JP3021265B2 - Ultrasonic testing - Google Patents

Ultrasonic testing

Info

Publication number
JP3021265B2
JP3021265B2 JP6001587A JP158794A JP3021265B2 JP 3021265 B2 JP3021265 B2 JP 3021265B2 JP 6001587 A JP6001587 A JP 6001587A JP 158794 A JP158794 A JP 158794A JP 3021265 B2 JP3021265 B2 JP 3021265B2
Authority
JP
Japan
Prior art keywords
peak
flaw detection
echo
intersections
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6001587A
Other languages
Japanese (ja)
Other versions
JPH07209266A (en
Inventor
翼 白井
隆 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6001587A priority Critical patent/JP3021265B2/en
Publication of JPH07209266A publication Critical patent/JPH07209266A/en
Application granted granted Critical
Publication of JP3021265B2 publication Critical patent/JP3021265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントの
オーステナイト系ステンレス鋼鋳造材からなる配管、機
器、容器等の探傷に用いて好適な超音波探傷法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method suitable for flaw detection of piping, equipment, containers and the like made of austenitic stainless steel castings in nuclear power plants.

【0002】[0002]

【従来の技術】従来、原子力発電プラントの配管や機器
の溶接部等に対する供用期間中検査として各種の非破壊
検査が行われている。この非破壊検査の1つに、超音波
探傷試験がある。超音波探傷試験のうち、オーステナイ
ト系ステンレス鋼鋳造材からなる配管等の溶接部に対し
ては、母材の結晶粒が粗大であり、超音波の減衰が大き
いことから、十分な探傷探傷は困難とされてきた。
2. Description of the Related Art Conventionally, various non-destructive inspections have been performed as inspections during service of pipes of nuclear power plants and welded parts of equipment. One of the nondestructive inspections is an ultrasonic inspection test. In the ultrasonic flaw detection test, it is difficult to perform sufficient flaw detection for welded parts such as pipes made of cast austenitic stainless steel because the base material has coarse grains and the ultrasonic waves are greatly attenuated. And has been.

【0003】しかし、近年になって、適切な探傷条件と
して、縦波、低周波(例えば1MHz)、高ダンピング
形探傷子の適用が提案された。これにより、オーステナ
イト系ステンレス鋼鋳造材からなる配管等の溶接部に対
しても、有効な水準の検査が可能になりつつある。
However, in recent years, application of a longitudinal wave, a low frequency (for example, 1 MHz), and a high damping type flaw detector has been proposed as an appropriate flaw detection condition. As a result, it is becoming possible to perform an effective level of inspection on welds such as pipes made of austenitic stainless steel castings.

【0004】また、結晶粒界で散乱され、所謂、林状エ
コーとして検出されるノイズは、減衰の大きい材料にな
るほど大きく、これと欠陥エコー(きずエコー)との識
別が困難であったが、周波数領域における信号処理法、
例えば分割スペクトル処理(SSP)等の適用により、
S/Nの向上が図られるようになりつつある。
The noise scattered at crystal grain boundaries and detected as a so-called forest-like echo increases as the material becomes more attenuated, and it is difficult to discriminate this from a defect echo (flaw echo). Signal processing method in the frequency domain,
For example, by applying the split spectrum processing (SSP),
S / N is being improved.

【0005】[0005]

【発明が解決しようとする課題】しかしがなら、適切な
探傷条件を適用する場合でも、オーステナイト系ステン
レス鋼鋳造材からなる配管等の溶接部の探傷において
は、溶接金属が柱状結晶組織であることと、音速に異方
性を有することから、林エコーとは別に、あたかも内面
に存在する欠陥エコーのようなノイズエコー(所謂疑似
エコー)が裏波部近傍から発生する。この場合、両者の
エコー高さに殆ど差がないこと、また、SSPも効果が
ないことから、欠陥エコーと疑似エコーとの識別が困難
とされてきた。
However, even when appropriate flaw detection conditions are applied, in flaw detection of welds such as pipes made of cast austenitic stainless steel, the weld metal must have a columnar crystal structure. In addition, since the sound velocity has anisotropy, a noise echo (a so-called pseudo echo) such as a defect echo existing on the inner surface is generated from the vicinity of the back wave part, separately from the forest echo. In this case, it has been difficult to distinguish between a defective echo and a pseudo echo since there is almost no difference between the echo heights of the two and the SSP has no effect.

【0006】本発明は上記のような点に鑑みなされたも
ので、オーステナイト系ステンレス鋼鋳造材からなる配
管等の溶接部の探傷において、欠陥エコー/疑似エコー
の識別を容易に行うことが可能な超音波探傷法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and can easily identify a defect echo / pseudo echo in a flaw detection of a welded portion such as a pipe made of austenitic stainless steel casting. An object of the present invention is to provide an ultrasonic inspection method.

【0007】[0007]

【課題を解決するための手段】本発明は、所定の探傷条
件に基づいて探傷し、このとき得られる原探傷信号を周
波数分析した後、その分布状態から上記原探傷信号の信
号波形の1番目のピークが2番目のピークより低周波側
にあるか否かを検出し、上記1番目のピークが上記2番
目のピークより低周波側にある場合に疑似エコーと判定
し、上記1番目のピークが上記2番目のピークより高周
波側にある場合には、上記2番目のピークから所定値だ
けダウンさせた値を示す基準線と上記原探傷信号の信号
波形との交点が2個あるか否かを検出し、上記交点が2
個ある場合に欠陥エコーとし、上記交点が2個より多い
場合に疑似エコーと判定することを特徴とする超音波探
傷法である。
SUMMARY OF THE INVENTION The present invention is to flaw detection based on a predetermined inspection conditions, after analyzing the frequency of the original testing signals obtained in this case, signal from the distribution of the original testing signals
Detecting whether the first peak of the signal waveform is lower than the second peak, and determining that the first peak is lower than the second peak as a pseudo echo; When the first peak is on the higher frequency side than the second peak , a reference line indicating a value lowered by a predetermined value from the second peak and a signal of the original flaw detection signal
It is detected whether or not there are two intersections with the waveform.
The ultrasonic flaw detection method is characterized in that a defect echo is determined when there are a plurality of points, and a pseudo echo is determined when the number of the intersections is more than two.

【0008】[0008]

【作用】探傷条件を例えば縦波36度および周波数1M
Hzとして探傷することにより、超音波の透過性が良好
となる上、減衰を低減するために屈折角を36度と小さ
くすることで、ビーム路程を短く抑えていることができ
る。これにより、オーステナイト系ステンレス鋼鋳造材
のように、減衰の大きい材料に対しても超音波探傷が可
能となる。
The flaw detection conditions are, for example, 36 degrees longitudinal wave and 1M frequency.
By performing the flaw detection at Hz, the transmittance of the ultrasonic wave is improved, and the beam path can be suppressed short by reducing the refraction angle to 36 degrees in order to reduce the attenuation. Accordingly, ultrasonic flaw detection can be performed even on a material having a large attenuation, such as an austenitic stainless steel cast material.

【0009】また、検出された原探傷信号(RF信号)
については、欠陥エコーと疑似エコーの反射特性の違い
が周波数分布の差となり、その差は2番目のピークから
6dBダウンの線との交点の数によって特徴付けられ
る。したがって、周波数分布の差に着目することによ
り、オーステナイト系ステンレス鋼鋳造材からなる配管
等の溶接部の探傷において、欠陥エコー/疑似エコーの
識別を容易に行うことができる。
Also, the detected original flaw detection signal (RF signal)
For, the difference in the reflection characteristics of the defective echo and the pseudo echo results in a difference in the frequency distribution, which is characterized by the number of intersections with the line 6 dB down from the second peak. Therefore, by focusing on the difference in the frequency distribution, it is possible to easily identify a defect echo / pseudo echo in a flaw detection of a welded portion such as a pipe made of an austenitic stainless steel casting.

【0010】[0010]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は本発明による超音波探傷法の手順を示す
フローチャートである。まず、本発明では、所定の探傷
条件すなわち縦波36度および周波数1MHz(好まし
くは分割形探傷子)で探傷を行う(ステップS1)。こ
の場合、探傷条件を縦波36度および周波数1MHzと
することにより、超音波の透過性が良好となる上、減衰
を低減するために屈折角を36度と小さくすることで、
ビーム路程を短く抑えることができる。これにより、オ
ーステナイト系ステンレス鋼鋳造材のように、減衰の大
きい材料に対しても超音波探傷が可能となる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing the procedure of the ultrasonic flaw detection method according to the present invention. First, in the present invention, flaw detection is performed under predetermined flaw detection conditions, that is, a longitudinal wave of 36 degrees and a frequency of 1 MHz (preferably a split flaw detector) (step S1). In this case, by setting the flaw detection conditions to a longitudinal wave of 36 degrees and a frequency of 1 MHz, the transmission of the ultrasonic waves is improved, and the refraction angle is reduced to 36 degrees to reduce the attenuation.
The beam path can be kept short. Accordingly, ultrasonic flaw detection can be performed even on a material having a large attenuation, such as an austenitic stainless steel cast material.

【0011】次に、検出されたエコーが欠陥エコー(き
ずエコー)または疑似エコーであることを判別するた
め、検出された原信号(RF信号)の周波数分析を行う
(ステップS2)。このとき、分析する時間幅は波形の
ピークの位置から±3μsecの範囲とする。
Next, in order to determine whether the detected echo is a defective echo (flaw echo) or a pseudo echo, a frequency analysis of the detected original signal (RF signal) is performed (step S2). At this time, the time width to be analyzed is within a range of ± 3 μsec from the peak position of the waveform.

【0012】次に、その分布状態から、1番目のピーク
P1 が2番目のピークP2 より低周波側にあるか否かを
検出し、その結果、図2に示すように、1番目のピーク
P1が2番目のピークP2 より低周波側にある場合には
(ステップS3のYes)、疑似エコーとする(ステッ
プS4)。
Next, from the distribution state, it is detected whether or not the first peak P1 is on the lower frequency side than the second peak P2 . As a result, as shown in FIG. Is lower than the second peak P2 (Yes in step S3), a pseudo echo is set (step S4).

【0013】一方、1番目のピークP1 が2番目のピー
クP2 より高周波側にある場合には(ステップS3のN
o)、2番目のピークP2 から6dBだけダウンさせた
線Lを基準線として引き、その線Lとの交点が2個ある
か否かを検出し、その結果、図3に示すように、線Lと
の交点(図中「×」で示す)が2個より多い場合には
(ステップS5のNo)、疑似エコーとする(ステップ
S6)。また、図4に示すように、線Lとの交点が2個
の場合には(ステップS5のYes)、欠陥エコーとす
る(ステップS7)。
On the other hand, when the first peak P1 is on the higher frequency side than the second peak P2 (N in step S3)
o) 6 dB down from the second peak P2
The line L is drawn as a reference line, and it is detected whether or not there are two intersections with the line L. As a result, as shown in FIG. 3 , the intersection with the line L (indicated by “x” in the figure) If there are more than two (No in step S5), a pseudo echo is set (step S6). As shown in FIG. 4 , when the number of intersections with the line L is two (Yes in step S5), a defect echo is set (step S7).

【0014】なお、このような判定は、欠陥エコーと疑
似エコーの反射特性の違いが周波数分布の差となり、上
記のように分類されることを多数のデータから実験的に
確認されたことに基づくものである。
Such a determination is based on experimentally confirming from a large number of data that a difference in the reflection characteristics between the defective echo and the pseudo echo results in a difference in the frequency distribution, and the classification is performed as described above. Things.

【0015】図2乃至図4は上述した手順により判定し
た欠陥エコーと疑似エコーの周波数分布の実験データの
例を示したものであり、図2は第1の判定で疑似エコー
される周波数分布の例、図3は第2の判定で疑似エコー
とされる周波数分布の例、図4は第1および第2の判定
で欠陥エコーとされる周波数分布の例をそれぞれ示して
いる。これらの図から分かるように、欠陥エコーと疑似
エコーの周波数分布の差は明瞭であり、この違いから両
者の識別が可能となる。
FIGS. 2 to 4 show examples of experimental data of the frequency distribution of the defective echo and the pseudo echo determined by the above-described procedure. FIG. 2 shows the frequency distribution of the pseudo echo in the first determination. FIG. 3 shows an example of a frequency distribution determined as a pseudo echo in the second determination, and FIG. 4 shows an example of a frequency distribution determined as a defective echo in the first and second determinations. As can be seen from these figures, the difference between the frequency distributions of the defective echo and the pseudo echo is clear, and the difference makes it possible to distinguish between the two.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、縦
波36度および周波数1MMzで探傷し、検出されたエ
コーの原探傷信号(RF信号)の周波数分布の差に着目
して、欠陥エコーと疑似エコーを判定するようにしたた
め、オーステナイト系ステンレス鋼鋳造材からなる配管
等の溶接部の探傷において、欠陥エコー/疑似エコーの
識別を容易に行うことができる等の優れた効果を奏する
ことができるものである。
As described above, according to the present invention, flaws are detected at a longitudinal wave of 36 degrees and a frequency of 1 MMz, and defects are detected by focusing on the difference in the frequency distribution of the original flaw detection signal (RF signal) of the detected echo. Echo and pseudo-echo are determined, so that it has excellent effects such as easy detection of defect echo / pseudo-echo in flaw detection of welds such as pipes made of cast austenitic stainless steel. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る超音波探傷法の手順を
示すフローチャート。
FIG. 1 is a flowchart showing a procedure of an ultrasonic flaw detection method according to one embodiment of the present invention.

【図2】同実施例の第1の判定で疑似エコーとされる周
波数分布の例を示す図。
FIG. 2 is a diagram showing an example of a frequency distribution that is regarded as a pseudo echo in the first determination of the embodiment.

【図3】同実施例の第2の判定で疑似エコーとされる周
波数分布の例を示す図。
FIG. 3 is a view showing an example of a frequency distribution that is regarded as a pseudo echo in the second determination of the embodiment.

【図4】同実施例の第1および第2判定で欠陥エコーと
される周波数分布の例を示す図。
FIG. 4 is a view showing an example of a frequency distribution that is determined as a defect echo in the first and second determinations of the embodiment.

【符号の説明】[Explanation of symbols]

P1 …第1のピーク、P2 …第2のピーク、L…第2の
ピークから3dBダウンの線。
P1: first peak; P2: second peak; L: line 3 dB down from the second peak.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定の探傷条件に基づいて探傷し、 このとき得られる原探傷信号を周波数分析した後、 その分布状態から上記原探傷信号の信号波形の1番目の
ピークが2番目のピークより低周波側にあるか否かを検
出し、 上記1番目のピークが上記2番目のピークより低周波側
にある場合に疑似エコーと判定し、 上記1番目のピークが上記2番目のピークより高周波側
にある場合には、上記2番目のピークから所定値だけダ
ウンさせた値を示す基準線と上記原探傷信号の信号波形
との交点が2個あるか否かを検出し、 上記交点が2個ある場合に欠陥エコーとし、上記交点が
2個より多い場合に疑似エコーと判定することを特徴と
する超音波探傷法。
1. A flaw detection is performed based on predetermined flaw detection conditions. After frequency analysis of an original flaw detection signal obtained at this time, a first peak of the signal waveform of the original flaw detection signal is shifted from a second peak based on a distribution state thereof. Detecting whether or not it is on the low frequency side, if the first peak is on the lower frequency side than the second peak, it is determined to be a pseudo echo, and the first peak is higher than the second peak If it is on the side, it is detected whether or not there are two intersections between a reference line indicating a value lowered by a predetermined value from the second peak and the signal waveform of the original flaw detection signal , An ultrasonic flaw detection method, wherein a defect echo is determined when there are two intersections, and a pseudo echo is determined when there are more than two intersections.
JP6001587A 1994-01-12 1994-01-12 Ultrasonic testing Expired - Lifetime JP3021265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6001587A JP3021265B2 (en) 1994-01-12 1994-01-12 Ultrasonic testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6001587A JP3021265B2 (en) 1994-01-12 1994-01-12 Ultrasonic testing

Publications (2)

Publication Number Publication Date
JPH07209266A JPH07209266A (en) 1995-08-11
JP3021265B2 true JP3021265B2 (en) 2000-03-15

Family

ID=11505654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6001587A Expired - Lifetime JP3021265B2 (en) 1994-01-12 1994-01-12 Ultrasonic testing

Country Status (1)

Country Link
JP (1) JP3021265B2 (en)

Also Published As

Publication number Publication date
JPH07209266A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
US4627289A (en) Method for the ultrasonic flaw detection of an electric welded pipe
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
JPH059744B2 (en)
Kupperman et al. Ultrasonic NDE of cast stainless steel
Boukani et al. On the performance of nondestructive testing methods in the hydroelectric turbine industry
JP3021265B2 (en) Ultrasonic testing
JP4371364B2 (en) Automatic ultrasonic flaw detector and automatic ultrasonic flaw detection method for thick structure
Edelmann Application of ultrasonic testing techniques on austenitic welds for fabrication and in-service inspection
JPH11287790A (en) Ultrasonic flaw detection method
JPH07198685A (en) Inspection of welded part by eddy current method
Stepanova et al. Acoustic-emission procedure for rejecting defects in multiple-pass girth welds
Bajgholi et al. Advanced ultrasonic inspection methodologies for fitness-for-service (FFS) assessment of hydraulic turbines
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
Prabhakaran et al. Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
Carpentier et al. Manual ultrasonic inspection of thin metal welds
Anderson et al. Challenges and Capabilities for Inspection of Cast Stainless Steel Piping
Prilutskii et al. Ultrasound inspection of welded joints in austenitic steels
JPH11287788A (en) Ultrasonic testing method
Bush Non-destructive examination and component reliability: what should we be looking for
Popov An acoustic-emission technique of forced vibrations used for flaw detection in thin-walled pressure vessels
Oka et al. Development of Phased Array and Tofd Simultaneous Inspection System for Coke Drum
Badalyan Error in measurements of flaws with the use of systems with coherent data processing
Ermolov The Wonders of Ultrasound.
GB2149915A (en) An improved method of ultrasonic inspection

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214