for using the optical fiber, which is characterized in that the optical fiber is composed of a counter, is that the optical fiber allows the excitation light and the fluorescent light to propagate, and the optical fiber has no light loss. Efficient measurement can be performed.
前記光フ ァ イ バ一は、 樹脂製である こ と が望ま し い。 こ の理由は、 樹脂の方が低価格であ り 、 使用 しや すいからである。  Preferably, the optical fiber is made of resin. This is because resin is cheaper and easier to use.
前記樹脂性フ ァイバ一は、 架橋剤と反応する構造を 有する こ とが望ま しい。 こ の理由は、 架橋剤を介する こ と に よ り 、 生体活性物質を共有結合させ、 検出部を 形成でき るからである。 前記架橋剤と反応する構造はエステル構造である こ とが望ま しい。 It is desirable that the resinous fiber has a structure that reacts with a crosslinking agent. The reason for this is that a bioactive substance can be covalently bonded to form a detection portion by using a cross-linking agent. The structure that reacts with the crosslinking agent is preferably an ester structure.
前記樹脂と しては、 ポ リ メ タク リ ル酸メ チルなどの (メ 夕) アク リ ル酸エステル樹脂又はポ リ エステル樹 脂が好適である。  As the resin, a (meth) acrylic ester resin such as methyl polymethacrylate or a polyester resin is preferable.
さ らに、 本発明の検出部には、 生体活性物質が複数 の反応活性基を有する化合物に結合し、 該複数の反応 活性基を有する化合物の反応活性基には、 複数の蛍光 色素で修飾された化合物が結合している生体活性物質 測定試薬が、 測定の際に結合さ れる こ と が必要であ る。  Further, in the detection unit of the present invention, the bioactive substance binds to a compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups is modified with a plurality of fluorescent dyes. It is necessary that the biologically active substance measurement reagent to which the obtained compound is bound is bound at the time of measurement.
こ のよ う な試薬が結合する こ と によ り 、 高感度測定 が可能である。  The binding of such a reagent enables high-sensitivity measurement.
前記蛍光色素は、 シァニン色素である こ と が望ま し い。 こ の理由は、 前記シァニ ン色素は、 H e — N e レーザ光 ( 6 3 0 nm ) や現在発信している最も短波長 の半導体 レーザ ( 6 3 8 n m ) で励起で き る ため 、 大型で高価な X e ラ ンプや A r レーザ又は、 高価な S H G素子 (光の波長を ½にする素子) を使用する必 要もないため、 安価で小型の装置を得る こ と がで き る か らである。  Preferably, the fluorescent dye is a cyanine dye. The reason for this is that the cyanine dye can be pumped by He—Ne laser light (630 nm) or the shortest wavelength semiconductor laser currently transmitting (636 nm), so that it is large in size. It is not necessary to use expensive and expensive Xe lamps or Ar lasers or expensive SHG elements (elements that reduce the wavelength of light), so can a cheap and small device be obtained? It is.
前記検出部は、 励起光又は蛍光を伝播する光フ ア イ バーから連結器によ り 、 脱着可能である こ と が望ま し い It is desirable that the detection section be detachable from an optical fiber that propagates excitation light or fluorescence by a coupler. I
前記連結器と しては、 第 3図のよ う なガイ ド レール タイ プが好適である。  As the coupling, a guide rail type as shown in FIG. 3 is preferable.
本発明の装置の光源は、 小型、 低価格のものである こ と が必要で、 H e — N e レ一ザ、 半導体 レーザ、 半導体 レーザ と S H G素子を組み合わせた レーザ、 又は L E D (発光ダイ オー ド) である こ と が望ま し い。  The light source of the apparatus of the present invention must be small and inexpensive, and can be a He—Ne laser, a semiconductor laser, a laser combining a semiconductor laser and an SHG element, or an LED (light emitting diode). C) is desirable.
前記蛍光のみを取 り 出す機構は、 ハーフ ミ ラーや フ ィ ル夕一などが考え られるが、 フ ィ ルタ一である こ とが望ま しい。  The mechanism for extracting only the fluorescent light may be a half mirror, a filter, or the like, but a filter is preferable.
この理由は、 ハーフ ミ ラーを用いた場合、 光学系を 配置するためのスペースが必要で、 小型化しに く いか らである。 前記ハーフ ミ ラーは検出部が反射型の場合 に、 また前記フ ィ ルタ一は検出部が対向型の場合に主 に使用されている。  The reason for this is that when a half mirror is used, a space for arranging the optical system is required, which makes it difficult to reduce the size. The half mirror is mainly used when the detection unit is of a reflection type, and the filter is mainly used when the detection unit is of a facing type.
このため、 前記検出部は、 対向型である こ と が好ま しい。  For this reason, it is preferable that the detection unit is of a facing type.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
次に、 本発明の実施例を示す。  Next, examples of the present invention will be described.
実施例 1  Example 1
( 1 ) 1 0 0 の水に 3 mgの N a 2 C 0 3 と 4 mgの ビ才チンを溶かした。 ( 2 ) ついで、 1 . 8 のキ トサン溶液の 27 ^に前 記 ( 1 ) で得られた溶液を添加した。 (1) was dissolved 1 0 0 N a 2 C 0 3 of water 3 mg of a 4 mg bicycloalkyl old Chin. (2) Then, the solution obtained in the above (1) was added to 27 ^ of the 1.8 chitosan solution.
( 3 ) 水 1 0 0 を添加した後、 5 0 mgの C H M C (水溶液カルポジイ ミ ド) を添加した。 さ らに撹拌し ながら、 5時間 晚室温で反応させた。  (3) After the addition of water 100, 50 mg of CHMC (aqueous carpoimide) was added. The reaction was allowed to proceed for 5 hours at room temperature with further stirring.
( 4 ) 酢酸を 3滴滴下して、 反応を停止させた。 (4) The reaction was stopped by adding 3 drops of acetic acid.
( 5 ) つ いで 、 N a 2 C 0 a 0 . 3 g Z m£及び N a C £ 0 . 3 g
Figure imgf000047_0001
の混合液 を加えて、 ピオ チン化キ 卜サンを沈澱させた。
(5) Then, Na 2 C 0 a 0.3 g Z m £ and Na C £ 0.3 g
Figure imgf000047_0001
The mixture was added to precipitate the biotinylated chitosan.
( 6 ) 遠心分離器で沈澱を 回収 し た後、 0 . 3 の N a C £ と 0 . 1 g /m? N a 2 C O 3 緩衝液 で沈澱を洗浄した。 (6) After collecting the precipitate with a centrifugal separator, the precipitate was washed with a NaC £ of 0.3 and a buffer of 0.1 g / m 2 Na 2 CO 3 .
( 7 ) 前記 ( 6 ) で得られた沈澱を 1 0 の 1 0 mM のカ リ ウム— リ ン酸緩衝液 ( pH= 7 ) で一晩、 4 °Cで 透析して ピオチン化キ トサンを得た。  (7) The precipitate obtained in (6) above was dialyzed overnight at 4 ° C. against 10 mM 10 mM calcium-phosphate buffer (pH = 7) to obtain the biotinylated chitosan. Obtained.
( 8 ) 前記ピオチン化キ トサンの懸濁液に抗 I g G (抗体 Y ) 溶液と 、 C H M Cを添加して、 4でで 1 夜 反応させた。 反応終了後、 1 2時間透析を行い、 さ ら に、 陰イ オ ン交換カ ラムを用いて未反応物を除去し、 抗体が結合したピオチン化キ トサンを得た。  (8) An anti-IgG (antibody Y) solution and CHMC were added to the suspension of the biotinylated chitosan, and the mixture was reacted at 4 overnight. After the reaction was completed, dialysis was performed for 12 hours, and unreacted substances were removed using an anion exchange column to obtain antibody-bound biotinylated chitosan.
( 9 ) ア ビジ ン 1 mg及び 卜 リ エチルァ ミ ン ◦ . 2 vi を 1 のエタ ノ ールに溶解させた。 次いで、 2 mgの N K 1 1 6 0 ( 日本感光色素研究所製 ; 前記式 ( 1 ) において n = 2 のシァニン色素) を加えて充分に溶解 させ、 溶液を作成した。 さ らに前記溶液にジシク ロへ . キシルカルポジイ ミ ド 1 4 mgを加えて、 室温で 4時間 . 反応させた。 (9) Avidin (1 mg) and triethylamine (2) were dissolved in 1 of ethanol. Then, 2 mg of NK1160 (manufactured by Nippon Kogaku Dye Laboratories; In the above, a cyanine dye (n = 2) was added and dissolved sufficiently to prepare a solution. Further, to the above solution, 14 mg of dicyclocarbodiimide was added, and the mixture was reacted at room temperature for 4 hours.
( 1 0 ) 反応終了後、 エバポレータでエタノ ールと ト リ エチルァ ミ ンを減圧除去した。  (10) After the completion of the reaction, ethanol and triethylamine were removed under reduced pressure using an evaporator.
( 1 1 ) 前記 ( 1 0 ) の工程で生 じ た残留物を、 0 . 0 1 M 酢酸緩衝液 ( pH= 6 . 5 ) 2 に懸濁した 後、 遠心分離器を用いて 5 0 0 0 rpmで 1 0分間遠心 分離を行っ て、 上澄みを採取 し、 再度遠心分離にか けて N K 1 .1 6 0 で修飾されたア ビジンの溶液を得 た。  (11) The residue generated in the step (10) was suspended in 0.01 M acetate buffer (pH = 6.5) 2, and then suspended in a centrifuge. The supernatant was collected by centrifugation at 0 rpm for 10 minutes and centrifuged again to obtain a solution of avidin modified with NK1.160.
( 1 2 ) ポ リ メ タ—ク リ ル酸メチルを主成分とする直 , 径 1 mmの樹脂製光フ ァイ バ一 (三菱レイ ヨ ン製、 商品 名 : エス力) の先端を酢酸ェチルに浸して拭き と り 、 クラ ッ ド層.を 1 cm剥離し、 水洗した。 ついで、 光フ ァ ィ バーの端面をエタノ ールを潤滑剤と してポ リ シング フ ィ ルムで研磨した。  (12) The tip of a resin optical fiber (Mitsubishi Rayon, trade name: S-force) with a diameter of 1 mm and a main component consisting of methyl methyl acrylate After immersion in water and wiping, the cladding layer was peeled off by 1 cm and washed with water. Next, the end face of the optical fiber was polished with a polishing film using ethanol as a lubricant.
( 1 3 ) 0 . 5 の水に 1 0 mgの N i S 0 4 を溶解 させ、 次いでエタノ ール 2 . を加えた。 こ の時、 白色沈澱が生ずるため、 これを 3 0 0 0 rpmで遠心分 離して上澄液を採取し、 これを N i —エタノ ール溶液 した。 5 0 mM水酸化カ リ ウ ム 一 エタ ノ ール溶液 0 . 4 に N i —エタノ ール溶液 0 . 1 を加え、 さ らに 5 0 % グルタ ルアルデ ヒ ド を 5 0 ^添加 し反応溶液と し た。 (1 3) 0.5 water to dissolve 1 0 mg of N i S 0 4, followed ethanol 2. Was added. At this time, since a white precipitate was formed, the precipitate was centrifuged at 300 rpm to collect a supernatant, which was used as a Ni-ethanol solution. To a solution of 50 mM potassium hydroxide-ethanol solution 0.4 was added Ni-ethanol solution 0.1, and then 50% glutaraldehyde was added 50 0, and the reaction solution was added. It was decided.
( 1 4 ) 前記 ( 1 3 ) で調製 した反応溶液に前記 ( 1 2 ) の樹脂製光フ ァイ バ一を 5 0 °Cで、 1 0分間 浸漬した後水洗した。  (14) The optical fiber made of the resin (12) was immersed in the reaction solution prepared in the above (13) at 50 ° C. for 10 minutes and washed with water.
( 1 5 ) 対で、 2 0 mMの塩酸溶液に 5〜 1 0分浸漬 した後、 水で洗浄し、 樹脂製光フ ァイ バ一のコ ア部分 表面にホルミル基を導入した。  The (15) pair was immersed in a 20 mM hydrochloric acid solution for 5 to 10 minutes, washed with water, and a formyl group was introduced on the surface of the core portion of the resin optical fiber.
第 6 図 ( b ) には上記方法にて、 光フ ァ イ バ一の表 面にホルミル基を導入した場合の、 処理温度と 、 固定 可能な酵素 (蛋白質) 量と の関係、 及び第 6 図 ( a ) に は処理温度 と フ ア イ バーの光伝送率 と の関係を示 す。  FIG. 6 (b) shows the relationship between the treatment temperature and the amount of immobilizable enzyme (protein) when a formyl group was introduced to the surface of the optical fiber by the above method. Figure (a) shows the relationship between the processing temperature and the optical transmission rate of the fiber.
また、 ホルミル基のフ ァイ バ一表面上の密度と 、 光 伝送減少率の関係を第 7 図に示す。  FIG. 7 shows the relationship between the density of the formyl group on the surface of the fiber and the light transmission reduction rate.
ポ リ メ タ ク リ ル酸メチル製光フ ァイ バ一は、 熱処理 す る と 光伝送率が向上するが、 反応温度が高 く な る と 、 結合するホルミル基の密度が増えるため、 光伝送 率が低下する 。 こ のため、 第 6 図 ( a ) に示す よ う に、 最も好適な温度は、 5 0 °C付近と なる。  The optical fiber made of methyl polymethacrylate improves the light transmission rate by heat treatment, but the higher the reaction temperature, the higher the density of the formyl group to be bonded. The transmission rate decreases. For this reason, as shown in FIG. 6 (a), the most preferable temperature is around 50 ° C.
( 1 6 ) バチルス属 1 6 — 3 F楝が産生する耐熱性 α—ア ミ ラーゼに対するモノ クローナル抗体であるマ ウス I g G抗原 4 l mgを り ん酸緩衝生理食塩水 (pH = 7 . 5 ) に溶か し た。 こ の溶液に樹脂製光フ ア イ バーを 4 °Cで 1 2 時間浸漬した。 (16) Heat resistance of Bacillus sp. 1 6 — 3 F connection 4 lmg of mouse IgG antigen, a monoclonal antibody against α-amylase, was dissolved in phosphate buffered saline (pH = 7.5). An optical fiber made of resin was immersed in this solution at 4 ° C for 12 hours.
( 1 7 ) 樹脂製光フ ァイ バ一を溶液から取 り 出 し、 水で洗浄した後、 1 % N a B H 4 水溶液に 1 5分間浸 漬した後、 水で洗浄してマウス I g G抗原 4 を固定化 し、 抗原固定化センサーと した。 (1 7) a resin light off § Lee bar one and exits Ri taken from the solution, washed with water, 1% N a BH 4 was immersed for 15 minutes in an aqueous solution, the mouse I g and washed with water G antigen 4 was immobilized and used as an antigen-immobilized sensor.
( 1 8 ) 上記のよ う に して製造した樹脂製光フ アイ バーを検出部と した。  (18) The resin optical fiber manufactured as described above was used as the detection unit.
( 1 9 ) 濃度既知の抗マ ウス I g G ( Y ) 溶液を ( 1 8 ) で作成した検出部 5 に浸漬した後、 リ ン酸緩 衝生理食塩水を通して洗浄した。  (19) An anti-mouse IgG (Y) solution having a known concentration was immersed in the detection section 5 prepared in (18), and then washed with phosphate-buffered saline.
( 2 0 ) 次に、 前記 ( 8 ) で得た抗体が結合したビ ォチ ン化キ 卜サン溶液に検出部 5 を浸漬した後、 リ ン 酸緩衝生理食塩水を通して洗浄した。  (20) Next, the detection unit 5 was immersed in a biotinylated chitosan solution to which the antibody obtained in the above (8) was bound, and then washed with phosphate buffered saline.
( 2 1 ) 次 に 、 前記 ( 1 1 ) で得 ら れ た N K 1 1 6 0 で修飾されたアビジン溶液を検出部 5 に浸漬 した後、 リ ン酸緩衝生理食塩水を通して洗浄した。  (21) Next, the avidin solution modified with NK116 obtained in the above (11) was immersed in the detection section 5, and then washed with phosphate buffered saline.
( 2 2 ) 次に、 第 4図に示す本発明の装置にて H e - e レーザ光学系で蛍光を分光光度計 8 を用いて測 定した。  (22) Next, fluorescence was measured with a He-e laser optical system using a spectrophotometer 8 in the apparatus of the present invention shown in FIG.
( 2 3 ) 抗マ ウ ス I g G ( Y ) の濃度を変え、 前 記 ( 1 8 ) 〜 ( 2 2 ) と 同様の測定を繰り返し、 抗マ ウス I g G ( Y ) の濃度と蛍光強度の関係を調べ検量 線を作成 し た。 こ れを、 第 8 図の ( a ) に示す。 ま た、 セ ンサーの応答性を第 9図に示す。 (23) Change the concentration of anti-mouse IgG (Y) The same measurement as described in (18) to (22) was repeated, and the relationship between the concentration of anti-mouse IgG (Y) and the fluorescence intensity was examined to prepare a calibration curve. This is shown in Fig. 8 (a). Figure 9 shows the responsiveness of the sensor.
検量線から、 検出限界を測定し、 これを第 1表に示 した。  The detection limit was measured from the calibration curve, and this is shown in Table 1.
実施例 2  Example 2
( 1 ) 実施例 1 の ( 1 ) 〜 ( 1 8 ) と 同様の方法に よ り 抗体が結合 し た ピオチ ン化キ ト サ ン溶液、 N K 1 1 6 0で修飾されたアビジン溶液、 抗原固定化セ ン サー及び検出部を作成した。  (1) Piotinylated chitosan solution to which the antibody is bound, avidin solution modified with NK116, and antigen immobilization by the same method as in (1) to (18) of Example 1 Chemical sensor and detector were created.
( 2 ) 濃度既知の抗マウス I g G ( Y ) 溶液と前記 ( 1 ) で作成した抗体が結合したピオチン化キ ト サ ン 溶液を 1 : 1 の割合で混合し、 第 1 図に示.すフ ローセ ル 5に通した後、 リ ン酸緩衝生理食塩水を通して洗浄 した。  (2) An anti-mouse IgG (Y) solution of known concentration and a biotinylated chitosan solution bound with the antibody prepared in (1) above were mixed at a ratio of 1: 1 and shown in Fig. 1. After passing through Sucrose Cell 5, it was washed with phosphate buffered saline.
( 3 ) 次に前記 ( 1 ) で作成した N K 1 1 6 0で修 飾されたア ビジン溶液をフ ローセル 5に通した後、 リ ン酸緩衝生理食塩水を通して洗浄した。  (3) Next, the avidin solution modified with NK116 prepared in (1) above was passed through the flow cell 5, and then washed with phosphate buffered saline.
( 4 ) 次に、 前記実施例 1 の ( 2 2 ) 及び ( 2 3 ) と 同様の方法にて抗マウス I g G ( Y ) の濃度と蛍光 強度の関係を調べ、 検量線を作成した。 検量線を第 8 図 ( b ) に示す。 検量線から検出限界を測定し、 これを第 1 表に示し た。 (4) Next, the relationship between the concentration of anti-mouse IgG (Y) and the fluorescence intensity was examined in the same manner as in (22) and (23) of Example 1, and a calibration curve was prepared. The calibration curve is shown in Fig. 8 (b). The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 3  Example 3
( 1 ) 1 0 0 の水に 3 mgの N a 2 C 0 3 と 4 mgの 抗体蛋白を溶かした。 (1) was dissolved 1 0 0 N a 2 C 0 3 of water 3 mg of a 4 mg of antibody protein.
( 2 ) 次いで、 1 . 8 /^の 3 — 1 , 4一ポ リ ガラク 卜サ ミ ン溶液の 2 ) ^に前記 ( 1 ) で得た溶液を添加し た。  (2) Next, the solution obtained in the above (1) was added to 2) ^ of the 1.8 / ^ 3-, 1,4-polygalactamidine solution.
( 3 > 水 1 0 0 /^を添加した後、 5 0 mgの C H M C (水溶液カルポジイ ミ ド) を添加した。 さ らに撹拌し ながら一晩 4 °Cで反応させた。  (3> Water 100 / ^ was added, then 50 mg of CHMC (aqueous carpoimide) was added, and the reaction was allowed to proceed overnight at 4 ° C with stirring.
( 4 ) 次 い で N a 2 C 0 3 0 . 3 g ノ 及 び N a C £ 0 . 3 g 7 の混合液 を加えて抗体蛋 白が結合した 0 — 1 , 4一ポ リ ガラク 卜サミ ンを沈澱 させた。 (4) Next, a mixed solution of Na 2 C 0.33 g and Na C £ 0.3 g 7 was added, and the antibody protein was bound to 0 — 1,4,1 polysaccharide. Samin was precipitated.
( 5 ) 遠心分離機で沈澱を 回収 し た後、 0 . 3 g / の N a C と 0 . l g / の N a 2 C 0 3 緩衝 液で沈澱を洗浄した。 (5) After recovering the precipitate by centrifugation, 0. 3 g / of N a C and 0. Washing the precipitate with lg / of N a 2 C 0 3 buffer.
( 6 ) 前記 ( 5 ) で得られた沈澱を 1 0 の 1 0 mM のカ リ ウムー リ ン酸緩衝液 ( PH= 7 ) に懸濁し、 1 晚 4 °Cで透析して、 抗体蛋白が結合した )3 — 1 , 4—ポ リ ガラ ク 卜サミ ンを得た。  (6) The precipitate obtained in (5) above was suspended in 10 10 mM calcium phosphate buffer (PH = 7) and dialyzed at 1 透析 4 ° C. to remove antibody protein. The combined 3) -1,4-polysaccharide sumin was obtained.
( 7 ) 前記抗体蛋白結合 ]3 — 1 , 4一ポ リ ガラ ク 卜 サ ミ ン懸濁液に 、 抗マ ウ ス I g G ( Y ) 溶液 と 、 C H M Cを添加して、 4 °Cで 1 夜反応させた。 反応終 了後、 1 2 時間透析を行い、 さ ら に 、 陰イ オ ン交換 カ ラ ム を 用 いて未反応物を除去 し 、 抗体蛋 白結合 j3 — 1 , 4—ポ リ ガラ ク ト サ ミ ンを得た。 (7) Binding of the antibody protein] 3-1, 4 An anti-mouse IgG (Y) solution and CHMC were added to the Samin suspension and reacted at 4 ° C overnight. After completion of the reaction, dialysis is performed for 12 hours, and unreacted substances are removed using an anion exchange column. The antibody protein binding j3—1, 4-polygalactosa Got min.
( 8 ) プ ロ テ イ ン A 1 mg及び 卜 リ エ チ ル ァ ミ ン 0 .
Figure imgf000053_0001
のエタ ノ ールに溶解させた。 次いで、 2 mgの N K 1 1 6 0 ( 日本感光色素研究所製) を加 え、 充分に溶解させ、 溶液を作成した。 さ らに前記溶 液に ジ シ ク ロ へキ シルカ ルボジィ ミ ド 1 4 mgをカロえ て、 室温で 4時間反応させた。
(8) Protein A 1 mg and triethylamine 0.
Figure imgf000053_0001
Was dissolved in ethanol. Next, 2 mg of NK116 (manufactured by Japan Photographic Dye Laboratories) was added and dissolved sufficiently to prepare a solution. Further, 14 mg of dicyclohexylcarbodiimide was added to the solution, and the mixture was reacted at room temperature for 4 hours.
( 9 ) 反応終了後、 エバポ レー夕で溶媒を除去 し た。  (9) After completion of the reaction, the solvent was removed by evaporation.
( 1 0 ) 前記 ( 9 ) の工程で生 じ た残留物 を 、 〇 . 0 1 M酢酸緩衝液 ( pH= 6 . 5 ) 27 ^に懸濁した 後 、 遠心分離機を用 いて 5 0 0 0 rpmで 1 ◦ 分間 分離を行って、 上澄みを採取し、 再度遠心分離にかけ て N K 1 1 6 0で修飾されたプロテイ ン Aの溶液を得 た。  (10) The residue generated in the step (9) was suspended in 27 M acetate buffer (pH = 6.5) 27 ^, and then suspended in a centrifuge at 500 μm. Separation was performed at 0 rpm for 1 minute, and the supernatant was collected and centrifuged again to obtain a solution of Protein A modified with NK116.
( 1 1 ) 前記 ( 8 ) で得た抗体蛋白結合 )3 — 1 , 4 一ポ リ ガラ ク ト サ ミ ン と 、 前記 N K 1 1 6 0 で修飾さ れたプロテイ ン A と を、 リ ン酸緩衝生理食塩水中 4 °C で反応させ、 シァニン色素一プロ テイ ン A—抗体蛋白 - J3 - 1 , 4一ポ リ ガラ ク 卜サミ ン一抗体 ( Υ ) の複 合体溶液を得た。 (11) The antibody protein binding obtained in the above (8)) 3-1,4 -polysaccharide samin and the protein A modified with the NK116 Reaction at 4 ° C in acid-buffered saline, cyanine dye-protein A-antibody protein A complex solution of -J3-1,41-polysaccharide sumin-antibody (Υ) was obtained.
( 1 2 ) 実施例 1 の ( 1 3 ) においてグルタルアル デヒ ド の代わ り に、 スク シンジアルデヒ ド を用 い、 ポ リ メ 夕 ク リ ル酸メチル製光フ ァイ バ一の代わ り に、 ポ リ エステルを含有する光フ ァイ バ一を使用 し、 実施例 1 の ( 1 2 ) 〜 ( 1 8 ) と 同様の方法にて第 1 図に示 す検出部を作成した。  (12) In Example 13 (13), succindialdehyde was used in place of glutaraldehyde, and instead of the optical fiber made of methyl methacrylate. Using an optical fiber containing a polyester, the detection unit shown in FIG. 1 was prepared in the same manner as in (12) to (18) of Example 1.
( 1 3 ) 濃度既知の抗マウス I g G ( Y ) 溶液と 、 前記 ( 1 2 ) で得たシァニン色素一プロテイ ン A—抗 体蛋白 一 J3 — 1 , 4 一ポ リ ガラ ク ト サ ミ ン 一抗体 (13) An anti-mouse IgG (Y) solution having a known concentration, and the cyanine dye-protein A-antibody protein J3—1,4-polysaccharide obtained in the above (12). One antibody
( Y ) の複合体溶液を 1 : 1 の割合で混合し、 第 1 図 に示すフ ローセル 5に通し、 次いで リ ン酸緩衝生理食 塩水を通して洗浄した後、 第 5図に示す本発明の装置 にて H e一 N e レーザ光学系で蛍光を分光蛍光光度計 8 で測定 し た。 抗マ ウ ス I g G ( Y ) の濃度を変 え、 同様の測定を繰り返して抗マウス I g G ( Y ) の 濃度 と蛍光強度の関係を調べ、 検量線を作成 し た。 検量線か ら検出限界を測定 し、 これを第 1 表に示 し た。 The complex solution of (Y) was mixed at a ratio of 1: 1 and passed through a flow cell 5 shown in FIG. 1 and then washed with a phosphate buffered saline, and then the apparatus of the present invention shown in FIG. Fluorescence was measured with a He-Ne laser optics with a spectrofluorometer 8. The same measurement was repeated while changing the concentration of anti-mouse IgG (Y), and the relationship between the concentration of anti-mouse IgG (Y) and the fluorescence intensity was examined to prepare a calibration curve. The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 4  Example 4
( 1 ) 実施例 1 の ( 1 ) 〜 ( 8 ) と 同様の方法に て抗体が結合 し た ピオチ ン化キ 卜 サ ン溶液を作成 し た。 (1) In the same manner as in (1) to (8) in Example 1, a solution of a biotinylated chitosan to which an antibody was bound was prepared. Was.
( 2 ) ア ビジ ン 1 mg及びフルォ レセィ ンィ ソ チオ シ アナ一 ト 1 . 8 mgを、 0. 5 M炭酸ナ ト リ ウ ム一炭酸 水素ナ ト リ ウム緩衝液 ( pH= 9. 0 ) からなる塩基性 溶媒 5 に溶解さ せ、 4 °Cで光を遮断 して撹拌を続 け、 2 0時間反応させた。  (2) 1 mg of avidin and 1.8 mg of fluorescein thiothiocyanate were added to 0.5 M sodium carbonate monocarbonate buffer (pH = 9.0) The mixture was dissolved in a basic solvent 5 consisting of, and light was cut off at 4 ° C., stirring was continued, and the mixture was reacted for 20 hours.
( 3 ) 次いで反応液は、 エバポレーターを用いて減 圧下で溶媒を留去した。  (3) Next, the solvent was distilled off from the reaction solution under reduced pressure using an evaporator.
( 4 ) こ の残留物、 0 . 0 5 M の リ ン酸緩衝液 ( pH= 4. 0 ) の 5 に懸濁させた。  (4) This residue was suspended in 5 of 0.05 M phosphate buffer (pH = 4.0).
( 5 ) 5 0 0 0 rpmで 1 0分間遠心分離を行い、 未 反応色素を除去して上澄みを採取した。  (5) The mixture was centrifuged at 500 rpm for 10 minutes to remove unreacted dye, and the supernatant was collected.
( 6 ) 上記 ( 3 ) 及び ( 4 ) の操作をさ らに 2回繰 り 返 し 、 さ ら に得られた上澄みをガラ ス ウールを充 填 し た管に通 して未反応色素を除去 し、 フ ルォ レセ ィ ンィ ソ チオ シアナ一 卜 で修飾さ れたア ビジ ンを得 た。  (6) Repeat the above operations (3) and (4) twice more, and remove the unreacted dye by passing the obtained supernatant through a tube filled with glass wool. As a result, avidin modified with fluororesin isothiocyanate was obtained.
( 7 ) 実施例 1 の ( 1 2 ) 〜 ( 1 8 ) と 同様の方法 にて抗原固定化センサー及び検出部を作成した。  (7) An antigen-immobilized sensor and a detection section were prepared in the same manner as in (12) to (18) of Example 1.
( 8 ) 濃度既知の抗マウス I g G ( Y ) 溶液を第 1 図に示すフ ローセル 5に通した後、 リ ン酸緩衝生理食 塩水を通して洗浄した。  (8) An anti-mouse IgG (Y) solution of known concentration was passed through the flow cell 5 shown in FIG. 1, and then washed with phosphate buffered saline.
( 9 ) 次に、 ( 1 ) で得た抗体が結合した ビ才チン ィヒキ ト サン溶液をフローセル 5に通した後、 リ ン酸緩 衝生理食塩水を通して洗浄した。 (9) Next, the antibody to which the antibody obtained in (1) was bound After passing the ligchitosan solution through flow cell 5, it was washed with phosphate-buffered saline.
( 1 0 ) 次に、 ( 6 ) で得たフル才 レセイ ンイ ソチ オシアナ一卜で修飾されたア ビジンの溶液をフ ローセ ル 5に流した後、 リ ン酸緩衝生理食塩水を通して洗浄 した。  (10) Next, the solution of avidin modified with full-year-old isocyanate obtained in (6) was passed through flow cell 5, and washed with phosphate buffered saline.
( 1 1 ) 次に、 第 4図に示す本発明の装置にて半導 体 レーザと薄膜導波路型 S H G素子を組み合わせた レーザ光学系 (波長 4 9 0 nm) と分光光度計 8を用い て蛍光を測定した。  (11) Next, in the apparatus of the present invention shown in FIG. 4, a laser optical system (wavelength: 490 nm) combining a semiconductor laser and a thin-film waveguide SHG element and a spectrophotometer 8 were used. The fluorescence was measured.
( 1 2 ) 抗マウス I g G ( Y ) の濃度を変え、 前記 ( 8 ) 〜 ( 1 1 ) と 同様の測定を繰り返し、 抗 I g G ( Y ) の濃度と蛍光強度の関係を調べ検量線を作成し た。  (12) The concentration of anti-mouse IgG (Y) was changed, and the same measurement as in the above (8) to (11) was repeated, and the relationship between the concentration of anti-IgG (Y) and the fluorescence intensity was examined. Created a line.
検量線から検出限界を測定し、 これを第 1表に示し た。  The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 5  Example 5
本発明は、 基本的には、 実施例 1 と 同様であるが、 ( 1 1 ) の処理を行った後、 0. 1 7 3^の飽和硫 酸ナ ト リ ウム溶液 (溶媒 : 1 0 mMカ リ ウム リ ン酸緩衝 液、 pH= 7 ) を加え、 2 0 0 0 rpmで 1 0分遠心 分離し、 4 °Cで 1 時間放置した。  The present invention is basically the same as Example 1, except that after the treatment of (11), a 0.173 硫 saturated sodium sulfate solution (solvent: 10 mM A calcium phosphate buffer (pH = 7) was added, centrifuged at 2000 rpm for 10 minutes, and left at 4 ° C for 1 hour.
得られた沈澱を 1 0 mMカ リ ウム リ ン酸緩衝液に懸濁 した。 The obtained precipitate is suspended in 10 mM potassium phosphate buffer. did.
遠心分離で硫酸ナ 卜 リ ゥム結晶を除去し、 上澄液を 透析して濃縮して使用 した。  The sodium sulfate crystals were removed by centrifugation, and the supernatant was dialyzed and concentrated for use.
検量線から検出限界を測定し、 これを第 1 表に示し た。  The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 6  Example 6
実施例 1 の ( 1 ) で得た溶液にさ らに、 5 0 m gの C H M Cを加えて溶かし、 1 2 °Cで 2時間放置し、 こ の溶液を用いて、 実施例 1 の ( 2 ) 以降の処理を行つ た。 検量線から検出限界を測定し、 これを第 1 表に示 した。  Further, 50 mg of CHMC was added and dissolved in the solution obtained in (1) of Example 1, and the solution was allowed to stand at 12 ° C for 2 hours. Using this solution, (2) of Example 1 was used. The following processing was performed. The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 7  Example 7
本実施例は、 実施例 1 のキ トサンの代わ り に、 ポ リ リ ジ ンを使用 した。 反応条件は実施例 1 の条件に準ず る。 検量線から検出限界を測定し、 これを第 1 表に示 した。  In this example, a polylysine was used in place of the chitosan of Example 1. The reaction conditions are the same as those in Example 1. The detection limit was measured from the calibration curve and is shown in Table 1.
実施例 8  Example 8
( 1 ) 実施例 1 の ( 9 ) 〜 ( 1 1 ) の処理で、 得ら れた N K 1 1 6 0 で修飾さ れたア ビジ ンの溶液を得 た。  (1) The solution of avidin modified with NK116 obtained by the treatments (9) to (11) in Example 1 was obtained.
( 2 ) 実施例 1 の検出部をマ ウ ス I g G (抗原) 溶 液に 4 °Cで 1 2 時間浸漬した。  (2) The detection section of Example 1 was immersed in a mouse IgG (antigen) solution at 4 ° C for 12 hours.
( 3 ) ついで、 洗浄して、 1 %の N a B H 4 で処理 して、 抗原を固定化した。 (3) Next, washed, treated with 1% N a BH 4 Then, the antigen was immobilized.
( 4 ) 濃度既知の抗マウス I g G溶液に検出部を浸 漬、 リ ン酸緩衝生理食塩水で洗浄した。  (4) The detection part was immersed in an anti-mouse IgG solution of known concentration, and washed with phosphate buffered saline.
( 5 ) ピオチ ン化さ れた抗体溶液に検出部を浸漬 し、 洗浄した。  (5) The detection part was immersed in the piotinized antibody solution and washed.
( 6 ) ついで、 ( 1 ) の溶液に検出部を浸し、 洗浄 してから第 1 図の装置で測定した。  (6) Then, the detection part was immersed in the solution of (1), washed, and measured with the apparatus shown in FIG.
( 7 ) こ の よ う な操作を繰 り 返し、 第 6 図 ( c ) の検量線を作成し、 これから検出限界を測定し、 これ を第 1表に示した。  (7) These operations were repeated to create the calibration curve shown in Fig. 6 (c), and the detection limit was measured from this, and this is shown in Table 1.
実施例 9  Example 9
実施例 7の ( 1 ) の溶液と、 ビ才チン化抗体を反応 させて検出試薬を作成し、 この試薬と、 濃度既知の抗 マウス I g G溶液を 1 ·. 1 の割合で混合し、 実施例 7 の検出部を浸漬し、 測定を行い検量線を作成し、 これ から検出限界を測定し、 これを第 1表に示した。  The solution of (1) in Example 7 was reacted with the bitinylated antibody to prepare a detection reagent, and this reagent and an anti-mouse IgG solution of known concentration were mixed at a ratio of 1.1. The detection part of Example 7 was immersed, measured, and a calibration curve was prepared. From this, the detection limit was measured, and this is shown in Table 1.
実施例 1 0  Example 10
( 1 ) 実施例 1 の ( 9 ) 〜 ( 1 1 ) の処理を施 し、 N K 1 1 6 0で修飾されたア ビジ ン の溶液を得 た。  (1) The treatments (9) to (11) of Example 1 were performed to obtain a solution of avidin modified with NK116.
( 2 ) 前記 ( 1 ) の溶液と、 実施例 1 の ( 8 ) と 同 様に して得られた抗 I g G結合のキ トサン溶液を混合 して、 グルタルアルデ ヒ ド を加え、 カルポジイ ミ ドの 存在下、 5 0 °Cで加温する こ と に よ り 、 ア ビジ ンのァ ミ ノ 基と キ 卜 サ ンのア ミ ノ 基をグルタルアルデ ヒ ドで 架橋 して、 N K 1 1 6 0 — ア ビジン一 (グルタ ルアル デ ヒ ド ) 一キ ト サン ー抗 I g Gの溶液を得た。 (2) The solution of (1) was mixed with the anti-IgG-bonded chitosan solution obtained in the same manner as in (8) of Example 1, and glutaraldehyde was added. Do By heating at 50 ° C in the presence, the amino group of avidin and the amino group of chitosan were cross-linked with glutaraldehyde, and NK1160 — A solution of avidin- (glutaraldehyde) -chitosan-anti-IgG was obtained.
( 3 ) ポ リ スチ レ ン製光フ ァ イ バ一に、 塩化アル ミ 二 ゥ ムの存在下、 ギ酸無水物を反応させ、 ポ リ スチ レ ン の フ ユ ニ ル基 に ホ ル ミ ル基 を導入 し 、 次 い で 、 1 , 6 —へキサ ンジァ ミ ンをカ ルポジイ ミ ド の存在下 にて反応させた後、 1 %の N a H B 4 で還元 し た。 (3) Formic anhydride is reacted with a polystyrene optical fiber in the presence of aluminum chloride to form holmium on the polystyrene phenyl group. introducing a group, with the following physician, 1, 6 - was reacted in the presence of hexa Njia Mi Noka Rupojii mi de to, was reduced with 1% N a HB 4.
次いで、 マ ウ ス I g Gをカルポジイ ミ ドの存在下で 脱水縮合させ、 検出部 5 を作成した。  Next, the mouse IgG was dehydrated and condensed in the presence of carposimid to prepare the detection unit 5.
( 4 ) 前記 ( 2 ) の溶液 と 、 前記 ( 3 ) の検出部 を 用 い て 、 実施例 2 と 同様に 、 競合法 に て測定 し た。  (4) Using the solution of the above (2) and the detection unit of the above (3), measurement was conducted by a competitive method in the same manner as in Example 2.
検量線か ら検出限界を測定し、 これを第 1 表に示 し た。 The detection limit was determined from the calibration curve and is shown in Table 1.
第 1 表 実施例 検出限界 ( mgZ £ ) Table 1 Example Detection limit (mgZ £)
1 1 . 2 X 1 4  1 1.2 X 1 4
o - o-
2 2 . 0 X 1 0 - 4 2 2.0 X 1 0-4
3 2 . 3 X 1 0 一 4  3 2 .3 X 1 0 1 4
4 3 . 1 X 1 0 - 6  4 3.1 X 1 0-6
5 1 . 0 X 1 0 一 4  5 1.0 X 1 0 1 4
6 1 . 1 X 1 0 - 4  6 1.1 X 1 0-4
7 1 . 3 X 1 0 - 4  7 1.3 X 1 0-4
8 1 . 0 X 1 0 - 1  8 1.0 X 1 0-1
9 1 . 1 X 1 0 - 1  9 1.1 X 1 0-1
1 0 2 . 1 X 1 0 - 4 実施例 1 1  1 0 2 .1 X 1 0-4 Example 1 1
本発明 の装置の実施例 を第 1 図か ら第 5 図 に示 す。  Embodiments of the apparatus of the present invention are shown in FIGS.
第 1 図は、 光フ ァイ バ一 1 の表層部のク ラ ッ ド層 2 を排除し、 露出したコ ア部表面 3 に抗原 4 を結合させ る と と もに、 前記コ ア表面部 3 をフローセル 5 で囲ん だ構造を有する検出部である。  FIG. 1 shows that the cladding layer 2 on the surface of the optical fiber 1 is eliminated, the antigen 4 is bound to the exposed core surface 3, and the core surface is removed. 3 is a detection unit having a structure surrounded by a flow cell 5.
第 2 図は、 反射型の検出部であ り 、 先端に ミ ラー 1 2 が設け られている。  FIG. 2 shows a reflection type detection unit, which is provided with a mirror 12 at the tip.
第 3 図は、 対向型蛍光検出器の構造を示したもので ある。 蛍光検出部 (セ ンシ ングチ ッ プ) 9 が光軸合わ せのためのガイ ド 1 1 で とめられてお り 、 接着されて いないので蛍光検出部 9 を自由に着脱でき、 実用上非 常に都合がよい。 こ の蛍光検出部 9 は、 測定の度に交 換する こ とから、 コス ト面から考えて、 樹脂製光フ ァ ィ バーである こ と が望ま し い。 前記樹脂製光フ ア イ バーには、 種々 の方法にて反応活性基を導入する。 前 記樹脂製光フ ァイ バ一は、 ポ リ アク リ ル酸エステルな どのエステル構造を持つ ものが好ま し く 、 前記蛍光検 出部を樹脂製光フ ァイ バ一で作成する場合には、 この エステル基に〉 C H— C H 0構造をもつ化合物を塩基 性条件下で反応させ、 ホルミ ル基を導入し、 こ のホル ミ ル基に抗原ある いは抗体な どの蛋白質を結合さ せ る。 Fig. 3 shows the structure of the opposed fluorescence detector. is there. The fluorescence detector (sensing tip) 9 is fixed by the guide 11 for optical axis alignment, and since it is not bonded, the fluorescence detector 9 can be freely attached and detached, which is extremely convenient for practical use. Is good. Since the fluorescence detector 9 is replaced every time the measurement is performed, it is preferable that the fluorescence detector 9 be a resin optical fiber from the viewpoint of cost. A reactive group is introduced into the resin optical fiber by various methods. The above-mentioned resin optical fiber preferably has an ester structure such as a polyacrylic acid ester, and is used when the fluorescent detection section is formed by a resin optical fiber. Reacts a compound having a CH> CH0 structure with this ester group under basic conditions, introduces a formyl group, and binds the formyl group to a protein such as an antigen or an antibody. You.
励起光は、 検出面に対向 しているフ ァイ バーから放 射される。  The excitation light is emitted from the fiber facing the detection surface.
第 4図に示す装置では、 プレー ト側 1 0 から蛍光検 出部 9 へレーザ光が入射し、 入射光と蛍光が光軸合わ せのためのガイ ド 1 1 を有するブラ スチ ッ ク フ ア イ バーへ入射し、 フ ィ ルター 7 にて、 蛍光のみが取 り 出 され、 分光光度計 8 で測定が行われる。  In the apparatus shown in FIG. 4, a laser beam enters the fluorescence detector 9 from the plate side 10, and the incident light and the fluorescence have a guide hole 11 having a guide 11 for optical axis alignment. Then, only the fluorescence is extracted by the filter 7 and measured by the spectrophotometer 8.
第 5図は、 フ ローセル型の検出器を用いた場合の装 置を示す。 [産業上の利用可能性] FIG. 5 shows an apparatus using a flow cell type detector. [Industrial applicability]
本発明の生体活性物質測定試薬は、 医療診断におい て血液又は体液中に極微量含まれている抗原、 抗体、 酵素などの生体活性物質の免疫測定法に用いる こ とが でき 、 生体活性物質 1 個当た り の蛍光色素量が多いた め、 検出感度を大幅に向上させる こ とができ る。  The reagent for measuring a bioactive substance of the present invention can be used for immunoassay for a bioactive substance such as an antigen, an antibody or an enzyme contained in a very small amount in blood or body fluid in medical diagnosis. Since the amount of fluorescent dye per individual is large, detection sensitivity can be greatly improved.
ま た、 本発明の生体活性物質測定用光フ ァ イ バ一 は、 小型、 低価格、 高感度を実現できる。  In addition, the optical fiber for measuring a bioactive substance of the present invention can realize small size, low cost, and high sensitivity.
これら、 生体活性物質測定試薬と装置を使用 した本 発明の測定方法によ り 、 短時間で、 簡便な測定を実現 でき るため、 医療分野における疾病診断などに利用で き る。  According to the measuring method of the present invention using the reagent and the device for measuring a bioactive substance, simple and quick measurement can be realized, so that it can be used for disease diagnosis in the medical field.
[図面の簡単な説明 ]  [Brief description of drawings]
第 1 〜 3 図 は蛍光標識法に よ る蛍光検出部を示 す。  Figures 1 to 3 show the fluorescence detection unit using the fluorescence labeling method.
第 4 、 5図は H e — N e レーザ又は半導体レーザを 使用する蛍光測定系を示す。  Figures 4 and 5 show a fluorescence measurement system using a He-Ne laser or a semiconductor laser.
第 1 〜 3 図中、 実線の矢印はレーザ光、 点線の矢印 は蛍光を示す。  1 to 3, solid arrows indicate laser light and dotted arrows indicate fluorescence.
第 6 図 ( a ) は、 処理温度と ポ リ メ タク リ ル酸メ チ ル製光フ ァイ バ一の光伝送率の関係を示す。  Fig. 6 (a) shows the relationship between the processing temperature and the optical transmission rate of an optical fiber made of methyl polymethacrylate.
第 6図 ( b ) は、 処理温度と結合可能な酵素量と の 関係を示す。 ( a ) 及び ( b ) 図の横軸は処理温度 ( C °)、 ( a ) 図の縦軸は フ ァ イ バ ー の光伝送率 ( % ) 、 ( b ) 図の縦軸は面積当 り の酵素固定化量 ( tg / cm2) , ( c ) 図の横軸はビ才チン化抗マウス抗 体濃度 (mgZ ) , 縦軸はカ ウ ン 卜数を示す。 FIG. 6 (b) shows the relationship between the treatment temperature and the amount of enzyme that can be bound. (A) and (b) The horizontal axis in the figure is the processing temperature (C °), (a) The vertical axis in the figure is the fiber light transmission rate (%), and (b) The vertical axis in the figure is the amount of enzyme immobilization per area (tg / cm 2 ), ( c) The horizontal axis in the figure shows the concentration of bitinylated anti-mouse antibody (mgZ), and the vertical axis shows the number of counts.
第 6 図 ( c ) は、 ピオチ ン化抗マウス抗体濃度と蛍 光強度の検量線を示す。  FIG. 6 (c) shows a calibration curve of the concentration of the piotinylated anti-mouse antibody and the fluorescence intensity.
第 7 図はポ リ メ タ ク リ ル酸メ チル製光フ ア イ バーの 光伝送率と ホルミ ル基の密度の関係を示す。 横軸はホ ルミ ル基の数 (個 Zcni2) , 縦軸はフ ァイ バーの光伝送 減少率 (% ) を示す。 Figure 7 shows the relationship between the optical transmission rate and the density of the formyl group of an optical fiber made of methyl polymethacrylate. The horizontal axis shows the number of holmyl groups (Zcni 2 ), and the vertical axis shows the fiber transmission reduction rate (%).
第 8図 ( a ) はサン ドイ ッ チ法、 ( b ) は競合法の 検量線を示す。 横軸は抗マウス I g G ( mg/ 、 縦 軸はカ ウ ン ト数を示す。  Fig. 8 (a) shows the calibration curve of the Sandwich method, and (b) shows the calibration curve of the competition method. The horizontal axis indicates the anti-mouse IgG (mg / mg), and the vertical axis indicates the number of counts.
第 9 図は、 セ ンサーの応答性を示す。 横軸は抗マウ ス I g G ( 1 0 -3mg ^ ) への浸漬時間 (分) 、 縦軸 はカ ウ ン ト数を示す。 Figure 9 shows the responsiveness of the sensor. The horizontal axis anti-mouse I g G (1 0 - 3 mg ^) immersion time in minutes and the vertical axis represents the mosquito window down betting amount.
1 は光フ ァ イ ノ 一、 2 はク ラ ッ ド層、 3 は コ ア表 面、 4 は抗原、 5 はフ ローセル、 Yは本発明の蛍光標 識抗体、 Yは試料中の抗体、 6 は H e — N e レーザ発 生装置又は半導体レーザと S H G素子を組み合わせた レーザ発生装置、 7 はフ ィ ルター、 8 は分光蛍光光度 計、 9 はセンシングチ ッ プ、 1 0 はプレー ト 、 1 1 は 光軸合わせのためのガイ ド レール、 1 2 は ミ ラー、 はハーフ ミ ラー 1 is an optical fiber, 2 is a cladding layer, 3 is a core surface, 4 is an antigen, 5 is a flow cell, Y is a fluorescently labeled antibody of the present invention, Y is an antibody in a sample, 6 is a He-Ne laser generator or a laser generator combining a semiconductor laser and an SHG element, 7 is a filter, 8 is a spectrofluorometer, 9 is a sensing chip, 10 is a plate, 1 1 is a guide rail for optical axis alignment, 1 2 is a mirror, Is half mirror

Claims

求 の 範 囲 Range of request
1 . 生体活性物質が、 複数の反応活性基を有する化合物 に結合し、 該複数の反応活性基を有する化合物の反応活 性基には、 複数の蛍光色素で修飾された化合物が結合し ている こ と を特徴とする生体活性物質測定試薬。 1. A bioactive substance is bound to a compound having a plurality of reactive groups, and a compound modified with a plurality of fluorescent dyes is bound to the reactive group of the compound having a plurality of reactive groups. A bioactive substance measuring reagent characterized by the above.
2 . 前記複数の蛍光色素で修飾される化合物が、 ァ ビジ 一主R _ 2. The compound modified with the plurality of fluorescent dyes is
ン、 プロ テイ ン A又は抗体である請求項 1 に記載の試 The test according to claim 1, which is a protein, protein A or an antibody.
3 . 生体活性物質が、 複数の反応活性基を有する化合物 に結合し、 該複数の反応活性基を有する化合物の反応活 性基にはビ才チンが結合し、 該ビォチンには複数の蛍光 色素で修飾されたアビジンが結合している請求項 1 に記 載の試薬。 3. The bioactive substance binds to the compound having a plurality of reactive groups, and the reactive group of the compound having the plurality of reactive groups binds to the reactive group, and the biotin binds to a plurality of fluorescent dyes. The reagent according to claim 1, wherein avidin modified with is bound.
4 . 前記反応活性基が、 ア ミ ノ基である請求項 1 又は 3 に記載の試薬。 4. The reagent according to claim 1, wherein the reactive group is an amino group.
5 . 前記複数の反応活性基を有する化合物が、 1 分子あ た り反応活性基を 2 0 〜 1 0 0 0 0 0個有する高分子物 質である請求項 1 又は 3 に記載の試薬。 5. The reagent according to claim 1, wherein the compound having a plurality of reactive groups is a polymer having 20 to 100,000 reactive groups per molecule.
6 . 前記複数の反応活性基を有する化合物が、 ア ミ ノ グ ルカ ンである請求項 1 又は 3 に記載の試薬。 6. The reagent according to claim 1, wherein the compound having a plurality of reactive groups is aminoglucan.
7 . 前記複数の反応活性基を有する化合物が、 キ ト サン である請求項 1 又は 3 に記載の試薬。 7. The reagent according to claim 1, wherein the compound having a plurality of reactive groups is chitosan.
8 . 前記蛍光色素が、 レーザ光によ り励起される色素で ある請求項 1 又は 3 に記載の試薬。 8. The fluorescent dye is a dye that is excited by laser light. The reagent according to claim 1 or 3.
9 . 前記蛍光色素が、 2 0 0 nn!〜 8 0 0 nmの レーザ光で 励起さ れる蛍光色素である請求項 1 又は 3 に記載の試  9. The fluorescent dye is 200 nn! 4. The test according to claim 1, wherein the fluorescent dye is a fluorescent dye that is excited by a laser beam having a wavelength of up to 800 nm.
1 0 . 前記蛍光色素が、 クマ リ ン誘導体、 多環芳香族誘 導体、 ダンシル誘導体、 フ ィ コ ピ リ タ ンパク 、 ロ ーダ ミ ン、 フルォ レセイ ン又は 0 — フ 夕ルアルデ ヒ ドである請 求項 1 又は 3 に記載の試薬。 10. The fluorescent dye is a coumarin derivative, a polycyclic aromatic derivative, a dansyl derivative, phycopolyprotein, rhodamin, fluorescein or 0-fluoroaldehyde. The reagent according to claim 1 or 3.
1 1 . 前記蛍光色素が、 シァニン色素である請求項 1 又 は 3 に記載の試薬。  11. The reagent according to claim 1, wherein the fluorescent dye is a cyanine dye.
1 2 . 前記蛍光色素が、  1 2. The fluorescent dye,
Expression
Figure imgf000066_0001
Figure imgf000066_0001
(式中、 nは 0 、 1 、 2又は 3 を表す) (Where n represents 0, 1, 2, or 3)
で表されるシァニ ン色素である請求項 1 又は 3 に記載の 試薬。 4. The reagent according to claim 1, which is a cyanine dye represented by the formula:
1 3 . 前記生体活性物質が、 蛋白質である請求項 1 又は 3 に記載の試薬。  13. The reagent according to claim 1, wherein the bioactive substance is a protein.
1 4 . 前記生体活性物質が、 抗原、 抗体、 酵素、 ハプテ ン又は酵素阻害剤で あ る請求項 1 又 は 3 に記載の試 薬。 14 4. The bioactive substance is an antigen, antibody, enzyme, hapte 4. The reagent according to claim 1, which is an enzyme or an enzyme inhibitor.
1 5 . 蛍光色素と蛋白質と を反応させて蛍光色素で修飾 された蛋白質を製造する方法において、 反応生成物から 溶媒を除去 した残留物を pHが 2 〜 7 の緩衝液に懸濁さ せ、 未反応色素を分離除去する こ と を特徴と する蛍光色 素で修飾された蛋白質の製造方法。  15. In a method of producing a protein modified with a fluorescent dye by reacting a fluorescent dye with a protein, the residue obtained by removing the solvent from the reaction product is suspended in a buffer solution having a pH of 2 to 7, A method for producing a fluorescent dye-modified protein characterized by separating and removing a reactive dye.
1 6 . 蛋白質と特異的に結合する化合物を複数の反応活 性基を有する化合物の反応活性基に反応させ、 複数の反 応活性基を有する化合物と 、 蛋白質と特異的に結合する 化合物を結合させた後、 生体活性物質を反応さ せ、 蛋白 質と特異的に結合する化合物 -複数の反応活性基を有す る化合物一生体活性物質の複合体と した後、 複数の蛍光 色素で修飾された蛋白質を反応させる こ と を特徴とする 蛍光色素一蛋白質一蛋白質と特異的に結合する化合物一 複数の反応活性基を有する化合物 -生体活性物質の複合 体である生体活性物質測定試薬の製造方法。  16. A compound that specifically binds to a protein is reacted with a reactive group of a compound having a plurality of reactive groups, and a compound having a plurality of reactive groups is combined with a compound that specifically binds to a protein. After the reaction, the bioactive substance is reacted to form a complex of a compound that specifically binds to a protein-a compound having multiple reactive groups-a bioactive substance, and then modified with multiple fluorescent dyes A method for producing a reagent for measuring a bioactive substance, which is a complex of a fluorescent dye, a protein, a compound that specifically binds to a protein, a compound having a plurality of reactive groups, and a bioactive substance, characterized in that .
1 7 . 前記蛍光色素が、 レーザ光によ り励起される色素 である請求項 1 5又は 1 6 に記載の製造方法。  17. The production method according to claim 15 or 16, wherein the fluorescent dye is a dye excited by laser light.
1 8 . 前記蛍光色素が、 シァニン色素又はフル才 レセィ ンである請求項 1 5又は 1 S に記載の製造方法。  18. The method according to claim 15 or 1 S, wherein the fluorescent dye is a cyanine dye or a full-year resin.
1 9 . 前記蛋白質が、 塩基性蛋白質である請求項 1 5又 は 1 6 に記載の製造方法。 19. The method according to claim 15 or 16, wherein the protein is a basic protein.
2 0 . 前記蛋白質が、 ア ビジ ンである請求項 1 5 又は 1 6 に記載の製造方法。 20. The method according to claim 15 or 16, wherein the protein is avidin.
2 1 . 前記蛋白質一蛋白質と特異的に結合する化合物 が、 ア ビジンー ビォチンである請求項 1 6 に記載の製造 方法。  21. The method according to claim 16, wherein the compound that specifically binds to the protein-protein is avidin-biotin.
2 2 . 樹脂製光フ ァイ バ一のコ ア表面に、 生体活性物質 測定試薬を特異的に結合する物質を共有結合させる こ と のでき る反応活性基を有する こ と を特徴とする生体活性 物質測定用樹脂製光フ ァイ バ一。  22. A biological material characterized by having a reactive group capable of covalently bonding a substance that specifically binds a reagent for measuring a biologically active substance to the core surface of a resin optical fiber. Resin optical fiber for measuring active substances.
2 3 . 前記反応活性基の密度が、 1 . 0 X 1 0 1 °〜 6 . 0 X 1 0 1 3個ノ cm 2 である請求項 2 2 に記載の光 フ ア イ ノ '一。 23. The optical fiber according to claim 22, wherein the density of the reactive groups is 1.0 X 10 1 ° to 6.0 X 10 13 cm 2 .
2 4 . 前記反応活性基が、 ホルミル基である請求項 2 2 に記載の光フ ァイ バ一。  24. The optical fiber according to claim 22, wherein the reactive group is a formyl group.
2 5 . 前記樹脂製光フ ァイ バ一がエステル構造を有する 樹脂を主成分 と する樹脂である請求項 2 2 に記載の光 フ ァ イ ノ —。  25. The optical fiber according to claim 22, wherein the resin optical fiber is a resin containing a resin having an ester structure as a main component.
2 6 . 前記樹脂製光フ ァイ バ一が、 (メ タ) アク リ ル酸 エステル-樹脂を主成分と する光フ ア イ バーの コ ア表面 に ホ ル ミ ル基を有す る請求項 2 2 に記載の光フ ア イ ノ ― 。  26. The resin-made optical fiber has a holmium group on the core surface of the optical fiber whose main component is (meth) acrylic acid ester-resin. The optical phono of item 22.
2 7 . 樹脂製光フ ァイ バ一の反応活性基に被測定物質と 特異的に結合する物質が共有結合している こ と を特徴と する生体活性物質測定用検出部。 27. Characteristically, a substance that specifically binds to the analyte is covalently bound to the reactive group of the resin optical fiber. Detection unit for measuring bioactive substances.
2 8 . 蛍光色素一ア ビシン一ピオチ ン一被測定物質又は 被測定物質と特異的に反応する物質からなる複合体を、 光フ ァイ バ一上の被測定物質と特異的に反応する物質又 は被測定物質 と 、 特異的に反応させた後、 光にて励起 し、 蛍光を測定する こ と を特徴とする生体活性物質の測 疋方法。  28. A substance that specifically reacts with the complex consisting of the fluorescent dye, avidin, piotin, the analyte or the substance that specifically reacts with the analyte, with the analyte on the optical fiber Alternatively, after specifically reacting with a substance to be measured, the method is excited with light, and the fluorescence is measured.
2 9 . ピオチ ンが結合した被測定物質又は被測定物質と 特異的に反応する物質を、 光フ ァイバ一上の被測定物質 と特異的に結合する物質又は被測定物質と 、 特異的に反 応さ せた後、 蛍光色素で修飾さ れたア ビジ ンを反応さ せ、 光フ ァ イ バ一上にア ビジン一ピオチン結合によ り複 合体を形成させた後、 光にて励起し、 蛍光を測定する こ と を特徴とする生体活性物質の測定方法。  29. The analyte to which piotin is bound or the substance that specifically reacts with the analyte is reacted specifically with the analyte or the analyte on the optical fiber. After the reaction, avidin modified with a fluorescent dye is reacted to form a complex on the optical fiber by avidin-biotin bond, and then excited by light. A method for measuring a bioactive substance, comprising measuring fluorescence.
3 0 . 被測定物質又は被測定物質と特異的に反応する物 質が、 複数の反応活性基を有する化合物に結合し、 該複 数の反応活性基を有する化合物の反応活性基には、 複数 の蛍光色素で修飾された化合物が結合している試薬を、 光フ ア イ バー上の被測定物質と特異的に結合する物質又 は被測定物質と特異的に反応させた後、 光にて励起し、 蛍光を測定する こ と を特徴とする生体活性物質の測定方 法。  30. The analyte or the substance that specifically reacts with the analyte binds to the compound having a plurality of reactive groups, and the compound having a plurality of reactive groups has a plurality of reactive groups. After reacting the reagent to which the compound modified with the fluorescent dye is bound specifically with the substance or the substance to be measured specifically on the optical fiber, A method for measuring a biologically active substance, characterized by exciting and measuring fluorescence.
3 1 . 前記蛍光色素で修飾された化合物が、 ア ビジ ンで ある請求項 3 0 に記載の測定方法。 3 1. The compound modified with the fluorescent dye is avidin 30. The measuring method according to claim 30.
3 2 . 前記ア ビジンが、 ビ才チンを介して反応活性基に 結合している請求項 3 1 に記載の測定方法。  32. The method according to claim 31, wherein the avidin is bonded to a reactive group via a bitin.
3 3 . 互いに特異的に結合する 2種類の物質を化合物 A、 化合物 B とする と き、 被測定物質又は被測定物質と 特異的に反応する物質が、 複数の反応活性基を有する化 合物に結合し、 該反応基には化合物 Bが結合している試 薬を、 光フ ァ イ バ一上の被測定物質と特異的に結合する 物質又は被測定物質と 、 特異的に結合させた後、 蛍光色 素で修飾された化合物 Aを反応させ、 光フ ァイ バ一上に 化合物 A —化合物 B の結合に よ り複合体を形成させた 後、 蛍光色素を光にて励起し、 蛍光を測定する こ と を特 徵とする生体活性物質の測定方法。 3 3. When two types of substances that specifically bind to each other are Compound A and Compound B, the analyte or the substance that specifically reacts with the analyte has multiple reactive groups. The reagent in which compound B is bound to the reactive group is specifically bound to a substance or a substance to be specifically bound to the substance to be measured on the optical fiber. Then, a compound A modified with a fluorescent dye is reacted, and a complex is formed on the optical fiber by binding of Compound A—Compound B. Then, the fluorescent dye is excited by light, A method for measuring a bioactive substance, which is characterized by measuring fluorescence.
3 4 . 前記化合物 A及び化合物 Bの組合わせが、 それぞ れ、 アビジン と ビ才チン、 抗体とプロテイ ン A、 ブロ テ ィ ン A と抗体の組み合わせである請求項 3 3 に記載の測 定方法。  34. The measurement according to claim 33, wherein the combination of compound A and compound B is a combination of avidin and bitin, an antibody and protein A, and a protein A and antibody, respectively. Method.
3 5 . 前記複数の反応活性基を有する化合物が、 ァ ミ ノ グル カ ン で あ る請求項 3 0 又は 3 3 に記載の測定方 法。  35. The method according to claim 30 or 33, wherein the compound having a plurality of reactive groups is aminoglucan.
3 6 . 前記複数の反応活性基を有する化合物が、 キ ト サ ンである請求項 3 0又は 3 3 に記載の測定方法。  36. The method according to claim 30 or 33, wherein the compound having a plurality of reactive groups is chitosan.
3 7 . 前記蛍光色素が、 シァニン色素である請求項 2 8 ない し 3 3のいずれか 1項に記載の測定方法。 37. The fluorescent dye is a cyanine dye. No. 33 The measurement method according to any one of the items 3 to 3.
3 8 . 前記光が、 レーザ光である請求項 2 8ないし 3 3 のいずれか 1項に記載の測定方法。  38. The measuring method according to any one of claims 28 to 33, wherein the light is laser light.
3 9 . 光源及び励起光又は蛍光を伝播するための光フ ァ ィ バーと 、 その一方の端面のコア表面を露出させ、 その 表面に被測定物質と特異的に結合する物質を固定化した 検出部 ; 検出部で励起された蛍光のみを取 り 出す機構 ; 並びに検出部で励起された蛍光の強度を測定するための フ ォ 卜 カ ウ ンタ一からなる こ とを特徴とする生体活性物 質測定装置。  39. Detection by exposing the light source and the optical fiber for transmitting the excitation light or the fluorescent light, and the core surface on one end surface thereof, and immobilizing a substance that specifically binds to the substance to be measured on the surface. A bioactive substance, comprising: a unit for extracting only the fluorescence excited by the detection unit; and a photocounter for measuring the intensity of the fluorescence excited by the detection unit. measuring device.
4 0 . 前記光フ ァイ バ一が、 樹脂製である請求項 3 9に 記載の装置。  40. The apparatus according to claim 39, wherein the optical fiber is made of resin.
4 1 . 前記光源が、 半導体レーザである請求項 3 9に記 載の装置。  41. The apparatus according to claim 39, wherein the light source is a semiconductor laser.
4 2 . 前記検出部が、 連結器によ り着脱可能である請求 項 3 9に記載の装置。  42. The device according to claim 39, wherein the detection unit is detachable by a coupler.
4 3. 前記検出部が、 対向型である請求項 3 9に記載の  43. The method according to claim 39, wherein the detection unit is of a facing type.
4 4. 前記蛍光のみを取り 出す機構が、 フ ィ ルタ一であ る請求項 3 9に記載の装置。 40. The apparatus according to claim 39, wherein the mechanism for extracting only the fluorescence is a filter.
PCT/JP1990/000514 1989-04-19 1990-04-19 Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying WO1990013029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2506243A JP2951398B2 (en) 1989-04-19 1990-04-19 Reagent for measuring bioactive substance, its production method and measurement method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1/97482 1989-04-19
JP1/97481 1989-04-19
JP9748189 1989-04-19
JP9748289 1989-04-19
JP18589389 1989-07-20
JP1/185893 1989-07-20
JP31440489 1989-12-05
JP1/314404 1989-12-05

Publications (1)

Publication Number Publication Date
WO1990013029A1 true WO1990013029A1 (en) 1990-11-01

Family

ID=27468544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000514 WO1990013029A1 (en) 1989-04-19 1990-04-19 Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying

Country Status (1)

Country Link
WO (1) WO1990013029A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575973A2 (en) * 1992-06-23 1993-12-29 Ibiden Co., Ltd. Method for producing optical fiber having formyl groups on core surface thereof
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope
JP2017128532A (en) * 2016-01-20 2017-07-27 キヤノン株式会社 Method for producing contrast agent for optical imaging and contrast agent for optical imaging

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981560A (en) * 1982-08-23 1984-05-11 マイロン・ジエイ・ブロツク Method and device for determining immunity
JPS6036963A (en) * 1983-06-13 1985-02-26 マイロン・ジエイ・ブロツク Testing method and device
JPS6188155A (en) * 1984-08-14 1986-05-06 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド Fluorescent energy by phycobilin protein
JPS61191965A (en) * 1984-12-10 1986-08-26 プルーテック リミティド Method and device for optically confirming parameter of seedin liquefied material to be analyzed
JPS61292044A (en) * 1985-04-12 1986-12-22 ジーイーシー ― マルコニ リミテッド Optical waveguide biosensor
JPS6266143A (en) * 1985-09-09 1987-03-25 コ−ニング グラス ワ−クス Device for testing fluid sample
JPS6279334A (en) * 1985-09-09 1987-04-11 オルド,インコ−ポレ−テツド Fluorescent immunity testing device and method
JPS6279333A (en) * 1985-09-09 1987-04-11 オルド,インコ−ポレ−テツド Immunity testing device
JPS62123358A (en) * 1985-11-22 1987-06-04 Sumitomo Electric Ind Ltd Optical fiber type immune sensor
JPS63289001A (en) * 1986-11-28 1988-11-25 スカルボ インコーポレイテッド,ウエスト コースト Novel labeling design for bond analysis reagent
JPS6447952A (en) * 1987-05-06 1989-02-22 Saibaafuruua Inc Immunoassay, reagent used therefor and making thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981560A (en) * 1982-08-23 1984-05-11 マイロン・ジエイ・ブロツク Method and device for determining immunity
JPS6036963A (en) * 1983-06-13 1985-02-26 マイロン・ジエイ・ブロツク Testing method and device
JPS6188155A (en) * 1984-08-14 1986-05-06 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド Fluorescent energy by phycobilin protein
JPS61191965A (en) * 1984-12-10 1986-08-26 プルーテック リミティド Method and device for optically confirming parameter of seedin liquefied material to be analyzed
JPS61292044A (en) * 1985-04-12 1986-12-22 ジーイーシー ― マルコニ リミテッド Optical waveguide biosensor
JPS6266143A (en) * 1985-09-09 1987-03-25 コ−ニング グラス ワ−クス Device for testing fluid sample
JPS6279334A (en) * 1985-09-09 1987-04-11 オルド,インコ−ポレ−テツド Fluorescent immunity testing device and method
JPS6279333A (en) * 1985-09-09 1987-04-11 オルド,インコ−ポレ−テツド Immunity testing device
JPS62123358A (en) * 1985-11-22 1987-06-04 Sumitomo Electric Ind Ltd Optical fiber type immune sensor
JPS63289001A (en) * 1986-11-28 1988-11-25 スカルボ インコーポレイテッド,ウエスト コースト Novel labeling design for bond analysis reagent
JPS6447952A (en) * 1987-05-06 1989-02-22 Saibaafuruua Inc Immunoassay, reagent used therefor and making thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575973A2 (en) * 1992-06-23 1993-12-29 Ibiden Co., Ltd. Method for producing optical fiber having formyl groups on core surface thereof
EP0575973A3 (en) * 1992-06-23 1994-09-28 Ibiden Co Ltd Method for producing optical fiber having formyl groups on core surface thereof
US5354574A (en) * 1992-06-23 1994-10-11 Ibiden Co., Ltd. Method for producing optical fiber having formyl groups on core surface thereof
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope
JP2017128532A (en) * 2016-01-20 2017-07-27 キヤノン株式会社 Method for producing contrast agent for optical imaging and contrast agent for optical imaging

Similar Documents

Publication Publication Date Title
US5618735A (en) Fluorescent lipid polymer-macromolecular ligand compositions
JP6461732B2 (en) Detection system and method for high sensitivity fluorescence analysis
JP2571971B2 (en) Analysis method and kit
JP3426602B2 (en) Apparatus and method for multi-analyte homogeneous fluorescence immunoassay
US5846842A (en) Waveguide immunosensor with coating chemistry and providing enhanced sensitivity
CA2024548C (en) Analyte specific chemical sensor
US4582809A (en) Apparatus including optical fiber for fluorescence immunoassay
JPS61218945A (en) Stable fluorescent rare-earth element mark and factored physiological reactive seed
JPH04225163A (en) Ige detecting method and apparatus and kit used in method thereof
JP3107649B2 (en) Fluorescent immunoassay
US5401469A (en) Plastic optical biomaterials assay device
JP3130513B2 (en) Bioactive substance measurement device
CN107923908B (en) Immunoassays with improved sensitivity
JPH06207937A (en) Highly sensitive aggregation assay using polyvalent ligand
US6010867A (en) Reagent for biomaterials assay, preparation method thereof, and assay method
WO1990013029A1 (en) Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying
JP2951398B2 (en) Reagent for measuring bioactive substance, its production method and measurement method
JP3354975B2 (en) Fluorescent labeling reagent and fluorescent immunoassay
JP3176163B2 (en) Fluorescent labeling reagent and fluorescent immunoassay
JPH05506094A (en) Radiative transfer fluorescence assay
JP3025078B2 (en) Fluorescence analysis
JP3179673B2 (en) Multilayer dry immunoassay element and method for performing immunoassay
JP3167176B2 (en) Fluorescent enzyme immunoassay
JP3025096B2 (en) Fluorescence analysis
JPH0783925A (en) Fluorescent labeled reagent and fluorescent immunity measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US