JP3020074B2 - Illumination optical system - Google Patents

Illumination optical system

Info

Publication number
JP3020074B2
JP3020074B2 JP3305540A JP30554091A JP3020074B2 JP 3020074 B2 JP3020074 B2 JP 3020074B2 JP 3305540 A JP3305540 A JP 3305540A JP 30554091 A JP30554091 A JP 30554091A JP 3020074 B2 JP3020074 B2 JP 3020074B2
Authority
JP
Japan
Prior art keywords
optical system
illumination optical
lens
illumination
illuminance distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3305540A
Other languages
Japanese (ja)
Other versions
JPH05119272A (en
Inventor
孝夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP3305540A priority Critical patent/JP3020074B2/en
Priority to US07/965,691 priority patent/US5485316A/en
Publication of JPH05119272A publication Critical patent/JPH05119272A/en
Application granted granted Critical
Publication of JP3020074B2 publication Critical patent/JP3020074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内視鏡などに適用可能
照明光学系に関するものである。
The present invention is applicable to endoscopes and the like.
The present invention relates to a simple illumination optical system.

【0002】[0002]

【従来の技術】近年内視鏡の光学系が広角化するにつれ
て照明系も広角なものが要求されるようになってきた。
又観察対象物に対して適切な照度分布を与える照明光学
系の要求も高まっている。
2. Description of the Related Art In recent years, as the optical system of an endoscope has been widened, a wide-angle illumination system has been required.
There is also an increasing demand for an illumination optical system that provides an appropriate illuminance distribution to an observation target.

【0003】上記のような要求に対して、広角な内視鏡
用照明光学系の例として特開昭56−20428号公報
に記載された光学系が知られている。それは図20図に
示すようにオプチカルファイバーバンドルからなるライ
トガイド1の前に正のレンズ系2を配置し、このレンズ
系2によりライトガイド1よりの光を一度集光させた後
に発散させて広角な照明を可能にしたものである。
In response to the above requirements, an optical system described in Japanese Patent Application Laid-Open No. 56-20428 is known as an example of a wide-angle endoscope illumination optical system. As shown in FIG. 20, a positive lens system 2 is disposed in front of a light guide 1 made of an optical fiber bundle, and the light from the light guide 1 is once condensed by the lens system 2 and then diverged to wide angle. It is the one that made the lighting possible.

【0004】この従来例は、ライトガイドより光軸に平
行に発した光線がレンズ系への入射高hと、この入射光
線高hに対する照明光学系からの射出角θとの関係が、
ほぼh=fsinθになっている。尚fは照明光学系の
焦点距離である。
In this conventional example, the relationship between the incident height h of a ray emitted from the light guide in parallel with the optical axis to the lens system and the exit angle θ from the illumination optical system with respect to the incident ray height h is as follows.
Almost h = fsinθ. Where f is the illumination optical system
The focal length.

【0005】この従来例による平面状物体上における
対的な照度分布は、次のようにして求められる。
The phase on a planar object according to this conventional example
The opposite illuminance distribution is obtained as follows.

【0006】完全拡散面の平面状物体における中心に対
する周辺の相対的照度分布は、一般に次の式(1)で表
わされる。 F(θ)=(β/β×β/β−1 (1) ただしβは物体面に対する近軸倍率、β,βは夫々
物体面に対するメリジオナル方向およびサジタル方向の
倍率である。
The relative illuminance distribution around the center of a planar object having a perfect diffusion surface is generally expressed by the following equation (1). F (θ) = (β / β M × β / β S ) −1 (1) where β is a paraxial magnification with respect to the object plane, and β M and β S are magnifications in the meridional direction and the sagittal direction with respect to the object plane, respectively. .

【0007】上記式のβ,βは、物体距離が、レン
ズ系の射出瞳位置より十分離れている時には、夫々次の
式(2),(3)で与えられる。 β=βcosθ{dA(θ)/dθ} (2)β =β{A(θ)/tanθ} (3) ただしA(θ)=h/fである。
When the object distance is sufficiently far from the exit pupil position of the lens system, β M and β S in the above equations are given by the following equations (2) and (3), respectively. β M = βcos 2 θ {dA (θ) / dθ} (2) β S = β {A (θ) / tan θ} (3) where A (θ) = h / f.

【0008】上記の式(2),(3)より、前記の従来
例における完全拡散面の平面状物体を照明した時の相対
的照度分布は、F(θ)=cosθとなり、図19に
示すように中心から周辺に行くにしたがってcosθ
に比例して暗くなる。
From the above equations (2) and (3), the relative illuminance distribution when illuminating the planar object having the perfect diffusion surface in the above-mentioned conventional example is F (θ) = cos 4 θ, and FIG. To
As shown from the center to the periphery, cos 4 θ
Darkens in proportion to

【0009】またこの従来例により球面状物体又は管空
状物体を照明した時の相対的な照度分布は、以下のよう
にして求められる。
The relative illuminance distribution when illuminating a spherical or tube-shaped object according to this conventional example can be obtained as follows.

【0010】一般に完全拡散面の球面状物体の相対的な
照度分布と管空状物体の相対的な照度分布は、夫々下記
式(5),(6)にて与えられる。 G(θ)=F(θ)×1/cosθ (5) H(θ)=F(θ)×tanθ (6) ただし、G(θ),H(θ)は夫々完全拡散面の球面状
物体および管空状物体の相対的な照度分布である。
Generally, the relative illuminance distribution of a spherical object having a perfect diffusion surface and the relative illuminance distribution of a tube-shaped object are given by the following equations (5) and (6), respectively. G (θ) = F (θ) × 1 / cos 3 θ (5) H (θ) = F (θ) × tan 3 θ (6) where G (θ) and H (θ) are perfect diffusion surfaces, respectively. 3 is a relative illuminance distribution of a spherical object and a tube-shaped object.

【0011】上記の式(5),(6)より、上記従来例
における完全拡散の球面状物体および管空状物体の相対
的な照度分布は、夫々G(θ)=cosθ,H(θ)=
cosθ・sinθとなり、図19に示すようにな
る。
From the above equations (5) and (6), the relative illuminance distributions of the perfectly diffuse spherical object and tube-like object in the conventional example are G (θ) = cos θ and H (θ), respectively. =
cos θ · sin 3 θ, as shown in FIG .

【0012】上記の図19から明らかなように、球面状
物体の場合は、中心から周辺に行くにつれて、cosθ
にしたがって照度が下るが、実用上は問題のない照度分
布が得られる。また管空状物体の照度分布は、視野周辺
で急激に明るくなることはなく適正な照度分布が得られ
ている。
As is apparent from FIG. 19, in the case of a spherical object, cos θ increases from the center to the periphery.
, The illuminance distribution is practically satisfactory. In addition, the illuminance distribution of the tubular hollow object does not suddenly become bright around the visual field, and an appropriate illuminance distribution is obtained.

【0013】しかし上記従来例のようにほぼh=fsi
nθの関係を満足する照明光学系は、視野角が110°
以上の広角な観察光学系に対し適用した場合、広角化に
伴って物体側から数えて第2面、第3面のパワーが強く
なりすぎてhとsinθとが比例しなくなり、入射光線
高の高い光線は物体側から数えて第1面または第3面で
全反射する。又入射光線高の高い光線程全反射を起こし
易い。そのために110°以上の広角域での照度は、あ
まり増加せず光量だけが急激に減少してしまう。又視野
角が110°以上の広角な観察光学系に適用できる照明
光学系の例として、特開昭58−95706号公報に記
載された光学系がある。それは図21に示す構成で、図
20に示す従来例と比べ、レンズ枚数が多く、コスト高
になる欠点がある。
However, as in the above conventional example, h = fsi
The illumination optical system satisfying the relationship of nθ has a viewing angle of 110 °.
When applied to the above-described wide-angle observation optical system, the power of the second and third surfaces counted from the object side becomes too strong with the increase in the angle of view, and h and sin θ are not proportional to each other. High rays are totally reflected on the first or third surface, counted from the object side. Also, the higher the incident ray height, the more easily total reflection occurs. Therefore, the illuminance in a wide angle range of 110 ° or more does not increase so much, and only the light amount sharply decreases. Further, as an example of an illumination optical system applicable to a wide-angle observation optical system having a viewing angle of 110 ° or more, there is an optical system described in JP-A-58-95706. The configuration shown in FIG. 21 is disadvantageous in that the number of lenses is large and the cost is high as compared with the conventional example shown in FIG.

【0014】更に平面状物体照明時に均一な照度分布と
なる照明光学系として入射高hと射出角θとの間に、h
とtanθとがほぼ比例する光学系が知られている。そ
れは、図22に示す特開昭62−178207号公報に
記載されたものである。
Further, as an illumination optical system which provides a uniform illuminance distribution at the time of illuminating a planar object, the distance h between the incident height h and the exit angle θ
And an optical system in which tan θ is approximately proportional is known. This is described in Japanese Patent Application Laid-Open No. 62-178207 shown in FIG.

【0015】しかし、内視鏡による観察は、対象物体が
平面状物体だけでなく前述のように球面状物体と管腔状
物体等の様々である。
However, observation by an endoscope is not limited to a planar object, and various objects such as a spherical object and a luminal object are used as described above.

【0016】例えば、医療用内視鏡の場合、胃の内面は
ほぼ球面状であり、食道や気管岐の内面はほぼ管状であ
る。
For example, in the case of a medical endoscope, the inner surface of the stomach is substantially spherical, and the inner surface of the esophagus and trachea is substantially tubular.

【0017】hがtanθに比例する照明光学系により
球面状物体を照明する時、式(1),式(5)より照度
分布は、図23に示すように中心から周辺に行くにした
がって1/cosθに比例して明るくなってしまう。
更に周辺部ではレンズ内を通る光線がレンズ外周部の内
面にて乱反射して消滅したり、全反射したりすることに
よって、図24の曲線bに示すように急激に暗くなる。
そのため球面状物体を照明した時の照度分布は、リング
状に照度分布のむらを持ったものとなる。尚図24にお
いて、曲線a.b.cは夫々平面状物体、球面状物体、
管腔状物体を照明した時の照度分布を表わすものであ
る。
When a spherical object is illuminated by an illumination optical system in which h is proportional to tan θ, the illuminance distribution becomes 1 / from the center to the periphery as shown in FIG. 23 according to equations (1) and (5). It becomes bright in proportion to cos 3 θ.
Further, in the peripheral portion, the light passing through the lens diffusely reflects on the inner surface of the lens outer peripheral portion and disappears, or is totally reflected, so that the light rapidly becomes dark as shown by a curve b in FIG .
Illuminance distribution when illuminating the spherical object so, ring
Irradiance distribution becomes uneven. Note that FIG.
And the curve a. b. c is a planar object, a spherical object,
It represents the illuminance distribution when illuminating a luminal object.
You.

【0018】この従来例の照明光学系により管状物体を
照明した時、式(1),式(6)によりその照度分布
は、視野周辺に行くにしたがってtanθに比例して
急激に明るくなり、適正な明るさで観察できる範囲が非
常に狭くなり、観察しにくい照明であり好ましくない。
When a tubular object is illuminated by this conventional illumination optical system, the illuminance distribution sharply increases in proportion to tan 3 θ as approaching the visual field according to equations (1) and (6). In addition, the range that can be observed with appropriate brightness becomes very narrow, and illumination is difficult to observe, which is not preferable.

【0019】[0019]

【発明が解決しようとする課題】本発明は以上のような
従来の照明光学系の欠点を解消したもので、110°以
上の広角内視鏡にも使用し得て、かつ球面状物体に対し
てほぼ均一の照度分布を与え、平面状物体や管腔状物体
に対しても良好な照度分布を与え、しかも光量ロスの少
ない安価な照明光学系を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional illumination optical system, and can be used for a wide-angle endoscope of 110 ° or more, and is applicable to a spherical object. It is an object of the present invention to provide an inexpensive illumination optical system which provides a substantially uniform illuminance distribution, provides a good illuminance distribution even to a planar object or a luminal object, and has a small light amount loss.

【0020】[0020]

【課題を解決するための手段】本発明の照明光学系は、
少なくとも1つの正レンズを含む照明光学系において、
前記照明光学系の焦点距離をf、光軸に平行に前記光学
系に入射する光線の入射光線高をh、光線高hの光線が
前記光学系からの射出する際の射出角をθとするとき、
h=fθの関係をほぼ満足することを特徴とする。
The illumination optical system according to the present invention comprises:
In an illumination optical system including at least one positive lens,
The focal length of the illumination optical system is f, the incident light height of light rays incident on the optical system parallel to the optical axis is h, and the emission angle when a light ray with a light height h exits from the optical system is θ. When
It is characterized in that the relationship of h = fθ is almost satisfied.

【0021】既に述べたように、内視鏡等における観察
は、観察対象物が平面状物体だけではなく、球面状物体
や管腔状物体等様々である。このような様々な対象物を
照明する場合、平面状物体のみ均一な照度分布を与える
のでは、不十分である。そのため球面状物体に対してほ
ぼ均一な配光を与え平面状物体や管腔状物体に対しても
適正な照度分布を与える照明光学系を得るには、前記の
ようにほぼh=fθの関係を満足させる必要がある。
As described above, the observation with an endoscope or the like is not limited to a planar object, but may be various objects such as a spherical object or a luminal object. When illuminating such various objects, it is not sufficient to provide a uniform illuminance distribution only for a planar object. Therefore, in order to obtain an illumination optical system that gives a substantially uniform light distribution to a spherical object and an appropriate illuminance distribution even to a planar object or a luminal object, as described above, the relationship of h = fθ is used. Needs to be satisfied.

【0022】h=fθの関係を満足する場合には、前記
の式(1),(5),(6)より、完全拡散面の平面状
物体、球面状物体、管腔状物体の相対的な照度分布は、
夫々F(θ)=θcosθ/sinθ、G(θ)=θ
/sinθ、H(θ)=θcosθ・tanθとな
る。これを図示すると図16に示すようになる。
When the relationship of h = fθ is satisfied, the above formulas (1), (5), and (6) show that the relative relationship between a planar object, a spherical object, and a luminal object having a perfect diffusion surface is obtained. Illuminance distribution is
F (θ) = θcos 3 θ / sinθ, G (θ) = θ, respectively
/ Sin θ, H (θ) = θ cos 2 θ · tan 2 θ. This is illustrated in FIG.

【0023】即ち、球面状物体の照度分布は、中心から
周辺に行くにつれてθ/sinθにしたがって上昇す
る。しかし実際には視野周辺を照明する光線は、レンズ
外周部内面で乱反射して消減したり、全反射により周辺
にて急激に光量が減少する。そのため実際には、図17
に示すようになる。この図で曲線Aは球面状物体、曲
線Aは管腔状物体、曲線Aは平面状物体に対するも
のである。そのために、球面状物体を照明する時には、
h=ftanθの関係をほぼ満足する従来例におけると
同じようにリング状の照度分布のむらを持った照明にな
る。しかし、照度むらの強度は小さいので実用上は問題
にならず、ほぼ均一とみなしうる照度分布を与えること
になる。
That is, the illuminance distribution of the spherical object increases in accordance with θ / sin θ from the center to the periphery. However, in practice, the light beam illuminating the periphery of the visual field is irregularly reflected by the inner surface of the lens outer peripheral portion and disappears, or the amount of light is rapidly reduced at the periphery by total reflection. Therefore, FIG.
It becomes as shown in. Curve A 1 in this figure spherical object, curve A 2 is luminal object, curve A 3 is for planar objects. Therefore, when illuminating a spherical object,
As in the conventional example that almost satisfies the relationship of h = ftan θ, the illumination has a ring-shaped illumination distribution unevenness.
You. However, the intensity of uneven illuminance is small, so there is a problem in practical use.
Give an illuminance distribution that can be considered almost uniform
become.

【0024】又球面状物体に対してほぼ均一な照度分布
が得られるようにすると、管腔状物体に対しては、h=
fsinθの関係をほぼ満足する照明光学系よりも適正
な照度分布で観察し得る範囲が多少狭くなるが実用上は
問題ない。
If a substantially uniform illuminance distribution can be obtained for a spherical object, h =
Although the range that can be observed with an appropriate illuminance distribution is somewhat narrower than an illumination optical system that almost satisfies the relationship of fsin θ, there is no practical problem.

【0025】更に平面状物体に対しては、h=fsin
θの関係をほぼ満足する照明光学系よりも良好な照度分
布を与えることとなる。
Further, for a planar object, h = fsin
A better illuminance distribution is provided than an illumination optical system that almost satisfies the relationship of θ.

【0026】このように、少なくとも一つの正レンズを
含む照明光学系であって、ほぼh=fθの関係を満足
し、しかも110゜を越える広角な観察光学系に対して
も適用できかつレンズ枚数を少なくするためには、上記
レンズの少なくとも1面を光軸から離れるにつれて、近
似曲率よりも曲率が弱くなる曲面で構成すれば良い。
As described above, the illumination optical system including at least one positive lens substantially satisfies the relationship of h = fθ, and can be applied to a wide-angle observation optical system exceeding 110 °. In order to reduce the curvature, it is sufficient to configure at least one surface of the lens with a curved surface whose curvature becomes weaker than the approximate curvature as the distance from the optical axis increases.

【0027】例えば図18に示すように物体側の面が平
面で入射側の面が非球面である単レンズでも上記の関係
を満足しかつ光量ロスの少ない照明光学系を構成するこ
とが出来る。
For example, as shown in FIG. 18, even with a single lens whose surface on the object side is flat and whose surface on the incident side is aspherical, an illumination optical system that satisfies the above relationship and has a small loss of light amount can be constructed.

【0028】この図18に示すレンズにおいてh=fθ
の関係を満足するための非球面は、以下のようにして求
められる。
In the lens shown in FIG. 18, h = fθ
The aspherical surface that satisfies the relationship is obtained as follows.

【0029】図18において、光軸方向をx軸、光軸と
垂直な方向をh軸とし、求める面の関数をF(h)、座
標値(h,x)=(h,F(h))の位置で面F(h)
の接線のh軸に対する傾き角をω、座標(h,F
(h))の位置での法線1に対するその高さでの入射光
線の屈折角をα、この光線の照明光学系の物体側の面へ
の入射角をβ、その出射角をθ、照明レンズの硝子の屈
折率をn、照明光学系の焦点距離をfとすると、入射光
線高hと光線の射出角θとの関係は、hがθに比例する
場合、次の式にて与えられる。h=f・θ
(7) 上記の式(7)を満足する非球面の形状を示す式 x=
θ (h) を求める。そのための条件は、次の五つの
式である。 α+β=ω (9) nsinα=sinω (10) nsinβ=sinθ (11) h=f・θ (7)tanω=dF θ (h)/dh (12) 式(7),(9),(10),(11)より次の関係が
導かれる。
In FIG. 18, the optical axis direction is the x axis, the direction perpendicular to the optical axis is the h axis, the function of the surface to be obtained is F (h), and the coordinate value (h, x) = (h, F (h)). ) At the position F (h)
Is the inclination angle of the tangent to the h-axis, and the coordinates (h, F
(H)) The angle of refraction of an incident light beam at that height with respect to the normal 1 at the position (a) is α, the angle of incidence of this light beam on the object-side surface of the illumination optical system is β, and the exit angle is θ, Assuming that the refractive index of the glass of the lens is n and the focal length of the illumination optical system is f, the relationship between the incident light height h and the light emission angle θ is given by the following equation when h is proportional to θ. . h = f · θ
(7) Expression x = indicating the shape of the aspherical surface that satisfies the above expression (7)
Find F θ (h) . The conditions for that are the following five equations. α + β = ω (9) nsin α = sin ω (10) nsin β = sin θ (11) h = f · θ (7) tan ω = dF θ (h) / dh (12) Equations (7), (9), and (10) , (11) leads to the following relationship.

【0030】式(12)と式(13)とから次の式(1
4)が求められる。
From the equations (12) and (13), the following equation (1) is obtained.
4) is required.

【0031】式(14)より求める θ (h) は次
の式(15)のようになる。
F θ (h ) obtained from the equation (14) is as shown in the following equation (15).

【0032】hがsinθに比例するとすれば非球面の
形状を示す式は、次の式(16)のようになる。
Assuming that h is proportional to sin θ, an expression representing the shape of the aspheric surface is as shown in the following expression (16).

【0033】式(14),(16)で表わされる形状の
非球面は図25に示すように同じ焦点距離の球面よりも
傾きの増加量が小である。尚図中縦軸は傾き量、横軸は
h、又カーブ(14),(16)は夫々式(14),
(16)で与えられる非球面の傾き、Sは球面の傾きを
示している。
As shown in FIG. 25, the aspheric surface having the shape represented by the equations (14) and (16) has a smaller increase in the inclination than the spherical surface having the same focal length. In the figure, the vertical axis represents the amount of inclination, the horizontal axis represents h, and the curves (14) and (16) represent equations (14) and (14), respectively.
The slope of the aspheric surface given by (16), S is the slope of the spherical surface
Is shown.

【0034】単レンズで物体側の面が平面である照明レ
ンズの場合、入射光線高hと射出角θとの関係は、非球
面の面の傾きによって決まるため、h=f・θを満足す
る照明レンズは、式(14)を満足する非球面を有する
ことになる。
In the case of a single-lens illumination lens having a flat surface on the object side, the relationship between the incident ray height h and the exit angle θ is determined by the inclination of the aspheric surface, so that h = f · θ is satisfied. The illumination lens has an aspheric surface satisfying the expression (14).
Will be.

【0035】入射光線高hと、 入射光線高hに対する照
明光学系からの射出角θとの関係が、ほぼh=f・θに
なる時の本発明で用いる非球面形状は、以下の条件を満
足することが好ましい。
When the relationship between the incident light height h and the exit angle θ from the illumination optical system with respect to the incident light height h is approximately h = f · θ, the aspheric shape used in the present invention satisfies the following conditions. It is preferable to satisfy.

【0036】ただし0≦h≦D ここでDは最大入射光線高、fは本発明の非球面を含
むレンズの非球面を近似曲率で表わした時の焦点距離で
ある。
[0036] However 0 ≦ h ≦ D where D is the maximum incident light height, f 1 is the focal length of time representing the aspherical lens including an aspheric surface of the present invention the approximate curvature.

【0037】本発明の照明光学系で用いる非球面が条件
(17)の下限を越えると非球面以外のレンズ面にパワ
ーがある場合、その面でのパワーが強くなりすぎ、光量
のロスが多くなるとともに、球面上の照度分布がリング
状の照度むらが生じやすくなる。又上限を越えると非球
面以外の面にパワーがある場合、非球面の近似曲率が強
くなり、プレス成形により非球面レンズを作る場合、成
形用型の加工性が悪くなるとともに球面状物体に対して
ほぼ均一な配光を与えることが難しくなる。さらに本発
明の照明光学系は、非球面の形状が光軸から光軸に垂直
な方向に行くにしたがって近似曲率よりも曲面の曲率が
弱くなる凸面となっているため、光源の大きさが変化し
ても視野周辺に向かう光線の量が変化するだけなので、
視野周辺から中心の照度分布はほとんど変化せず、さら
に視野周辺の部分の照度分布のみが変化する。そこで本
発明の照明光学系では、照明レンズを変えないで光源の
大きさを変えるだけで観察視野角の異なるものに対応す
ることができ、多種類の内視鏡に共通な照明光学系とし
て用いることもでき、照明レンズのコストの低減にもさ
らに大きな効果を有する。
If the aspherical surface used in the illumination optical system of the present invention exceeds the lower limit of the condition (17), if the lens surface other than the aspherical surface has power, the power on that surface becomes too strong, and the loss of the light amount is large. At the same time, the illuminance distribution on the spherical surface tends to cause ring-shaped uneven illuminance. Also, if the upper limit is exceeded, the approximate curvature of the aspheric surface becomes stronger when there is power on a surface other than the aspheric surface, and when an aspheric lens is made by press molding, the workability of the molding die deteriorates and the Therefore, it is difficult to provide a substantially uniform light distribution. Further, in the illumination optical system of the present invention, the size of the light source changes because the shape of the aspheric surface is a convex surface in which the curvature of the curved surface becomes weaker than the approximate curvature as going from the optical axis to the direction perpendicular to the optical axis. Even if only the amount of light going to the periphery of the field of view changes,
The illuminance distribution from the periphery of the visual field to the center hardly changes, and only the illuminance distribution around the visual field changes. Therefore, in the illumination optical system of the present invention, it is possible to cope with different observation viewing angles simply by changing the size of the light source without changing the illumination lens, and it is used as an illumination optical system common to various types of endoscopes. This has an even greater effect on reducing the cost of the illumination lens.

【0038】また、本発明の照明レンズの物体側の面
に、MgF、SiO等のコーティングを施すことに
よって、照明レンズから射出する光線のフレネル反射を
少なくし、照明レンズからの射出光量を増すこともでき
る。
Further, by applying a coating of MgF 2 , SiO 2 or the like to the object side surface of the illumination lens of the present invention, the Fresnel reflection of the light beam emitted from the illumination lens is reduced, and the amount of light emitted from the illumination lens is reduced. You can increase it.

【0039】また内視鏡による観察時には、水滴が照明
レンズの物体側の面上に乗り、照度分布を悪化させるこ
とがよく起る。しかし、照明レンズの物体側の面にコー
ティングを施すことによりコーティングの発水性により
水滴を排除しやすくする効果が得られる。
During observation with an endoscope, water droplets often get on the object-side surface of the illumination lens, and the illuminance distribution often deteriorates. However, by applying a coating to the object-side surface of the illumination lens, an effect of easily removing water droplets due to the water repellency of the coating can be obtained.

【0040】また、入射側の光源としてファイバーバン
ドルを用いる場合、ファイバーバンドルの射出端は、す
べての部分が一様に光っているのではなく、各ファイバ
ーのコアーの部分のみが光っているため、正レンズを用
いて照明する場合は、このファイバーバンドルの端面が
そのまま物体面上に投影されるので、コアーの部分だけ
が明るく照明され、丁度物体面上に網をかぶせたように
照明され、非常に観察しにくくなることがある。このよ
うな場合、ファイバーバンドルの中で、各ファイバー1
本1本を融着させ光ファイバーの密度を高くした融着フ
ァイバーを用いればよい。又ファイバーバンドルと本発
明の照明光学系との間に筒状反射鏡を挿入しても良い。
又筒状反射鏡の代りに単ファイバーを挿入してもよい。
When a fiber bundle is used as the light source on the incident side, the exit end of the fiber bundle does not illuminate all parts uniformly, but only the core of each fiber shines. When illuminating with a positive lens, the end face of this fiber bundle is projected onto the object plane as it is, so only the core is brightly illuminated, and is illuminated just as if it were covered with a net on the object plane. May be difficult to observe. In such a case, each fiber 1 in the fiber bundle
A fusion fiber in which the density of the optical fiber is increased by fusing one of the fibers may be used. Further, a cylindrical reflecting mirror may be inserted between the fiber bundle and the illumination optical system of the present invention.
A single fiber may be inserted instead of the cylindrical reflecting mirror.

【0041】上記の網状の照度むらは、ファイバーバン
ドルの端面の像が無限大に結像する時、最も目立つの
で、単ファイバーを挿入した場合、次の条件を満足する
ことが望ましい。F<0ここでFは、非球面を近似
曲率で表わした時の照明光学系全系の後側焦点位置で、
全系の最終面(例えば後に示す実施例2等の場合は
)から測って光源側をプラス、物体側(面r側)
をマイナスとする。
The reticulated illuminance unevenness is most noticeable when the image of the end face of the fiber bundle is formed to infinity. Therefore, when a single fiber is inserted, it is desirable to satisfy the following conditions. F B <0 where F B is the rear focal position of the entire illumination optical system when the aspheric surface is represented by the approximate curvature,
Measured from the final surface of the entire system (for example, r 4 in the case of Example 2 described later), the light source side is plus, and the object side (surface r 1 side)
To minus.

【0042】また、ガラスの非球面レンズは、通常プレ
ス成形により作られるが、その時用いられる成形用型
は、非球面凸レンズの場合凹面型となる。そのため内視
鏡用等の小さなレンズ用の型は、型研磨用の砥石が型の
内面と干渉し研磨出来なかったり、プレス成形時にレン
ズの焼きつきや中心部分のレンズのひけ等をおこすこと
がある。
The aspherical glass lens is usually produced by press molding, and the molding die used at that time is a concave type in the case of an aspherical convex lens. Therefore, molds for small lenses, such as those for endoscopes, cannot be polished because the grindstone for mold polishing interferes with the inner surface of the mold, and can cause burn-in of the lens or sinkage of the lens in the center during press molding. is there.

【0043】本発明の照明レンズの物体側の面に凸面あ
るいは凹面をもうけて非球面側の面のパワーを小さくし
たり、非球面レンズの硝材の屈折率を高くして面の曲率
を弱くして加工性を向上させてもよい。この時、硝材の
屈折率nは下記の条件を満足することが好ましい。 n>1.6 また、本発明の光学系の非球面レンズと光源との間に凸
レンズを挿入し、非球面側の面のパワーを小さくして、
非球面レンズの加工性を向上させてもよい。ところで、
図20に示すような従来例の場合、物体側の面から順に
,r,r,rとすると面rのパワーと面r
のパワーとはほぼ等しくなっている。それは、球面レ
ンズ系で面rおよび面rでの光線の全反射の量を少
なくし、少しでも広い照度分布を得ようとするためであ
る。球面レンズの場合、レンズ周辺に行くにしたがって
面のパワーが急激に強くなる。そのため入射光線高の高
い光線の全反射の量を少なくするためには、面rのパ
ワーをあまり強くすることは出来ない。また広い照度分
布を得るためには、面rのパワーを強くする必要があ
る。しかし面rのパワーを強くしすぎると面rでの
全反射の量が多くなるため、あまり面rのパワーを強
くすることは出来ない。そのため照度分布と光量とのバ
ランスをとるためほぼ面rと面rのパワーを等しく
している。
The power of the aspherical surface is reduced by forming a convex or concave surface on the object side of the illumination lens of the present invention, or the surface curvature is reduced by increasing the refractive index of the glass material of the aspherical lens. Workability may be improved. At this time, the refractive index n of the glass material preferably satisfies the following condition. n> 1.6 Further, a convex lens is inserted between the aspheric lens and the light source of the optical system of the present invention to reduce the power of the aspheric surface,
The workability of the aspheric lens may be improved. by the way,
In the case of the conventional example shown in FIG. 20 , when r 1 , r 2 , r 3 , and r 4 are set in this order from the object-side surface, the power of the surface r 2 and the surface r
3 is almost equal to the power. This is because the amount of total reflection of light rays on the surface r 1 and the surface r 3 is reduced in the spherical lens system, and an even wider illuminance distribution is obtained. In the case of a spherical lens, the power of the surface increases sharply toward the periphery of the lens. Therefore in order to reduce the amount of total reflection of the incident ray height high beam, it can not be very strong power of the surface r 3. In order to obtain a wide illuminance distribution, it is necessary to strengthen the power of the surface r 2. However, since the amount of total reflection on the power of the strongly too and surface r 1 of the surface r 2 becomes large, it is not possible to strongly too much of the surface r 2 power. Therefore are they equal the power of the substantially flush r 2 and the surface r 3 for balancing the illuminance distribution and the light intensity.

【0044】しかし、本発明においては、非球面を有す
る照明レンズと光源との間に凸レンズを挿入する場合、
物体側の面から順にr,r(非球面)、r,r
とすると面rはレンズの周辺に行くにしたがって近似
曲率と比べ面のパワーは、それ程強くならないため、広
い照度分布を得るために面rのパワーを強くしても、
面rでの光線の全反射の量はあまり増加しない。その
ため面rのパワーをあまり強くする必要がなくなり、
面rでの全反射の量も少なくできる。
However, in the present invention, when a convex lens is inserted between an illumination lens having an aspheric surface and a light source,
R 1 , r 2 (aspheric surface), r 3 , r 4 in order from the surface on the object side
Then, the power of the surface r 2 is not so strong as compared with the approximate curvature as it goes to the periphery of the lens. Therefore, even if the power of the surface r 2 is increased to obtain a wide illuminance distribution,
The amount of total reflection of light at the surface r 1 is not much increased. Therefore there is no need to be very strong the power of the surface r 3,
The amount of total reflection at the surface r 3 can be reduced.

【0045】そこで、本発明においては、非球面を有す
る照明レンズと光源との間に設けた凸レンズの物体側の
面のパワーをφ、非球面を有する照明レンズの非球面
の近似曲率における面のパワーをφとすると次の関係
を満足することが望ましい。 φ<φ 本発明において、非球面を有する照明レンズと光源との
間に凸レンズを設けたことによって非球面を有する照明
レンズの加工性が向上するぱかりでなく、面rの働き
で面rで有効径外になっていた光線をrに入射させ
ることが出来、照明レンズから射出する光量を増加させ
ることが出来る。
Therefore, the present invention has an aspherical surface.
Of the convex lens provided between the illumination lens and the light source
Surface power φ3, An aspherical illumination lens with an aspherical surface
Is the surface power at the approximate curvature of2Then the following relationship
It is desirable to satisfy φ32  In the present invention, an illumination lens having an aspheric surface and a light source
Illumination with an aspheric surface by providing a convex lens between them
Not only is the processability of the lens improved, but also the surface r3Work of
With face r2The ray that was out of the effective diameter at r2Incident on
To increase the amount of light emitted from the illumination lens.
Rukoto can.

【0046】また、その時の非球面の形状は、光軸から
光軸に垂直な方向に行くにしたがって近似曲率よりも曲
率の弱くなる非球面であればよく、この非球面を用いる
ことによって、入射光線高hと、この入射光線高hに対
する照明光学系からの射出角θとの関係がほぼh=fθ
とすることが可能であり、光量ロスが少なく、広角な観
察光学系にも通用でき球面状物体に対してはほぼ均一な
配光をなし平面状物体、管腔状物体に対しても適正な照
度分布を与えることが可能である。
The shape of the aspherical surface at that time may be any aspherical surface having a curvature smaller than the approximate curvature as going from the optical axis to the direction perpendicular to the optical axis. The relationship between the ray height h and the exit angle θ from the illumination optical system with respect to the incident ray height h is substantially h = fθ.
It can be applied to a wide-angle observation optical system and has almost uniform light distribution for spherical objects, and is suitable for planar objects and luminal objects. It is possible to provide an illuminance distribution.

【0047】また、凸レンズを用いた照明光学系の場
合、光源から射出角0°で射出した最も強度の強い光線
がほぼ1点に集光するところが存在する。例えば医療用
の内視鏡の場合、その集光点が照明レンズの最も物体側
の面よりも外側に存在すると人体を焼いてしまう可能性
がある。また工業用の内視鏡の場合には観察対象周辺に
可燃性のものがあるとそれに引火する可能性があり、そ
のため、本発明の照明光学系の場合は、以下の条件を満
足することが望ましい。 f>0 ここでfは非球面を近似曲率で表わした時の照明光学
系の前側焦点位置である。
In the case of an illumination optical system using a convex lens, there is a place where the light beam having the highest intensity emitted from the light source at an emission angle of 0 ° is condensed to almost one point. For example, in the case of a medical endoscope, there is a possibility that a human body may be burned if the light converging point exists outside the most object side surface of the illumination lens. Further, in the case of an industrial endoscope, if there is a combustible material around the observation target, it may catch fire, and therefore, in the case of the illumination optical system of the present invention, the following conditions may be satisfied. desirable. f F > 0 where f F is the front focal position of the illumination optical system when the aspherical surface is represented by the approximate curvature.

【0048】また、本発明の照明光学系において、11
0°以上の広角な照度分布を得て、かつ光量ロスを少な
くするためには、光源から光軸に対して平行に発する最
も光線高の高い光線が、照明光学系の最も物体側の面で
全反射したり、照明レンズの外周部に当ったりしないよ
うにすることが望ましい。
Further, in the illumination optical system of the present invention, 11
In order to obtain a wide-angle illuminance distribution of 0 ° or more and reduce the light amount loss, the light beam having the highest light beam emitted from the light source in parallel with the optical axis is the most object-side surface of the illumination optical system. It is desirable not to totally reflect the light or to hit the outer periphery of the illumination lens.

【0049】[0049]

【実施例】次に本発明照明光学系の照明レンズの各実施
例を示す。 実施例1 r=∞ ER=1.09 d=2.2 n=1.80518 ν=25.43 r=−0.8049 (非球面) ER=1.09 非球面係数 P=−0.0161,E=−0.41668×10−1 f=f=1,D=1.07 , f=0.219 実施例2 r=∞ ER=1.3 d=2.94 n=1.78472 ν=25.71 r=−0.7849 (非球面) ER=1.3 d=0 r=∞ ER=1.12 d=4 n=1.72825 ν=28.46 (単ファイバー) r=∞ ER=1.12 非球面係数 実施例3 r=∞ ER=1.47 d=3.3 n=1.78472 ν=25.71 r=−1.4379 (非球面) ER=1.47 d=0.13 r=4.7059 ER=1.27 d=4.5 n=1.72825 ν=28.46(単ファイバー) r=∞ ER=1.27 非球面係数 実施例4 r=−4.635 ER=1.3 d=2.94 n=1.78472 ν=25.71 r=−0.8581 (非球面) ER=1.3 非球面係数 実施例5 r=∞ ER=1.18 d=2.66 n=1.78472 ν=25.71 r=−0.7847 (非球面) ER=1.18 非球面係数 ただしr,r,…各レンズ面の曲率半径、d,d
,…は各レンズの肉厚およびレンズ間隔、n
,…は各レンズの屈折率、ν,ν,…は各レン
ズのアッベ数、φ,φは、夫々面r,rのパワ
ー、ER,ER…はレンズ各面の有効半径である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present inventionIllumination optical systemEach implementation of illumination lens
Here is an example. Example 1 r1= ∞ ER1= 1.09 d1= 2.2 n1= 1.80518 ν1= 25.43 r2= -0.8049 (aspherical surface) ER2= 1.09 Aspherical surface coefficient P = -0.0161, E = -0.41668 × 10-1  f = f1= 1, D = 1.07, fF= 0.219 Example 2 r1= ∞ ER1= 1.3 d1= 2.94 n1= 1.77842 ν1= 25.71 r2= -0.7849 (aspherical surface) ER2= 1.3 d2= 0 r3= ∞ ER3= 1.12 d3= 4 n3= 1.72825 ν3= 28.46 (single fiber) r4= ∞ ER4= 1.12 Aspheric coefficientExample 3 r1= ∞ ER1= 1.47 d1= 3.3 n1= 1.77842 ν1= 25.71 r2= -1.4379 (aspherical surface) ER2= 1.47 d2= 0.13 r3= 4.7059 ER3= 1.27 d3= 4.5 n3= 1.72825 ν3= 28.46 (single fiber) r4= ∞ ER4= 1.27 Aspheric coefficientExample 4 r1= -4.635 ER1= 1.3 d1= 2.94 n1= 1.77842 ν1= 25.71 r2= -0.8581 (aspherical surface) ER2= 1.3 Aspheric coefficientExample 5 r1= ∞ ER1= 1.18 d1= 2.66 n1= 1.77842 ν1= 25.71 r2= -0.7847 (aspherical surface) ER2= 1.18 Aspheric coefficientWhere r1, R2, ... radius of curvature of each lens surface, d1, D
2,... Are the thickness of each lens and the lens interval, n1,
n2, ... are the refractive indices of each lens, ν1, Ν2, ... are each Len
Abbe number, φ2, Φ3Are the faces r2, R3Power
ー, ER1, ER2… Is effective on each side of the lensradiusIt is.

【0050】実施例1は、図1に示す構成で図6に示す
ようにh=f・θの関係を満足する。この実施例の照明
光学系は、図7に示す照度分布が得られ、観察視野角で
約150°まで対応できる。
The first embodiment satisfies the relationship h = f · θ as shown in FIG. 6 with the configuration shown in FIG. The illumination optical system of this embodiment has the illuminance distribution shown in FIG. 7 and can cope with an observation viewing angle up to about 150 °.

【0051】実施例2は、図2に示す構成で、非球面を
有するレンズと光源との間に単ファイバーを挿入してあ
る。この実施例2では、照明光学系への入射光線高hに
対する照明光学系からの射出角との関係を図8に示すよ
うにほぼh=f・θになるようにした。照度分布は図9
に示す通りで、観察視野角約150°まで対応できる。
更にこの実施例は、単ファイバーを光源と非球面レンズ
の間に挿入し、ファイバーバンドルの網目状むらがうつ
りにくく、かつ光源の大きさを変化させてもほとんど照
度分布に変化を与えない点で特に有効である。光源の大
きさを変化させても照度分布がないためには、次の条件
を満足することが好ましい。2d<Lただしdは単ファ
イバーのコアーの半径、Lは単ファイバーの長さであ
る。実施例3は、図3に示す構成で非球面を有するレン
ズと光源との間に凸レンズの単ファイバーを挿入したも
のである。この実施例3は、入射光源高hと射出角θと
の関係が図10に示す通りで、ほぼh=f・θになって
いる。ただこの実施例3は、hとθとの関係がh=f・
θから少々h=ftanθ側にずれているため、球面状
物体照明時に図11の照度分布のように低レベルのリン
グ状の照度むらを発生するが、実際の使用上は全く問題
がない。
In the second embodiment, a single fiber is inserted between a lens having an aspheric surface and a light source in the configuration shown in FIG. In the second embodiment, the relationship between the height h of the incident light beam on the illumination optical system and the exit angle from the illumination optical system is set to substantially h = f · θ as shown in FIG. Illuminance distribution is shown in FIG.
As shown in the figure, it is possible to cope with an observation viewing angle of about 150 °.
Furthermore, this embodiment is characterized in that a single fiber is inserted between the light source and the aspherical lens, the mesh-like unevenness of the fiber bundle is not easily changed, and the illuminance distribution hardly changes even if the size of the light source is changed. Especially effective. In order that the illuminance distribution does not occur even when the size of the light source is changed, it is preferable to satisfy the following condition. 2d <L where d is the radius of the core of the single fiber and L is the length of the single fiber. In the third embodiment, a single fiber of a convex lens is inserted between a lens having an aspheric surface and a light source in the configuration shown in FIG. In the third embodiment, the relationship between the height h of the incident light source and the exit angle θ is as shown in FIG. 10, and approximately h = f · θ. However, in the third embodiment, the relationship between h and θ is h = f ·
Since it slightly deviates from θ to the h = ftan θ side, low-level ring-shaped illuminance unevenness occurs as shown in the illuminance distribution in FIG. 11 during illumination of a spherical object, but there is no problem in actual use.

【0052】又この実施例は観察視野角約150°に対
応できる。この実施例は凸レンズの単ファイバーを挿入
してありファイバーバンドルの網目むらの影響を受けに
くく、光源の大きさを変化させても照度分布に変化を与
えず、かつ非球面レンズの加工性が良い。
This embodiment can correspond to an observation viewing angle of about 150 °. In this embodiment, a single fiber of a convex lens is inserted, and it is hardly affected by mesh irregularities of the fiber bundle, does not change the illuminance distribution even when the size of the light source is changed, and the workability of the aspherical lens is good. .

【0053】実施例4は、図4に示す構成で、照明レン
ズ系として物体側に凹面を設けた非球面レンズ1枚で構
成されている。又hとθとの関係は図12に示すように
ほぼh=f・θである。この実施例4は照明レンズの物
体側の面が平面の場合に比較して非球面レンズの加工性
が良い。更に図13に示す通りの照度分布で観察視野角
で約150°まで対応することが可能である。
The fourth embodiment has the configuration shown in FIG. 4 and includes one aspherical lens having a concave surface on the object side as an illumination lens system. The relationship between h and theta is approximately h = f · theta as shown in Figure 12. In the fourth embodiment, the workability of the aspherical lens is better than when the object-side surface of the illumination lens is flat. Further, it is possible to correspond to an observation viewing angle of about 150 ° with the illuminance distribution as shown in FIG.

【0054】実施例5は、図7に示す構成で、非球面レ
ンズ1枚で構成されている。そしてhとθとは図14に
示すようにほぼh=f・θになっている。しかしこの実
施例5は、hとθとの関係がh=f・θから少々h=f
sinθ側にずれているために図15に示すように球面
物体での照度分布は、図7に示す実施例1の照度分布よ
りも周辺での照度が低くなり、より均一に近い照度分布
を与えている。
The fifth embodiment has the configuration shown in FIG. 7 and includes one aspherical lens. H and θ are substantially equal to h = f · θ as shown in FIG. However, in the fifth embodiment, the relationship between h and θ is slightly smaller than h = f · θ.
As shown in FIG. 15, the illuminance distribution on the spherical object is lower at the periphery than the illuminance distribution of the first embodiment shown in FIG. 7 due to the shift to the sin θ side, and gives a more uniform illuminance distribution. ing.

【0055】この照明光学系は、観察視野角で約150
°まで対応できる。
This illumination optical system has an observation viewing angle of about 150
Up to °.

【0056】ところで凸レンズを用いた照明光学系は、
光源から射出角0°で射出した最も強度の強い光線がほ
ぼ1点に集光るところが存在する。この集光点が照明レ
ンズよりも物体側にあると、例えば医療用内視鏡の場合
は、人体を焼いてしまう危険性があり、又工業用の内視
鏡の場合には、可燃性の物体に引火するおそれがある。
By the way, the illumination optical system using the convex lens is
There is a place where the light beam having the highest intensity emitted from the light source at an emission angle of 0 ° is condensed to almost one point. If this focal point is located closer to the object than the illumination lens, there is a risk of burning the human body, for example, in the case of a medical endoscope, and in the case of an industrial endoscope, The object may catch fire.

【0057】そのため物体側の照明レンズの肉厚をあま
り薄くすることは好ましくない。一方、物体側の照明レ
ンズの肉厚を厚くすると、物体側の照明レンズの側面に
当る光線の量が増えるため、照明光学系から射出する光
量が減少し、視野周辺の照度を低下してしまう。そこで
これをさけるために、物体側の照明レンズに単ファイバ
ーを用いて、適切な照明レンズの肉厚を確保したりまた
は、物体側の照明レンズの前に単ファイバーを配置して
集光点が照明光学系よりも物体側に出ることを防ぎなが
ら、照明光学系から射出する光量を確保し、視野周辺の
照度を低下させないようにしてもよい。
Therefore, it is not preferable to make the illumination lens on the object side too thin. On the other hand, if the thickness of the illumination lens on the object side is increased, the amount of light rays hitting the side surface of the illumination lens on the object side increases, so that the amount of light emitted from the illumination optical system decreases and the illuminance around the visual field decreases. . Therefore, to avoid this, use a single fiber for the illumination lens on the object side and secure an appropriate thickness of the illumination lens, or place a single fiber in front of the illumination lens on the object side to reduce the focal point. It is also possible to secure the amount of light emitted from the illumination optical system and prevent the illuminance around the field of view from lowering while preventing the illumination optical system from going to the object side.

【0058】尚図6,8,10,12,14において曲
線Aは実施例、曲線Bはh=fsinθ、曲線Cはh=
fθに対するものであり、又図7,9,11,13,1
5において曲線aは平面照度分布、曲線bは球面照度分
布、曲線cは管内照度分布を示している。
6, 8, 10, 12 , and 14 , a curve A is an example, a curve B is h = fsinθ , and a curve C is h = fsinθ .
fθ, and FIGS. 7, 9, 11, 13, 1
5, a curve a indicates a planar illuminance distribution, a curve b indicates a spherical illuminance distribution, and a curve c indicates an in-tube illuminance distribution.

【0059】上記各実施例のデーター中の非球面の形状
は、次の式で表わされる。
The shape of the aspheric surface in the data of each of the above embodiments is represented by the following equation.

【0060】ただしx,hは、光軸をx軸とし物体側を
負の方向にとりh軸を面と光軸との交点を原点としてx
軸に直交する方向にとった時の座標値、Cは光軸近傍で
非球面と接する円の曲率(近似曲率)半径の逆数、pは
円錐定数、B,E,F,G・・・はそれぞれ2次,
次,6次,8次,・・・の非球面係数である。
Where x and h are x-axis with the optical axis as the x-axis, the object side in the negative direction, and the h-axis as the origin at the intersection of the plane and the optical axis.
Coordinate values when taken in a direction perpendicular to the axis, C is the reciprocal of the radius of curvature (approximate curvature) of a circle in contact with the aspheric surface near the optical axis, p is the conic constant, and B, E, F, G. Secondary, 4 respectively
, 6th, 8th,... Aspherical coefficients.

【0061】[0061]

【発明の効果】本発明の照明光学系は、視野角が110
°以上の広角の内視鏡にも用い得るもので、球面状物体
に対してほぼ均一な照度分布を与え、又平面状物体や管
腔状物体に対しても良好な照度分布を与えしかも光量の
ロスの少ない安価なものである。
The illumination optical system according to the present invention has a viewing angle of 110.
° as it can be used over a wide angle endoscope, the spherical object
To provide a nearly uniform illuminance distribution for
It is an inexpensive device that gives a good illuminance distribution even to a hollow object and has little loss of light amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例5の断面図FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】実施例1のhとθとの関係を示す図FIG. 6 is a diagram illustrating a relationship between h and θ in the first embodiment.

【図7】実施例1の照度分布を示す図FIG. 7 is a diagram illustrating an illuminance distribution according to the first embodiment.

【図8】実施例2のhとθとの関係を示す図FIG. 8 is a diagram illustrating a relationship between h and θ in the second embodiment.

【図9】実施例2の照度分布を示す図FIG. 9 is a diagram illustrating an illuminance distribution according to the second embodiment.

【図10】実施例3のhとθとの関係を示す図FIG. 10 is a diagram illustrating a relationship between h and θ in the third embodiment.

【図11】実施例3の照度分布を示す図FIG. 11 is a diagram showing an illuminance distribution according to the third embodiment.

【図12】実施例4のhとθとの関係を示す図FIG. 12 is a diagram illustrating a relationship between h and θ in the fourth embodiment.

【図13】実施例4の照度分布を示す図FIG. 13 is a diagram illustrating an illuminance distribution according to the fourth embodiment.

【図14】実施例5のhとθとの関係を示す図FIG. 14 is a diagram showing the relationship between h and θ in the fifth embodiment.

【図15】実施例5の照度分布を示す図FIG. 15 is a diagram illustrating an illuminance distribution according to the fifth embodiment.

【図16】各物体に対する照度分布を示す図FIG. 16 is a diagram showing an illuminance distribution for each object.

【図17】照明レンズの外周部内面での乱反射等を考慮
した時の照度分布を示す図
FIG. 17 is a diagram showing an illuminance distribution when irregular reflection on the inner surface of the outer peripheral portion of the illumination lens is considered;

【図18】非球面を有する照明レンズにおける光線の入
射と射出の状況を示す図
FIG. 18 is a diagram showing a state of incidence and emission of light rays in an illumination lens having an aspheric surface.

【図19】従来の照明系による各物体に対する照度分布FIG. 19: Illuminance distribution for each object by a conventional illumination system

【図20】従来の照明光学系の構成を示す図FIG. 20 is a diagram showing a configuration of a conventional illumination optical system.

【図21】他の従来の照明光学系の構成を示す図FIG. 21 is a diagram showing a configuration of another conventional illumination optical system.

【図22】更に対の照明系の構成を示す図FIG. 22 is a diagram showing a configuration of a pair of illumination systems.

【図23】図22に示す照明系の照度分布を示す図FIG. 23 is a diagram showing an illuminance distribution of the illumination system shown in FIG. 22;

【図24】上記の図22に示す照明光学系で全反射等の
影響を考慮した時の照度分布を示す図
FIG. 24 is a view showing an illuminance distribution in the illumination optical system shown in FIG. 22 when the influence of total reflection and the like is considered.

【図25】球面等におけるhと面の傾きとの関係を示す
FIG. 25 is a diagram showing a relationship between h and inclination of a surface such as a spherical surface.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも1つの正レンズを含む照明光学
系において、前記照明光学系の焦点距離をf、光軸に平
行に前記光学系に入射する光線の入射光線高をh、光線
高hの光線が前記光学系からの射出する際の射出角をθ
とするとき、h=fθの関係をほぼ満足することを特徴
とする照明光学系。
1. An illumination optical system including at least one positive lens, wherein a focal length of the illumination optical system is f, an incident ray height of a ray incident on the optical system parallel to an optical axis is h, and a ray height h is The exit angle at which a light ray exits from the optical system is θ
Where the illumination optical system substantially satisfies the relationship h = fθ.
【請求項2】前記正レンズは非球面を有し、前記非球面
が光軸から離れるにつれて近似曲率よりも曲率が弱くな
る曲面からなっていることを特徴とする請求項1の照明
光学系。
2. The illumination optical system according to claim 1, wherein said positive lens has an aspheric surface, and said aspheric surface has a curved surface having a curvature smaller than an approximate curvature as the distance from the optical axis increases.
【請求項3】前記正レンズは、入射面が前記非球面であ
ることを特徴とする請求項2の照明光学系。
3. The illumination optical system according to claim 2, wherein said positive lens has an incident surface which is said aspherical surface.
【請求項4】前記非球面は以下の条件を満足する形状で
あることを特徴とする請求項3の照明光学系。 但し、前記非球面の形状は光軸をx軸、光軸に垂直にh
軸、原点を非球面とx軸との交点とした座標系において
x=F(h)で表わされ、fは前記正レンズの焦点距
離、nは前記正レンズの屈折率である。
4. The illumination optical system according to claim 3, wherein said aspheric surface has a shape satisfying the following conditions. However, the shape of the aspheric surface is such that the optical axis is the x axis and h is perpendicular to the optical axis.
Axis, at the intersection with the coordinate system of the aspheric surface and the x-axis at the origin is represented by x = F (h), f 1 is the focal length of the positive lens, n is a refractive index of the positive lens.
【請求項5】光源としてファイバー束を備え、このファ
イバー束からの射出光が前記照明光学系に入射するよう
に配置されていることを特徴とする請求項1、2、3、
又は4の照明光学系。
5. The apparatus according to claim 1, wherein a fiber bundle is provided as a light source, and light emitted from the fiber bundle is arranged so as to enter the illumination optical system.
Or the illumination optical system of 4.
【請求項6】前記ファイバー束と前記非球面を持つ正レ
ンズとの間に別の正レンズがあることを特徴とする請求
項5の照明光学系。
6. The illumination optical system according to claim 5, wherein another positive lens is provided between said fiber bundle and said positive lens having an aspheric surface.
【請求項7】前記ファイバー束と前記非球面を持つ正レ
ンズとの間に筒状反射鏡又は単ファイバーなどの筒状反
射部材が配置されていることを特徴とする請求項5の照
明光学系。
7. An illumination optical system according to claim 5, wherein a cylindrical reflecting member such as a cylindrical reflecting mirror or a single fiber is disposed between said fiber bundle and said positive lens having an aspheric surface. .
JP3305540A 1991-10-25 1991-10-25 Illumination optical system Expired - Fee Related JP3020074B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3305540A JP3020074B2 (en) 1991-10-25 1991-10-25 Illumination optical system
US07/965,691 US5485316A (en) 1991-10-25 1992-10-23 Illumination optical system for endoscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305540A JP3020074B2 (en) 1991-10-25 1991-10-25 Illumination optical system

Publications (2)

Publication Number Publication Date
JPH05119272A JPH05119272A (en) 1993-05-18
JP3020074B2 true JP3020074B2 (en) 2000-03-15

Family

ID=17946392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305540A Expired - Fee Related JP3020074B2 (en) 1991-10-25 1991-10-25 Illumination optical system

Country Status (1)

Country Link
JP (1) JP3020074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787195B2 (en) 2008-09-11 2010-08-31 Fujifilm Corporation Illumination lens and endoscope illuminating optical system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178991B2 (en) * 2004-08-27 2013-04-10 オリンパス株式会社 Capsule endoscope
JP4874032B2 (en) * 2006-08-25 2012-02-08 Hoya株式会社 Endoscope illumination optical system
JP5133550B2 (en) 2006-10-18 2013-01-30 ペンタックスリコーイメージング株式会社 Gyro sensor mounting structure for camera with camera shake correction function
JP2010051606A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Illumination optical system and endoscope using the same
JP2011120627A (en) 2009-12-08 2011-06-23 Fujifilm Corp Illumination optical system of endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787195B2 (en) 2008-09-11 2010-08-31 Fujifilm Corporation Illumination lens and endoscope illuminating optical system

Also Published As

Publication number Publication date
JPH05119272A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
US5485316A (en) Illumination optical system for endoscopes
JPH07104494B2 (en) Illumination optical system for endoscope
WO2011058912A1 (en) Illumination optical system
GB2277809A (en) Ball lens optically coupled to plano-concave optic fibre faceplate
CN110824669B (en) 8K high-resolution panoramic annular optical lens
JPH0363724B2 (en)
CN113311563A (en) Optical lens
US20090310230A1 (en) Transmitting optical element and optical system using the same
US6600610B2 (en) Standard photographic lens
JP3743584B2 (en) Near-infrared luminous flux transmission lens system
JP3063485B2 (en) Reflective optical system
JP3020074B2 (en) Illumination optical system
JP3758801B2 (en) Endoscope objective lens system
JP2578481B2 (en) Projection lens
JP3030585B2 (en) Illumination optical system
US5502597A (en) Wide-angle photographic lens system and a photographic camera
KR910008066B1 (en) Optical system for effecting increased irradiance in peripheral area of object
JP2929309B2 (en) Endoscope objective optical system for in-tube observation
US7154683B1 (en) Five-element optical device
JP3076098B2 (en) Large aperture wide angle lens
JPH09509265A (en) High symmetry optical system
JPH06148519A (en) Lighting optical system for endoscope
JPH10503031A (en) Optical imaging system
JPS63239415A (en) Lighting optical system for endoscope
JP3026233B2 (en) Daylighting bright frame finder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees