JP3013428U - Mold temperature control device - Google Patents
Mold temperature control deviceInfo
- Publication number
- JP3013428U JP3013428U JP1994002382U JP238294U JP3013428U JP 3013428 U JP3013428 U JP 3013428U JP 1994002382 U JP1994002382 U JP 1994002382U JP 238294 U JP238294 U JP 238294U JP 3013428 U JP3013428 U JP 3013428U
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molding
- end surface
- temperature
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
(57)【要約】
【目的】本考案は、成形能力の向上を図り、機械的性能
の低下の無い高い商品価値を有する成形品を得ることに
寄与し得る金型温度制御装置を提供する。
【構成】本考案の金型温度制御装置1は、近赤外光を発
する加熱用光源を筐体内に内蔵し、この加熱用光源から
の放射熱を筐体の端面から放射する加熱手段5を有し、
この加熱手段5を型開き状態の金型6の成形端面に臨ま
せて、前記加熱手段5の端面から放射される放射熱によ
り金型6の成形端面領域をこの金型6による被成形物の
温度に接近する温度に加熱するものである。
(57) [Summary] [Object] The present invention provides a mold temperature control device capable of improving molding ability and contributing to obtaining a molded product having high commercial value without deterioration of mechanical performance. A mold temperature control device 1 of the present invention comprises a heating light source that emits near-infrared light in a housing, and a heating means 5 that radiates heat radiated from the heating light source from an end surface of the housing. Have,
The heating means 5 is made to face the molding end surface of the mold 6 in the mold open state, and the molding end surface region of the mold 6 is caused to radiate heat from the end surface of the heating means 5 so that an object to be molded by the mold 6 is exposed. It heats to a temperature close to the temperature.
Description
本考案は、金型温度制御装置に関し、例えば樹脂成形に用いられる金型に適用 して好適な金型温度制御装置に関する。 The present invention relates to a mold temperature control device, and more particularly, to a mold temperature control device suitable for application to a mold used for resin molding.
従来、金型を用いて樹脂成形を行う場合、該金型に流路を設けて温水を流すこ とによって金型を熱伝導により所定の温度に保ち、この状態で金型に成形用の樹 脂を注入する。これにより、金型に予め形成した型の形状の成形品が得られるが 、金型の温度が所定の温度(例えば摂氏80度程度)に保たれているので、樹脂 の種類によっては後述するような種々の不具合が生じる。 上述した金型の所定の温度とは、樹脂注入時に最適ではないが最低限樹脂の流 れを確保する温度であり、且つ、最低限樹脂の固化し易い温度であることが前提 となる。 以上が従来において金型を用いて樹脂成形を行う場合の慣例化している金型の 温度制御の概要である。 Conventionally, when resin molding is performed using a mold, a mold is provided with a flow path and hot water is caused to flow to keep the mold at a predetermined temperature by heat conduction. Inject fat. As a result, a molded product in the shape of a mold preformed on the mold is obtained. However, since the temperature of the mold is maintained at a predetermined temperature (for example, about 80 degrees Celsius), it will be described later depending on the type of resin. Various problems occur. The above-mentioned predetermined temperature of the mold is a temperature that is not optimum at the time of resin injection but ensures a minimum flow of resin, and is a temperature at which the resin is easily solidified at a minimum. The above is the outline of the mold temperature control that has been conventionally used when resin molding is performed using a mold.
しかしながら、上述したような従来の金型の温度制御の場合、成形用の樹脂の 温度(樹脂により相違するが例えば摂氏250度程度)と、金型の温度(例えば 摂氏80度程度)との温度差が大きいため、以下の不具合が生じる。 (1)低温の金型に高温の成形用の樹脂が接触すると、直ちにこの樹脂の表面部 分のみ固化し、この薄い固化層が流動により引っ張られ成形品の表面に樹脂の流 れに沿った細いしわ(ウェルド)が生じる。このため、成形品の表面の光沢の低 下を招き商品価値を著しく減退させてしまう。 (2)また、樹脂の流動性が悪くなり、流動中に樹脂温度が低下してしまい、樹 脂の流れの合流点にウェルドが生じて成形品に断層が発生してしまい、機械的性 能の低下を招いてしまう。このような機械的性能の低下は、ガラス繊維やカーボ ン繊維と樹脂の複合物を被成形物として用いる場合や肉厚の大きい成形品の場合 に特に顕著である。この場合の対策として、被成形物の射出圧を上げることも考 えられるが、いたずらに被成形物内に残留圧力を発生させると他の障害も誘導し てしまう。 (3)更に、樹脂冷却面については金型の所定温度が高いことにより冷却時間が 長くなってしまい、成形サイクル全体の時間が長くなって成形能率の低下を招く ことになる。 そこで、本考案は、上記課題を解決して、成形能力の向上を図り、機械的性能 の低下の無い高い商品価値を有する成形品を得ることに寄与し得る金型温度制御 装置を提供することを目的とする。 However, in the case of the conventional mold temperature control as described above, the temperature of the molding resin (depending on the resin, for example, about 250 degrees Celsius) and the temperature of the mold (for example, about 80 degrees Celsius). Since the difference is large, the following problems occur. (1) When the resin for molding at high temperature comes into contact with the mold at low temperature, only the surface portion of this resin solidifies immediately, and this thin solidified layer is pulled by the flow and along the flow of resin on the surface of the molded product. Thin wrinkles occur. Therefore, the gloss of the surface of the molded product is lowered and the commercial value is significantly reduced. (2) In addition, the fluidity of the resin deteriorates, the resin temperature drops during the flow, and welds occur at the confluence of the resin flow, causing faults in the molded product, resulting in mechanical performance. Will lead to a decrease in Such a decrease in mechanical performance is particularly noticeable when a composite of glass fiber or carbon fiber and resin is used as a molded product or a molded product having a large wall thickness. As a countermeasure in this case, it may be considered to increase the injection pressure of the molded product, but if the residual pressure is unnecessarily generated in the molded product, other obstacles are also induced. (3) Further, regarding the resin cooling surface, the cooling time becomes long because the predetermined temperature of the mold is high, and the time of the entire molding cycle becomes long, resulting in a decrease in molding efficiency. Therefore, the present invention solves the above problems and provides a mold temperature control device capable of improving molding ability and contributing to obtain a molded product having high commercial value without deterioration of mechanical performance. With the goal.
請求項1記載の金型温度制御装置は、近赤外光を発する加熱用光源を筐体内に 内蔵し、この加熱用光源からの放射熱を筐体の端面から放射する加熱手段を有し 、この加熱手段を型開き状態の金型の成形端面に臨ませて、前記加熱手段の端面 から放射される放射熱により金型の成形端面領域をこの金型による被成形物の温 度に接近する温度に加熱するようにしたものである。 請求項2記載の金型温度制御装置は、近赤外光を発する加熱用光源を筐体内に 内蔵し、この加熱用光源からの放射熱を筐体の端面から放射する加熱手段と、開 閉可能に構成した金型の成形端面近傍を通過する配置に形成した流路と、この流 路に冷却媒体を流して金型の成形端面領域を冷却する冷却手段とを具備し、前記 加熱手段の端面から放射される放射熱により型開き状態の金型の成形端面領域を この金型による被成形物の温度に接近する温度に加熱するとともに、前記金型に よる被成形物の成形終了後前記冷却手段により金型の成形端面領域を次工程に適 合する温度まで冷却するようにしたものである。 請求項3記載の金型温度制御装置は、近赤外光を発する加熱用光源を筐体内に 内蔵し、この加熱用光源からの放射熱を筐体の端面から放射する加熱手段と、開 閉可能に構成した金型の成形端面の内部に配置した温度検出素子と、前記金型の 成形端面近傍を通過する配置に形成した流路と、この流路に冷却媒体を流して金 型の成形端面領域を冷却する冷却手段と、前記加熱手段の金型の成形端面への挿 脱制御及び加熱制御、前記冷却手段の動作制御、前記金型の開閉制御及び成形制 御を行う制御手段とを具備し、前記温度検出素子による成形端面領域の温度検出 結果を基に、前記制御手段により加熱手段の金型の成形端面への挿脱及び成形端 面に対する加熱、前記金型の開閉及び被成形物の成形、前記冷却手段による金型 の成形端面領域の冷却を所定のタイミングで行うようにしたものである。 The mold temperature control device according to claim 1 has a heating light source that emits near-infrared light in a housing, and has a heating unit that radiates heat radiated from the heating light source from an end surface of the housing, The heating means is made to face the molding end surface of the mold in the mold open state, and the molding end surface area of the mold is brought close to the temperature of the molding object by the radiant heat radiated from the end surface of the heating means. It is designed to be heated to the temperature. The mold temperature control device according to claim 2 has a heating light source that emits near-infrared light in a housing, and a heating unit that radiates heat radiated from the heating light source from an end surface of the housing, and an opening / closing mechanism. The mold comprises a flow path formed to pass through the vicinity of the molding end surface of the mold configured as possible, and a cooling means for flowing a cooling medium into this flow path to cool the molding end surface area of the mold. Radiation heat radiated from the end surface heats the molding end surface region of the mold in the mold open state to a temperature close to the temperature of the object to be molded by this mold, and after the molding of the object to be molded by the mold is completed, The cooling means cools the molding end face region of the mold to a temperature suitable for the next step. The mold temperature control device according to claim 3 has a heating light source that emits near-infrared light in a housing, and a heating means that radiates heat radiated from the heating light source from an end surface of the housing, and an opening / closing mechanism. A temperature detection element arranged inside the mold end face of the mold that is configured to be possible, a flow path formed so as to pass near the mold end face of the mold, and a cooling medium is caused to flow through this flow path to mold the mold. A cooling means for cooling the end face region, and a control means for controlling the insertion / extraction of the heating means to the molding end surface of the mold and heating, the operation control of the cooling means, the opening / closing control of the mold and the molding control. Based on the temperature detection result of the molding end surface area by the temperature detecting element, the control means inserts / extracts the heating means into / from the molding end surface, heats the molding end surface, opens / closes the mold and performs molding. Molding object, molding end face area of mold by the cooling means Cooling is obtained to perform a predetermined timing.
以下に前述した本考案に係る金型温度制御装置の作用を説明する。 請求項1記載の金型温度制御装置によれば、近赤外光を発する加熱用光源を内 蔵した加熱手段を型開き状態の金型の成形端面に臨ませて、前記加熱手段の端面 から放射される近赤外光による放射熱により金型の成形端面領域をこの金型によ る被成形物の温度に接近する温度に加熱するようにしたものであるから、金型の 成形端面領域の温度を短時間に被成形物の温度に接近させた状態で成形を行うこ とが可能となり、これにより、薄皮や断層の発生を防止し、表面にしわ(ウェル ド)や断層が無く、機械的性能に優れた高い商品価値を有する成形品を得ること が可能となる。 請求項2記載の金型温度制御装置によれば、近赤外光を発する加熱用光源を内 蔵した加熱手段を型開き状態の金型の成形端面に臨ませて、前記加熱手段の端面 から放射される近赤外光による放射熱により金型の成形端面領域の温度をこの金 型による被成形物の温度に短時間に接近させた状態で成形を行うことができると ともに、金型による被成形物の成形終了後前記冷却手段により金型の成形端面領 域を次工程に適合する温度まで冷却するので、成形サイクル時間を短縮でき、表 面にしわ(ウェルド)や断層が無く、機械的性能に優れた高い商品価値を有する 成形品を高い製造能率で得ることが可能となる。 請求項3記載の金型温度制御装置によれば、金型の成形端面の内部に配置した 温度検出素子による成形端面領域の温度検出結果を基に、前記制御手段により加 熱手段の金型の成形端面への挿脱及び成形端面に対する加熱、前記金型の開閉及 び被成形物の成形、前記冷却手段による金型の成形端面領域の冷却を所定のタイ ミングで行うものであるから、金型全体を昇温、冷却するのではなく金型の表面 層のみを制御でき、表面にしわ(ウェルド)や断層が無く、機械的性能に優れた 高い商品価値を有する成形品を高い製造能率でしかも自動的に得ることが可能と なる。 The operation of the mold temperature control device according to the present invention will be described below. According to the mold temperature control device of claim 1, the heating means containing the heating light source for emitting near infrared light is made to face the molding end surface of the mold in the mold open state, and from the end surface of the heating means. The molding end surface area of the mold is heated by the radiant heat from the emitted near infrared light to a temperature close to the temperature of the object to be molded by this mold. It is possible to perform molding in a state where the temperature of the object is close to the temperature of the object to be molded in a short time, which prevents the generation of thin skin and faults and eliminates wrinkles and faults on the surface. It is possible to obtain a molded product having excellent mechanical performance and high commercial value. According to the mold temperature control device of the second aspect, the heating means containing the heating light source for emitting near infrared light is made to face the molding end surface of the mold in the mold open state, and from the end surface of the heating means. It is possible to perform molding in a state where the temperature of the molding end surface region of the mold is brought close to the temperature of the molded object by this mold by the radiant heat from the radiated near infrared light in a short time, and After the molding of the object to be molded, the cooling means cools the molding end surface area of the mold to a temperature suitable for the next step, so that the molding cycle time can be shortened, and there are no wrinkles or faults on the surface. It is possible to obtain molded products with excellent commercial performance and high commercial value with high manufacturing efficiency. According to the mold temperature control device of claim 3, based on the temperature detection result of the molding end face region by the temperature detecting element arranged inside the molding end face of the mold, the control means determines the mold of the heating means. Since the insertion / removal of the molding end surface, the heating of the molding end surface, the opening / closing of the mold, the molding of the object to be molded, and the cooling of the molding end surface region of the mold by the cooling means are performed by predetermined timing, Rather than heating and cooling the entire mold, only the surface layer of the mold can be controlled, and there are no wrinkles or faults on the surface, and molded products with high mechanical value and high commercial value can be manufactured with high production efficiency. Moreover, it can be obtained automatically.
【実施例】 以下に、添付図面を参照して本考案に係る金型温度制御装置の実施例を詳細に 説明する。 図1は本実施例の金型温度制御装置1の全体構成を示すものであり、この金型 温度制御装置1は、全体の制御を行う制御手段2を具備し、該制御手段2に、近 赤外光を発する加熱用光源、即ちハロゲンランプ3を筐体4内に内蔵し、このハ ロゲンランプ3からの放射熱を筐体4の端面から放射する加熱手段5(図2乃至 図4参照)を挿脱駆動及び点灯駆動する駆動部7と、開閉可能に構成した樹脂成 形用の金型6の成形端面の内部に配置した温度検出素子8と、前記金型6の成形 端面近傍を通過する配置に形成した流路9a、9bへ冷却媒体である冷水を常時 流す冷却手段11と、前記金型6の開閉駆動部12及び樹脂注入を行う成形駆動 部13とを接続している。 ここで、前記加熱手段5について図2乃至図4を参照して詳述する。 この加熱手段5は、アルミニウム製で収納窓部15aを有し全体として直方体 状を呈する形状に形成した筐体15と、前記収納窓部15a内に列設した所要数 のハロゲンランプ3と、前記筐体15の一方の側面に配置した通電用の端子16 と、ハロゲンランプ3と端子16とを接続する接続ケーブル17と、前記列設し た所要数のハロゲンランプ3の周囲を回る配置で、且つ、前記端子16と同一の 側面まで導出した冷却管18と、この冷却管18の両端に接続した接続部材19 と、前記ハロゲンランプ3の外側を防護するボルト止めの防護ネット20とを具 備している。そして、前記冷却管18に冷却媒体(例えば水)を流すことにより 、ハロゲンランプ3の過熱防止及び接続ケーブル17の過熱防止を行うようにな っている。 このように構成した加熱手段5は、図2に示すように、2個背中合わせで接合 され、各々の端面から後述する固定金型6a、移動金型6bの成形端面に向けて 赤外線領域の光を発光し各成形端面を温度放射により短時間で高温に加熱するよ うになっている。上記加熱手段5は、図2に示すような2個背中合わせで接合し て構成する場合の他、これを1個として構成しても良い。 前記金型6は、図2に示すように、固定配置される固定金型6aと、この固定 金型6aに対し前記開閉駆動部12により駆動されて接合又は離隔する移動金型 6bとを具備している。 前記ハロゲンランプ3は、図5に示すように、円筒状で石英ガラス製の封体2 1の内部にタングステン製等のフィラメントコイル22、アンカー23を配置し てフィラメントコイル22を封体21の両端に配置したて電気接点材料製の口金 24、25に接続するとともに、前記封体21の内部にAr等の不活性ガスとハ ロゲン化合物からなるガス26を封入した構造となっている。そして、前記駆動 部7によるサイリスタ駆動で、且つ、PID(比例、積分、微分)制御により点 灯駆動されるようになっている。 このようなハロゲンランプ3は、フィラメントコイル22を通電加熱すること で、摂氏2500乃至3000度の高温下で波長1μm程度の近赤外線領域の光 を発光し被加熱物を温度放射により短時間で高温に加熱する。 この場合における電気エネルギーの熱エネルギーへの変換効率は100%が得 られ、ワット(W)密度は100W/cm2を越え、被加熱物は摂氏1500度 以上まで昇温される。また、熱放射出力は、通電後1秒以内で約90%となりほ とんど瞬時に全出力を得ることができる。更に、ハロゲンランプ3からの光は温 度放射により被加熱物を加熱するので、熱伝導や対流を利用する加熱源に比べ直 接被加熱物を加熱できる。特に、波長1μm程度の近赤外線領域の光を用いてい るので、鉄等により形成される金型6の加熱に適するものである。 なお、ハロゲンランプ3による被加熱物の加熱効率を高めるために、放物面鏡 、楕円面鏡、高次曲面鏡等の反斜面鏡を組み合わすことも可能である。 前記温度検出素子8は、図6に示すように、固定金型6a(移動金型6bに対 しても同様である)の成形端面から内方へ約2mm程度入った位置に配置される 熱電対(温度センサ−)等により構成している。 なお、図2中の符号25a、25bは流路9aを形成する流入口、流出口であ り、符号26a、26bは流路9bを形成する流入口、流出口である。また、図 6中の符号27は流路9aを形成する型内流路である。 次に、上述した構成の金型温度制御装置1の作用を図7乃至図9をも参照して 説明する。 前記金型6により樹脂成形を行う場合、固定金型6a及び移動金型6bの型締 め(型閉)の間に固定金型6a側のエクストルーダから前記成形駆動部13によ る駆動で溶けた摂氏250度程度の樹脂を固定金型6a、移動金型6bのキャビ ィティ6c内に射出し、樹脂が硬化した段階で開閉駆動部12により型開きを実 行して成形品を取り出す。 本実施例では、上述した成形開始段階の型開き中に、前記温度検出素子8によ る成形端面の温度の検出結果に基づく制御手段2による制御で動作する前記駆動 部7により一対の加熱手段5を、図2に示すように、固定金型6a、移動金型6 bの各成形端面間に臨ませ、且つ、制御手段2による制御で動作する前記駆動部 7により各ハロゲンランプ3をサイリスタ駆動で、且つ、PID(比例、積分、 微分)制御により、例えば、3秒、5秒、10秒というような短時間点灯して、 近赤外光による放射熱を各成形端面に放射してこれらの表面領域を摂氏90度乃 至200度、好ましくは、摂氏100度乃至140度程度に加熱し、樹脂の温度 に接近させる。 この場合、射出開始温度よりも摂氏0.5乃至±1.0度程度異なる昇温完了 温度を設定しておき、前記温度検出素子8が昇温完了温度を検出した段階で加熱 手段5による加熱を停止する。 この後、前記駆動部7により一対の加熱手段5を固定金型6a、移動金型6b の各成形端面間から離脱させ型閉を行い、更に、固定金型6a、移動金型6bの 温度が放熱や熱伝導で樹脂の射出温度に下がり前記温度検出素子8がこの射出温 度を検出する時点まで、射出遅延として成形駆動部13による樹脂の射出を待期 する。 そして、前記温度検出素子8による射出温度の検出結果を基づき、制御手段2 による制御で前記成形駆動部13による駆動で溶けた樹脂を固定金型6a、移動 金型6bのキャビィティ6c内に射出する。これにより、固定金型6a、移動金 型6bの端面領域は樹脂の熱で一時的に昇温完了温度よりやや高めまで上昇する 。 この段階で、前記温度検出素子8による昇温完了温度よりやや高めの温度の検 出結果に基づき、前記制御手段2による制御で前記冷却手段11を動作させ、前 記金型6の流路9a、9bに冷水を流して金型及び成形品の冷却を行う。 更に、前記温度検出素子8による成形品取出温度の検出結果に基づき、前記開 閉駆動部12を動作させ、固定金型6a、移動金型6bを開き、成形品を取出す 。 以上の動作で、1成形サイクルが終了し、この結果、成形サイクル時間を短縮 でき、表面にしわ(ウェルド)や断層が無く、機械的性能に優れた高い商品価値 を有する成形品を高い製造能率で得ることが可能となる。 また、上述した動作により、固定金型6a、移動金型6bの端面領域の温度を 摂氏0.5乃至±1.0度程度の範囲で制御できる。 なお、前工程の1成形サイクルの温度データ及び駆動タイミングデータを基に 、次工程の成形サイクルに対してフィードバック制御を行い、一層最適の条件で 成形動作を行うようにすることもできる。 図8に前記ハロゲンランプ3の照射時間と固定金型6a、移動金型6bの各端 面(表面)温度の経時変化との関係を示す。即ち、図8は、金型6の端面と加熱 手段(ヒータ)5との距離を20mm、20mm、40mmとし、金型6の端面 の照射前温度を摂氏39乃至40度、摂氏79乃至80度、摂氏79乃至80度 とした3つの場合を示している。 また、図9は、金型6の端面との距離を20mm又は40mmとし、ハロゲン ランプ3の照射時間を10秒とし、照射後5秒で樹脂の射出を行う場合を示して いる。 このような本実施例の金型温度制御装置1の場合、ハロゲンランプ3の照射効 率が非常に良く、成形品の品質の向上と、成形サイクルを短縮できる。 また、既存の金型の場合、金型表面温度を高くできずこのため樹脂の射出圧力 を高くして樹脂の流動性を高めているが、射出圧力を高くすると金型本体の大き な力がかかるため冷却管をキャビィティの面から離さなければならない。この結 果、冷却効率が悪化し冷却時間の増加、1成形サイクルの長期化を招くことにな るが、本実施例の金型温度制御装置1によれば、樹脂の射出圧力を低くできキャ ビティ6cの面近くに型内流路27を設けることができ冷却効率の向上を図れる 。 なお、既存の金型の場合、図示してないが金型の端面にエヤーシャワーを配置 し、冷風を吹きかけて冷却効率を高めるようにすることも可能である。Embodiment Hereinafter, an embodiment of a mold temperature control device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the overall structure of the mold temperature control apparatus 1 of the present embodiment. The mold temperature control apparatus 1 is equipped with a control means 2 for performing overall control, and is close to the control means 2. A heating light source that emits infrared light, that is, a halogen lamp 3 is built in a housing 4, and heating means 5 that radiates heat radiated from the halogen lamp 3 from an end surface of the housing 4 (see FIGS. 2 to 4). A driving unit 7 for inserting / removing and turning on / off, a temperature detecting element 8 disposed inside the molding end surface of a resin molding mold 6 configured to be openable / closable, and passing through the vicinity of the molding end surface of the mold 6. The cooling means 11 for constantly supplying cold water as a cooling medium to the flow paths 9a, 9b formed in such a configuration, the opening / closing drive section 12 of the mold 6 and the molding drive section 13 for injecting resin are connected. Here, the heating means 5 will be described in detail with reference to FIGS. The heating means 5 is made of aluminum and has a housing window portion 15a and is formed into a rectangular parallelepiped shape as a whole, a required number of halogen lamps 3 arranged in a row in the housing window portion 15a, With a terminal 16 for energization arranged on one side surface of the housing 15, a connection cable 17 for connecting the halogen lamp 3 and the terminal 16, and an arrangement around the required number of the halogen lamps 3 arranged in a row, Further, it is provided with a cooling pipe 18 led out to the same side surface as the terminal 16, a connecting member 19 connected to both ends of the cooling pipe 18, and a bolted protective net 20 for protecting the outside of the halogen lamp 3. are doing. Then, by flowing a cooling medium (for example, water) through the cooling pipe 18, the halogen lamp 3 and the connection cable 17 are prevented from overheating. As shown in FIG. 2, the heating means 5 configured as described above is joined back to back, and emits light in the infrared region from each end face toward the molding end faces of the fixed mold 6a and the moving mold 6b described later. It emits light and heats each molding end face to high temperature in a short time by temperature radiation. The heating means 5 may be constructed by joining two back to back as shown in FIG. 2 or may be constructed by one. As shown in FIG. 2, the mold 6 includes a fixed mold 6a that is fixedly arranged, and a movable mold 6b that is joined to or separated from the fixed mold 6a by being driven by the opening / closing drive unit 12. are doing. As shown in FIG. 5, the halogen lamp 3 has a filament coil 22 made of tungsten or the like and an anchor 23 arranged inside a cylindrical quartz glass envelope 21 so that the filament coil 22 is attached to both ends of the envelope 21. In addition to being connected to the bases 24 and 25 made of an electric contact material, the sealing body 21 has a structure in which an inert gas such as Ar and a gas 26 composed of a halogen compound are enclosed. Then, the thyristor is driven by the driving unit 7 and the lighting is driven by PID (proportional, integral, differential) control. Such a halogen lamp 3 emits light in the near-infrared region with a wavelength of about 1 μm at a high temperature of 2500 to 3000 ° C. by heating the filament coil 22 by energization to heat the object to be heated to a high temperature in a short time. Heat to. In this case, the conversion efficiency of electric energy to heat energy is 100%, the watt (W) density exceeds 100 W / cm 2, and the object to be heated is heated to 1500 ° C. or higher. Further, the thermal radiation output becomes about 90% within 1 second after energization, and the full output can be obtained almost instantly. Furthermore, since the light from the halogen lamp 3 heats the object to be heated by temperature radiation, the object to be heated can be heated directly as compared with a heating source utilizing heat conduction or convection. In particular, since light in the near infrared region having a wavelength of about 1 μm is used, it is suitable for heating the mold 6 made of iron or the like. It is also possible to combine an anti-slope mirror such as a parabolic mirror, an ellipsoidal mirror, or a high-order curved mirror in order to increase the heating efficiency of the object to be heated by the halogen lamp 3. As shown in FIG. 6, the temperature detecting element 8 is a thermoelectric element arranged at a position about 2 mm inward from the molding end surface of the fixed mold 6a (similar to the moving mold 6b). It is composed of a pair (temperature sensor) and the like. Note that reference numerals 25a and 25b in FIG. 2 denote an inlet and an outlet forming the flow passage 9a, and reference numerals 26a and 26b denote an inlet and an outlet forming the flow passage 9b. Further, reference numeral 27 in FIG. 6 is an in-mold flow channel forming the flow channel 9a. Next, the operation of the mold temperature control device 1 having the above-described configuration will be described with reference to FIGS. 7 to 9. When resin molding is performed by the mold 6, melting is performed by driving by the molding drive unit 13 from the extruder on the fixed mold 6a side during mold clamping (mold closing) of the fixed mold 6a and the movable mold 6b. Further, resin of about 250 degrees Celsius is injected into the cavities 6c of the fixed mold 6a and the moving mold 6b, and when the resin is cured, the opening / closing drive unit 12 performs mold opening to take out the molded product. In the present embodiment, during the mold opening at the molding start stage described above, the pair of heating means is operated by the drive unit 7 operated by the control by the control means 2 based on the detection result of the temperature of the molding end surface by the temperature detection element 8. As shown in FIG. 2, each of the halogen lamps 3 is made to face each thyristor 5 by the drive unit 7 which is operated under the control of the control unit 2 and is made to face between the respective molding end surfaces of the fixed mold 6a and the movable mold 6b. By driving and PID (proportional, integral, derivative) control, for a short period of time such as 3 seconds, 5 seconds, 10 seconds, radiant heat by near infrared light is radiated to each molding end face. These surface regions are heated to 90 to 200 degrees Celsius, preferably to 100 to 140 degrees Celsius to approach the temperature of the resin. In this case, a heating completion temperature different from the injection start temperature by about 0.5 to ± 1.0 degrees Celsius is set, and heating by the heating means 5 is performed at the stage when the temperature detecting element 8 detects the heating completion temperature. To stop. After that, the driving unit 7 separates the pair of heating means 5 from between the molding end faces of the fixed mold 6a and the movable mold 6b to close the mold, and further, the temperature of the fixed mold 6a and the movable mold 6b is changed. The injection of the resin by the molding drive unit 13 is waited as an injection delay until the temperature drops to the injection temperature of the resin due to heat dissipation or heat conduction and the temperature detection element 8 detects the injection temperature. Then, based on the detection result of the injection temperature by the temperature detection element 8, the resin melted by the drive of the molding drive unit 13 is injected into the cavities 6c of the fixed mold 6a and the movable mold 6b under the control of the control means 2. . As a result, the end surface regions of the fixed mold 6a and the movable mold 6b temporarily rise to a temperature slightly higher than the temperature increase completion temperature due to the heat of the resin. At this stage, the cooling means 11 is operated under the control of the control means 2 based on the detection result of the temperature slightly higher than the temperature rise completion temperature by the temperature detection element 8, and the flow path 9a of the mold 6 is described. 9b to cool the mold and the molded product. Further, based on the detection result of the temperature of the molded product taken out by the temperature detecting element 8, the opening / closing drive unit 12 is operated to open the fixed mold 6a and the movable mold 6b to take out the molded product. With the above operation, one molding cycle is completed. As a result, the molding cycle time can be shortened, and there are no wrinkles or faults on the surface. Can be obtained at. Further, the temperature of the end surface regions of the fixed mold 6a and the movable mold 6b can be controlled within the range of about 0.5 to ± 1.0 degrees Celsius by the above-described operation. It is also possible to perform feedback control for the molding cycle of the next step on the basis of the temperature data and drive timing data of the one molding cycle of the previous step so that the molding operation is performed under more optimal conditions. FIG. 8 shows the relationship between the irradiation time of the halogen lamp 3 and changes with time of the end surface (surface) temperatures of the fixed mold 6a and the moving mold 6b. That is, in FIG. 8, the distance between the end surface of the mold 6 and the heating means (heater) 5 is set to 20 mm, 20 mm, and 40 mm, and the pre-irradiation temperature of the end surface of the mold 6 is 39 to 40 degrees Celsius, and 79 to 80 degrees Celsius. , 79 to 80 degrees Celsius. Further, FIG. 9 shows a case where the distance from the end face of the mold 6 is 20 mm or 40 mm, the irradiation time of the halogen lamp 3 is 10 seconds, and the resin is injected 5 seconds after the irradiation. In the case of the mold temperature control device 1 of this embodiment as described above, the irradiation efficiency of the halogen lamp 3 is very good, and the quality of the molded product can be improved and the molding cycle can be shortened. In addition, in the case of existing molds, the mold surface temperature cannot be raised, so the injection pressure of the resin is increased to increase the fluidity of the resin.However, if the injection pressure is increased, a large force of the mold body is generated. Therefore, the cooling pipe must be separated from the surface of the cavity. As a result, the cooling efficiency is deteriorated, the cooling time is increased, and one molding cycle is lengthened. However, according to the mold temperature control device 1 of this embodiment, the resin injection pressure can be lowered. Since the in-mold flow passage 27 can be provided near the surface of the bite 6c, the cooling efficiency can be improved. In the case of the existing mold, although not shown, it is possible to arrange an air shower on the end surface of the mold and blow cool air to enhance the cooling efficiency.
以上説明した本考案によれば、以下の効果を奏する。 請求項1記載の考案によれば、金型の成形端面領域の温度を短時間に被成形物 の温度に接近させた状態で成形を行うことが可能となり、これにより、薄皮や断 層の発生を防止し、表面にしわ(ウェルド)や断層が無く、機械的性能に優れた 高い商品価値を有する成形品を得ることが可能な金型温度制御装置を提供するこ とができる。 請求項2記載の考案によれば、成形サイクル時間を短縮でき、表面にしわ(ウ ェルド)や断層が無く、機械的性能に優れた高い商品価値を有する成形品を高い 製造能率で得ることが可能な金型温度制御装置を提供することができる。 請求項3記載の考案によれば、金型全体を昇温、冷却するのではなく金型の表 面層のみを制御でき、表面にしわ(ウェルド)や断層が無く、機械的性能に優れ た高い商品価値を有する成形品を高い製造能率でしかも自動的に得ることが可能 な金型温度制御装置を提供することができる。 According to the present invention described above, the following effects can be obtained. According to the invention described in claim 1, it becomes possible to perform the molding in a state where the temperature of the molding end surface region of the mold is brought close to the temperature of the molding target in a short time, and as a result, a thin skin or a breakage occurs. It is possible to provide a mold temperature control device capable of preventing a heat generation, and having no wrinkles or faults on the surface and obtaining a molded product having excellent mechanical performance and high commercial value. According to the second aspect of the invention, the molding cycle time can be shortened, the surface is free of wrinkles and faults, and a molded product having excellent mechanical performance and high commercial value can be obtained with high manufacturing efficiency. A possible mold temperature control device can be provided. According to the invention of claim 3, it is possible to control only the surface layer of the mold without heating or cooling the entire mold, and there is no wrinkle or fault on the surface, which is excellent in mechanical performance. It is possible to provide a mold temperature control device capable of automatically obtaining a molded product having a high commercial value with high manufacturing efficiency.
【図1】本考案の実施例装置の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an apparatus according to an embodiment of the present invention.
【図2】本考案の実施例装置の金型への配置状態を示す
概略図FIG. 2 is a schematic view showing the arrangement state of the apparatus of the embodiment of the present invention in a mold.
【図3】本考案の実施例装置における加熱手段の部分切
欠図FIG. 3 is a partial cutaway view of a heating means in an apparatus according to an embodiment of the present invention.
【図4】本考案の実施例装置における加熱手段の部分切
欠断面図FIG. 4 is a partially cutaway sectional view of a heating means in an apparatus according to an embodiment of the present invention.
【図5】本考案の実施例装置に用いるハロゲンランプの
一例を示す概略図FIG. 5 is a schematic view showing an example of a halogen lamp used in the apparatus of the embodiment of the present invention.
【図6】本考案の実施例装置における固定金型の拡大断
面図FIG. 6 is an enlarged cross-sectional view of a fixed mold in an apparatus according to an embodiment of the present invention.
【図7】本考案の実施例装置における1成形サイクルの
温度変化を示すグラフFIG. 7 is a graph showing a temperature change in one molding cycle in the apparatus of the embodiment of the present invention.
【図8】本考案の実施例装置におけるハロゲンランプに
よる金型表面昇温データを示す表FIG. 8 is a table showing mold surface temperature data obtained by a halogen lamp in an apparatus according to an embodiment of the present invention.
【図9】本考案の実施例装置におけるハロゲンランプに
よる金型の加熱実験データを示す表FIG. 9 is a table showing experimental data for heating a mold by a halogen lamp in an apparatus according to an embodiment of the present invention.
1 金型温度制御装置 2 制御手段 3 ハロゲンランプ 4 筐体 5 加熱手段 6 金型 6a 固定金型 6b 移動金型 8 温度検出素子 9a 流路 9b 流路 11 冷却手段 DESCRIPTION OF SYMBOLS 1 Mold temperature control device 2 Control means 3 Halogen lamp 4 Housing 5 Heating means 6 Mold 6a Fixed mold 6b Moving mold 8 Temperature detection element 9a Flow path 9b Flow path 11 Cooling means
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年7月19日[Submission date] July 19, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図8[Correction target item name] Figure 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図8】本考案の実施例装置におけるハロゲンランプに
よる金型表面昇温データを示す図表 FIG. 8 shows a halogen lamp in an apparatus according to an embodiment of the present invention .
Chart showing mold surface temperature rise data
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図9[Correction target item name] Figure 9
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図9】本考案の実施例装置におけるハロゲンランプに
よる金型の加熱実験データを示す図表 FIG. 9 shows a halogen lamp in an apparatus according to an embodiment of the present invention .
Chart showing mold heating experiment data by
Claims (3)
蔵し、この加熱用光源からの放射熱を筐体の端面から放
射する加熱手段を有し、この加熱手段を型開き状態の金
型の成形端面に臨ませて、前記加熱手段の端面から放射
される放射熱により金型の成形端面領域を該金型による
被成形物の温度に接近する温度に加熱するようにしたこ
とを特徴とする金型温度制御装置。1. A heating light source for emitting near-infrared light is incorporated in a housing, and a heating means for radiating heat radiated from the heating light source from an end face of the housing is provided, and the heating means is in a mold open state. Facing the molding end surface of the mold, and heating the molding end surface region of the mold to a temperature approaching the temperature of the object to be molded by the radiant heat emitted from the end surface of the heating means. Mold temperature control device characterized by.
蔵し、この加熱用光源からの放射熱を筐体の端面から放
射する加熱手段と、開閉可能に構成した金型の成形端面
近傍を通過する配置に形成した流路と、該流路に冷却媒
体を流して金型の成形端面領域を冷却する冷却手段とを
具備し、前記加熱手段の端面から放射される放射熱によ
り型開き状態の金型の成形端面領域を該金型による被成
形物の温度に接近する温度に加熱するとともに、前記金
型による被成形物の成形終了後前記冷却手段により金型
の成形端面領域を次工程に適合する温度まで冷却するこ
とを特徴とする金型温度制御装置。2. A heating light source for emitting near-infrared light is incorporated in a housing, and heating means for radiating heat radiated from the heating light source from an end surface of the housing, and molding of a mold which can be opened and closed. A flow path formed to pass through the vicinity of the end surface, and a cooling means for flowing a cooling medium into the flow path to cool the molding end surface area of the mold, are provided by radiant heat radiated from the end surface of the heating means. The molding end surface area of the mold in the mold open state is heated to a temperature close to the temperature of the molding object by the mold, and after the molding of the molding object by the mold is finished, the molding end surface area of the mold by the cooling means. A mold temperature control device, characterized in that the mold is cooled to a temperature suitable for the next step.
蔵し、この加熱用光源からの放射熱を筐体の端面から放
射する加熱手段と、開閉可能に構成した金型の成形端面
の内部に配置した温度検出素子と、前記金型の成形端面
近傍を通過する配置に形成した流路と、該流路に冷却媒
体を流して金型の成形端面領域を冷却する冷却手段と、
前記加熱手段の金型の成形端面への挿脱制御及び加熱制
御、前記冷却手段の動作制御、前記金型の開閉制御及び
成形制御を行う制御手段とを具備し、前記温度検出素子
による成形端面領域の温度検出結果を基に、前記制御手
段により加熱手段の金型の成形端面への挿脱及び成形端
面に対する加熱、前記金型の開閉及び被成形物の成形、
前記冷却手段による金型の成形端面領域の冷却を所定の
タイミングで行うようにしたことを特徴とする金型温度
制御装置。3. A heating light source for emitting near-infrared light is built in a housing, heating means for radiating heat radiated from the heating light source from an end surface of the housing, and molding of a mold which can be opened and closed. A temperature detecting element disposed inside the end face, a flow channel formed in a configuration that passes near the molding end face of the mold, and cooling means for flowing a cooling medium into the flow channel to cool the molding end face region of the mold. ,
The heating end includes a control means for performing insertion / removal control and heating control on the molding end surface of the mold, operation control of the cooling means, opening / closing control of the mold, and molding control, and the molding end surface by the temperature detecting element. Based on the temperature detection result of the area, the control means inserts into and removes from the molding end surface of the mold of the heating means and heating to the molding end surface, opening and closing of the mold and molding of the molding object,
A mold temperature control device, wherein the molding end face region of the mold is cooled by the cooling means at a predetermined timing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1994002382U JP3013428U (en) | 1994-02-23 | 1994-02-23 | Mold temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1994002382U JP3013428U (en) | 1994-02-23 | 1994-02-23 | Mold temperature control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3013428U true JP3013428U (en) | 1995-07-18 |
Family
ID=43149088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1994002382U Expired - Lifetime JP3013428U (en) | 1994-02-23 | 1994-02-23 | Mold temperature control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3013428U (en) |
-
1994
- 1994-02-23 JP JP1994002382U patent/JP3013428U/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3713238B2 (en) | Blow molded plastic preform heater assembly | |
JP4605335B2 (en) | Preform heating method and heating apparatus | |
JP2004074803A (en) | Nozzle for injection machine and injection molding method | |
JP2004528199A (en) | Infrared radiator heating apparatus and lens release method | |
JP4527159B2 (en) | Method and apparatus for forming hollow molded product | |
TWI462817B (en) | Mold for synthetic resin molding | |
JP2010000784A5 (en) | ||
JP3013428U (en) | Mold temperature control device | |
JP5243362B2 (en) | Mold heating / cooling structure | |
CN108885278A (en) | System and method for the conformal cooling during eyeglass manufacture | |
JP5073704B2 (en) | Method and apparatus for forming hollow molded product | |
JP2009248423A (en) | Mold for injection molding and method of injection molding | |
JP6691649B2 (en) | Electromagnetic induction heating type resin molding die and method of manufacturing resin molding using the die | |
KR102411475B1 (en) | Mold for injection molding | |
CN106535383A (en) | Inductive heating head and device for vehicle maintenance | |
JP3970680B2 (en) | Annealing method for resin products | |
JPH09277316A (en) | Hot runner device | |
KR100628427B1 (en) | Mold system for molding comprising halogen lamp and molding method using the same | |
JP3590315B2 (en) | Method for controlling temperature of mold for molding machine and mold apparatus for molding machine | |
KR20060034771A (en) | Injection mold structure for regional heating | |
US20230382033A1 (en) | Heating cylinder heater, injection apparatus, and injection molding machine | |
KR102317194B1 (en) | Vacuum and pressure casting apparatus | |
JP3921005B2 (en) | Glass forming machine | |
JP2003011232A (en) | Heat caulking method | |
JPH0316895B2 (en) |