JP3013552B2 - Regeneration method of ferric chloride etching waste liquid - Google Patents

Regeneration method of ferric chloride etching waste liquid

Info

Publication number
JP3013552B2
JP3013552B2 JP3278746A JP27874691A JP3013552B2 JP 3013552 B2 JP3013552 B2 JP 3013552B2 JP 3278746 A JP3278746 A JP 3278746A JP 27874691 A JP27874691 A JP 27874691A JP 3013552 B2 JP3013552 B2 JP 3013552B2
Authority
JP
Japan
Prior art keywords
waste liquid
etching waste
ferric chloride
iron powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3278746A
Other languages
Japanese (ja)
Other versions
JPH0585740A (en
Inventor
誠 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17601628&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3013552(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3278746A priority Critical patent/JP3013552B2/en
Publication of JPH0585740A publication Critical patent/JPH0585740A/en
Application granted granted Critical
Publication of JP3013552B2 publication Critical patent/JP3013552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子部品として使用さ
れるリードフレームをエッチングする工程で発生する塩
化第二鉄エッチング廃液の再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating ferric chloride etching waste liquid generated in a step of etching a lead frame used as an electronic component.

【0002】[0002]

【従来の技術】電子部品として使用されるリードフレー
ムの製造方法は、スタンピングによる打ち抜き法又はエ
ッチングによる加工方法が採られている。エッチング法
では通常、塩化第二鉄溶液で、鉄、ニッケル、銅などの
合金材を溶解してパターン加工するが、最近の半導体の
高集積化によりリードフレームのピン数は増大し、しか
もリード間のピッチ幅の狭いものが要求されるようにな
り、微細で精度の良い加工が要求されている。このエッ
チング液は繰り返し用いられるので、加工精度を常に一
定に保つ為にはエッチング液の管理が重要な要素の一つ
となっている。
2. Description of the Related Art As a method of manufacturing a lead frame used as an electronic component, a punching method by stamping or a processing method by etching is employed. In the etching method, usually, a ferric chloride solution is used to dissolve an alloy material such as iron, nickel, or copper, and pattern processing is performed. With a narrower pitch width, finer and more accurate processing is required. Since this etching solution is used repeatedly, the management of the etching solution is one of the important factors to keep the processing accuracy constant.

【0003】エッチング能力の管理項目としては、溶液
の比重、酸化還元電位などがあり、このため溶液を希釈
したり、塩素ガスによりFe2+を酸化したりして液管理
を行っている。しかしながら、このような方法でエッチ
ング液の管理を行っていても、リードフレーム材に使用
される重金属が溶液中に溶け込んで行き、ついにはエッ
チングによる加工が行えなくなる。このような溶液は、
現在アルカリで中和処理して水酸化物のスラッジとして
処分しているが、廃棄物として新たな公害を生じてい
る。このためエッチング液中の鉄以外の重金属のみを分
離することでエッチング液を再生してリサイクル化する
ことが望まれている。
[0003] The control items of the etching ability include the specific gravity of the solution, the oxidation-reduction potential, and the like. Therefore, the solution is managed by diluting the solution or oxidizing Fe 2+ with chlorine gas. However, even if the etching solution is managed by such a method, the heavy metal used for the lead frame material dissolves into the solution, and eventually the etching process cannot be performed. Such a solution
At present, it is neutralized with alkali and disposed of as hydroxide sludge, but it generates new pollution as waste. Therefore, it is desired to recycle and recycle the etching solution by separating only heavy metals other than iron in the etching solution.

【0004】塩化第二鉄エッチング廃液の再生方法とし
ては、例えば鉄 13.9重量%、ニッケル 17.2g/
l、その他クロム、銅等を含む強酸性エッチング廃液
に、表面積の多い突起を有する2cm角程度の塊状金属
鉄を加え、温度50〜80℃に加温し、1時間以上撹拌
することによりニッケルを除き、この後処理液に塩素ガ
スを吹き込む方法がある(特公昭61−44814号公
報)。しかし、この方法はエッチング廃液中の鉄以外の
ニッケル等を除くために大量の金属鉄を必要とし、更に
ニッケル等の除去率を高めるために反応時間が1時間以
上かかり、このため装置が大型になるという問題があっ
た。
As a method for regenerating the waste ferric chloride etching solution, for example, 13.9% by weight of iron and 17.2 g of nickel are used.
l, to a strongly acidic etching waste liquid containing chromium, copper, etc., add a lump of metallic iron of about 2 cm square having projections with a large surface area, heat to a temperature of 50 to 80 ° C., and stir for 1 hour or more to remove nickel. Except for this, there is a method of blowing chlorine gas into the post-treatment liquid (Japanese Patent Publication No. 61-44814). However, this method requires a large amount of metallic iron in order to remove nickel and the like other than iron in the etching waste liquid, and requires a reaction time of one hour or more to increase the removal rate of nickel and the like. There was a problem of becoming.

【0005】[0005]

【発明が解決しようとする課題】本発明は、塩化第二鉄
エッチング廃液中に含まれるニッケルイオンを、少量の
鉄源を用い、短時間で除去しエッチング液を簡便、安価
に再生することを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a simple and inexpensive regeneration of an etching solution by removing nickel ions contained in a ferric chloride etching waste solution using a small amount of iron source in a short time. It is the purpose.

【0006】[0006]

【課題を解決するための手段】本発明は、温度50℃以
上のニッケルイオンを含む塩化第二鉄エッチング廃液
に、多孔質である鉄粉を、該塩化第二鉄エッチング廃液
中のニッケル重量に対して1.5倍以上添加して該ニッ
ケルイオンを還元析出させた後、該塩化第二鉄エッチン
グ廃液中の固形物を分離し、次いで該塩化第二鉄エッチ
ング廃液を酸化、濃縮することを特徴とする。
According to the present invention, porous iron powder is added to a ferric chloride etching waste liquid containing nickel ions at a temperature of 50 ° C. or more, and nickel is added to the nickel weight in the ferric chloride etching waste liquid. After reducing and depositing the nickel ions by adding 1.5 times or more, the solids in the ferric chloride etching waste liquid are separated, and then the oxidation and concentration of the ferric chloride etching waste liquid are performed. Features.

【0007】多孔質である鉄粉としては、鋼材の熱間圧
延時に生ずるミルスケールあるいは純度の高い鉄鉱石を
原料とし、コークスで還元し、出来た海綿鉄を粉砕後、
分解アンモニアガス中で仕上げ還元して得られる、ミル
スケール還元鉄粉、鉱石還元鉄粉等がある。
[0007] As porous iron powder, mill scale or high-purity iron ore produced during hot rolling of steel is used as a raw material, reduced with coke and pulverized sponge iron.
There are mill-scale reduced iron powder, ore-reduced iron powder, etc. obtained by finishing reduction in decomposed ammonia gas.

【0008】[0008]

【作用】本発明の方法は、塩化第二鉄エッチング廃液中
に含まれるニッケルイオンを多孔質の鉄粉を用いて、酸
化還元反応せしめることにより、鉄粉上にメタルとして
容易に析出させることを見いだしたことにある。
According to the method of the present invention, nickel ions contained in the ferric chloride etching waste liquid are subjected to an oxidation-reduction reaction using a porous iron powder, whereby the nickel ions are easily deposited as metal on the iron powder. I have found it.

【0009】エッチング廃液中に鉄粉を添加する前にエ
ッチング廃液を50℃以上に加温するのは、温度が50
℃未満では酸化還元反応が遅く、このため図1に示すよ
うにニッケルイオンの除去率が低くなるからである。
The reason why the etching waste liquid is heated to 50 ° C. or more before adding the iron powder to the etching waste liquid is that the temperature is 50 ° C.
If the temperature is lower than 0 ° C., the oxidation-reduction reaction is slow, and as a result, the nickel ion removal rate decreases as shown in FIG.

【0010】又、エッチング廃液中に添加する鉄粉が多
孔質である必要があるのは、図2に示すようにニッケル
イオンを析出せしめるに必要な鉄粉量が多孔質でない電
解鉄粉に比べ少量であり、又図3に示すようにニッケル
イオンの析出が短時間に終了するからである。ニッケル
イオンを還元しメタルとして析出せしめるに必要な多孔
質鉄粉量は、エッチング廃液中に含まれるニッケル量の
1.5倍以上、好ましくは2.5倍以上である。エッチン
グ廃液中に銅イオン等が含まれる場合、銅イオン等を還
元析出せしめるに必要な鉄粉量を増やして添加すること
により銅イオン等を除去することが出来る。
Further, the iron powder added to the etching waste liquid needs to be porous, as shown in FIG. 2, because the amount of iron powder required to precipitate nickel ions is smaller than that of non-porous electrolytic iron powder. This is because the amount is small and the precipitation of nickel ions is completed in a short time as shown in FIG. The amount of porous iron powder required to reduce nickel ions and precipitate them as metal is at least 1.5 times, preferably at least 2.5 times, the amount of nickel contained in the etching waste liquid. When copper ions and the like are contained in the etching waste liquid, the copper ions and the like can be removed by increasing and adding the amount of iron powder necessary for reductively depositing the copper ions and the like.

【0011】[0011]

【実施例】【Example】

実施例1 鉄 10重量%、ニッケル 77g/l、比重 1.48、
酸化還元電位(以下ORPという)629mVである塩
化第二鉄エッチング廃液100mlを500mlのトー
ルビーカーに採取し、温度 20℃及び50℃に加温し
た。この加温したエッチング廃液を200rpmで撹拌
しながら、比表面積0.17m2/gの多孔質鉄鉱石還元
鉄粉(ヘネガス社製)を20g添加した。鉄粉添加後
5、10、20、30、40分経過毎にエッチング廃液
よりマイクロペピットで分析試料を固形物が混入しない
ように採取し、これを1000倍に希釈して、誘導結合
プラズマ発光分光分析法(ICP)でニッケルイオンの
濃度を測定した。
Example 1 Iron 10% by weight, nickel 77 g / l, specific gravity 1.48,
100 ml of ferric chloride etching waste liquid having an oxidation-reduction potential (hereinafter referred to as ORP) of 629 mV was collected in a 500 ml tall beaker, and heated to temperatures of 20 ° C and 50 ° C. While stirring the heated etching waste liquid at 200 rpm, 20 g of porous iron ore reduced iron powder (manufactured by Hennegas) having a specific surface area of 0.17 m 2 / g was added. After adding iron powder
Every 5, 10, 20, 30, and 40 minutes, an analysis sample was collected from the etching waste liquid by micropepit so that no solid matter was mixed therein, diluted 1000 times, and then inductively coupled plasma emission spectroscopy ( ICP) was used to measure the concentration of nickel ions.

【0012】経過時間とニッケルイオン除去率との関係
を求め、その結果を図1に示す。図1よりエッチング廃
液の鉄粉添加前温度は50℃以上でニッケルイオン除去
率が良いことが判る。
The relationship between the elapsed time and the nickel ion removal rate was determined, and the results are shown in FIG. From FIG. 1, it can be seen that the temperature before the addition of iron powder of the etching waste liquid is 50 ° C. or more, and the nickel ion removal rate is good.

【0013】温度50℃のエッチング廃液に、20gの
多孔質鉄粉を添加し、40分間反応せしめた後速やかに
濾過した。この濾液に塩素ガスを1 l/minで5分
間流し込みエッチング溶液を再生した。再生したエッチ
ング溶液は鉄 14.5重量%、ニッケル 0.3g/l、
比重 1.47、ORP 734mVであった。このエッ
チング溶液を比重が1.52となるまで濃縮し、エッチ
ング液としてリードフレーム材(Fe 58重量%、N
i 42重量%)に対して再使用した結果、新液と同等
のエッチング速度であった。
To the waste etching solution at a temperature of 50 ° C., 20 g of porous iron powder was added, reacted for 40 minutes, and immediately filtered. Chlorine gas was flowed into the filtrate at a rate of 1 l / min for 5 minutes to regenerate the etching solution. The regenerated etching solution contained 14.5% by weight of iron, 0.3g / L of nickel,
Specific gravity was 1.47 and ORP was 734 mV. This etching solution was concentrated until the specific gravity became 1.52, and a lead frame material (Fe 58% by weight, N 2
i 42% by weight), the etching rate was the same as that of the new solution.

【0014】実施例2 実施例1と同じ組成のエッチング廃液 100mlを5
0℃に加温した後、実施例1と同じ多孔質鉄粉をFe/
Ni比が1.3、1.6、1.8、2.1、2.6となるよ
うに10、12、14、16、20g添加した。鉄粉添
加後40分経過したエッチング廃液中のニッケルイオン
濃度を実施例1と同じ方法で測定し、添加鉄粉量とニッ
ケルイオン除去率との関係を求め、図2に示す。
Example 2 100 ml of an etching waste liquid having the same composition as in Example 1 was added to 5
After heating to 0 ° C., the same porous iron powder as in Example 1 was mixed with Fe /
10, 12, 14, 16, and 20 g were added so that the Ni ratio was 1.3, 1.6, 1.8, 2.1, and 2.6. The nickel ion concentration in the etching waste liquid 40 minutes after the addition of the iron powder was measured by the same method as in Example 1, and the relationship between the amount of the added iron powder and the nickel ion removal rate was determined, and is shown in FIG.

【0015】比較例 実施例2において多孔質鉄粉を比表面積 0.15m2
gの電解鉄粉(東邦亜鉛社製)に替え、Fe/Ni比が
1.3、2.6、3.9、5.2、6.5となるように1
0、20、30、40、50g添加した以外は全く同様
に実施し、その結果を図2に示す。図2より多孔質鉄粉
はFe/Ni比が1.5以上の電解鉄粉より少ない量で
ニッケルイオンを除去出来ることが判る。
Comparative Example In Example 2, the porous iron powder was prepared by adding 0.15 m 2 /
g of electrolytic iron powder (manufactured by Toho Zinc Co., Ltd.) so that the Fe / Ni ratio becomes 1.3, 2.6, 3.9, 5.2, and 6.5.
The same procedure was carried out except that 0, 20, 30, 40 and 50 g were added, and the results are shown in FIG. FIG. 2 shows that the porous iron powder can remove nickel ions in a smaller amount than the electrolytic iron powder having an Fe / Ni ratio of 1.5 or more.

【0016】実施例3 実施例1と同じ組成のエッチング廃液 100mlを5
0℃に加温した後、実施例1と同じ多孔質鉄粉20g、
比較例と同じ電解鉄粉20g、及び30gを添加した。
鉄粉添加後、実施例1と同じ経過時間毎にエッチング廃
液中のニッケルイオン濃度を実施例1と同じ方法で測定
し、経過時間とニッケルイオン除去率との関係を求め
た。その結果を図3に示す。図3より、多孔質鉄粉はニ
ッケルイオンを電解鉄粉より早く除去出来ることが判
る。
EXAMPLE 3 100 ml of an etching waste liquid having the same composition as in Example 1 was added to 5
After heating to 0 ° C., 20 g of the same porous iron powder as in Example 1,
20 g and 30 g of the same electrolytic iron powder as in the comparative example were added.
After the addition of the iron powder, the nickel ion concentration in the etching waste liquid was measured at the same elapsed time as in Example 1 by the same method as in Example 1, and the relationship between the elapsed time and the nickel ion removal rate was determined. The result is shown in FIG. FIG. 3 shows that the porous iron powder can remove nickel ions faster than the electrolytic iron powder.

【0017】[0017]

【発明の効果】本発明によれば、塩化第二鉄エッチング
廃液中のニッケルイオンを短時間で効率良く除去するこ
とができ、ニッケル除去後、塩素ガスを吹き込むことで
簡便で安価に、又鉄粉を使用するので不純物混入の少な
い塩化第二鉄エッチング廃液の再生が可能となる。
According to the present invention, nickel ions in a ferric chloride etching waste liquid can be efficiently removed in a short time. Since the powder is used, it is possible to regenerate the ferric chloride etching waste liquid with less impurities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法における、鉄粉添加後の経過時間と
ニッケルイオン除去率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the elapsed time after the addition of iron powder and the nickel ion removal rate in the method of the present invention.

【図2】本発明方法及び比較例における、鉄粉添加量と
ニッケルイオン除去率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of iron powder added and the nickel ion removal rate in the method of the present invention and a comparative example.

【図3】本発明方法及び比較例における、鉄粉添加後の
経過時間とニッケルイオン除去率との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the elapsed time after the addition of iron powder and the nickel ion removal rate in the method of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 49/10 C01G 49/14 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C01G 49/10 C01G 49/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度50℃以上のニッケルイオンを含む
塩化第二鉄エッチング廃液に、多孔質である鉄粉を、該
塩化第二鉄エッチング廃液中のニッケル重量に対して
1.5倍以上添加して、該ニッケルイオンを還元析出さ
せた後、該塩化第二鉄エッチング廃液中の固形物を分離
し、次いで該塩化第二鉄エッチング廃液を酸化、濃縮す
ることを特徴とする塩化第二鉄エッチング廃液の再生方
法。
1. A ferric chloride etching waste liquid containing nickel ions at a temperature of 50 ° C. or more, and a porous iron powder added to the ferric chloride etching waste liquid at least 1.5 times the weight of nickel in the ferric chloride etching waste liquid. Then, after the nickel ions are reduced and precipitated, a solid substance in the ferric chloride etching waste liquid is separated, and then the ferric chloride etching waste liquid is oxidized and concentrated. How to regenerate etching waste liquid.
JP3278746A 1991-09-30 1991-09-30 Regeneration method of ferric chloride etching waste liquid Expired - Lifetime JP3013552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278746A JP3013552B2 (en) 1991-09-30 1991-09-30 Regeneration method of ferric chloride etching waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278746A JP3013552B2 (en) 1991-09-30 1991-09-30 Regeneration method of ferric chloride etching waste liquid

Publications (2)

Publication Number Publication Date
JPH0585740A JPH0585740A (en) 1993-04-06
JP3013552B2 true JP3013552B2 (en) 2000-02-28

Family

ID=17601628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278746A Expired - Lifetime JP3013552B2 (en) 1991-09-30 1991-09-30 Regeneration method of ferric chloride etching waste liquid

Country Status (1)

Country Link
JP (1) JP3013552B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112573581A (en) * 2020-10-12 2021-03-30 江苏荣信环保科技有限公司 Recovery treatment process of waste acid ferric trichloride on surface of metal product

Also Published As

Publication number Publication date
JPH0585740A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US3957505A (en) Gold reclamation process
Xiao et al. An environmentally friendly process to selectively recover silver from copper anode slime
EP3690068A1 (en) Method for separating copper from nickel and cobalt
CA1090583A (en) Stepwise process for recovering precious metals from solution
JP3013552B2 (en) Regeneration method of ferric chloride etching waste liquid
EP0922678A1 (en) Waste treatment of metal plating solutions
JPH01224091A (en) Treatment of waste containing cyanogen compound
US10807085B2 (en) Silver recovery as Ag0nanoparticles from ion-exchange regenerant solution
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
JP2018178201A (en) Method for separating copper or zinc from object for exudation treatment
EP0840808B1 (en) Method of purifying gold
CN118272661A (en) Method for recovering metallic zinc from solid metallurgical waste
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JPH08176692A (en) Recovery of platinum group from spent catalyst
JP3245926B2 (en) Method for producing Mn-Zn ferrite
JP3690989B2 (en) Methods for removing antimony from tantalum, niobium, and other collection and purification solutions
US4150095A (en) Recovering magnetite and ammonium sulphate from ammonium jarosite
JPH10263557A (en) Treatment of selenium-containing waste water
US4746413A (en) Process for regenerating and detoxifying electrolytes used in the electrochemical treatment of metal
JP2019127627A (en) Method for recovering noble metal
JP2000008129A (en) Recovery of nickel from nitric hydrofluoric acid pickling waste liquid
JP3208746B2 (en) Arsenic removal method for nickel electrolyte
Cochran et al. Recovery of metals from a variety of industrial wastes
JP4256674B2 (en) How to recover cerium
JPH02229724A (en) Treatment sludge of waste ferric chloride solution