JP3013348B2 - X-ray exposure mask and method of manufacturing the same - Google Patents

X-ray exposure mask and method of manufacturing the same

Info

Publication number
JP3013348B2
JP3013348B2 JP8069191A JP8069191A JP3013348B2 JP 3013348 B2 JP3013348 B2 JP 3013348B2 JP 8069191 A JP8069191 A JP 8069191A JP 8069191 A JP8069191 A JP 8069191A JP 3013348 B2 JP3013348 B2 JP 3013348B2
Authority
JP
Japan
Prior art keywords
ray
mask
support film
film
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8069191A
Other languages
Japanese (ja)
Other versions
JPH04290420A (en
Inventor
正 松尾
理 増冨
文信 野口
正二 田中
欽司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP8069191A priority Critical patent/JP3013348B2/en
Publication of JPH04290420A publication Critical patent/JPH04290420A/en
Application granted granted Critical
Publication of JP3013348B2 publication Critical patent/JP3013348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はX線露光用マスク(以下
「X線マスク」と称す。)に関し、さらに詳しくはX線
リソグラフィにおける高精度アライメントを可能とする
X線マスクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mask for X-ray exposure (hereinafter referred to as "X-ray mask"), and more particularly to an X-ray mask capable of high-accuracy alignment in X-ray lithography.

【0002】[0002]

【従来の技術】X線リソグラフィでは、X線マスクと転
写用基板(一般的にはシリコンウェハー)との高精度の
アライメントが必要である。アライメント光としては通
常単色光のHe−Neレーザーやg線(436nm)が用いら
れる。
2. Description of the Related Art In X-ray lithography, high-precision alignment between an X-ray mask and a transfer substrate (generally, a silicon wafer) is required. Normally, a monochromatic He-Ne laser or a g-line (436 nm) is used as the alignment light.

【0003】X線リソグラフィにおけるアライメントの
原理を図4により説明すると、X線マスク1の裏面から
アライメント光2を入射し、転写用基板3からの反射光
Aと、X線マスク1のX線透過支持膜4上のX線吸収体
5からの反射光Bとを検出して、その強度差をアライメ
ント信号に変換する。従って、反射光A,Bの強度差が
大きいほど光学コントラストは高くなるが、反射光A,
BともにX線透過支持膜4による薄膜干渉の効果が大き
く、波長に対してほぼ同位相、同強度のリップルを持つ
反射率曲線を描く。このために、両者の光学コントラス
トが十分に取れず、しかも不安定になりやすく、高精度
アライメントは困難である。
The principle of alignment in X-ray lithography will be described with reference to FIG. 4. Alignment light 2 is incident on the back surface of an X-ray mask 1, reflected light A from a transfer substrate 3 and X-ray transmission through the X-ray mask 1. The reflected light B from the X-ray absorber 5 on the support film 4 is detected, and the intensity difference is converted into an alignment signal. Therefore, the optical contrast increases as the difference in intensity between the reflected lights A and B increases.
In both cases B and B, the effect of the thin film interference by the X-ray transmission supporting film 4 is large, and a reflectance curve having a ripple having substantially the same phase and the same intensity with respect to the wavelength is drawn. For this reason, the optical contrast between the two cannot be sufficiently obtained, and furthermore, it tends to be unstable, and high-precision alignment is difficult.

【0004】この問題を解決すべく、反射防止膜を用い
る方法が試みられているが、反射防止膜をX線透過支持
膜上に形成すると、反射防止膜の内部応力によりパター
ン位置精度が劣化したり、あるいはX線照射後に反射防
止膜の光学特性が変化するという新たな問題が生じる。
In order to solve this problem, a method using an anti-reflection film has been attempted. However, when the anti-reflection film is formed on the X-ray transmission support film, the pattern position accuracy is deteriorated due to the internal stress of the anti-reflection film. Or a new problem that the optical characteristics of the antireflection film change after X-ray irradiation.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
解決すべき課題に鑑みなされたもので、その目的は、X
線透過部とX線吸収部とのアライメント光の反射光強度
の光学コントラストを向上させて高精度のアライメント
を可能にしたX線マスクおよびその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems to be solved.
An object of the present invention is to provide an X-ray mask capable of performing high-precision alignment by improving the optical contrast of the intensity of reflected light of alignment light between a line transmitting portion and an X-ray absorbing portion, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のX線マスクは、X線透過支持膜上にパター
ン化されたX線吸収体の薄膜を形成したX線マスクにお
いて、X線透過部の支持膜とX線吸収部の支持膜に膜厚
差を設けたことを特徴とする。
In order to achieve the above object, an X-ray mask of the present invention comprises an X-ray mask having a patterned X-ray absorber thin film formed on an X-ray transmission support film. The thickness difference is provided between the support film of the X-ray transmitting section and the support film of the X-ray absorbing section.

【0007】特に、X線透過部とX線吸収部の各支持膜
からの反射光の分光反射率曲線がアライメント光の波長
に対して位相が異なるように前記各支持膜の膜厚が調整
されることが好ましい。
In particular, the thickness of each of the support films is adjusted so that the spectral reflectance curves of the light reflected from the support films of the X-ray transmitting portion and the X-ray absorbing portion have different phases with respect to the wavelength of the alignment light. Preferably.

【0008】また、本発明のX線マスクの製造方法は、
X線透過支持膜上にX線吸収体の薄膜を形成したマスク
ブランクの該X線吸収体の薄膜をパターニングした後、
マスクの表面および裏面からそれぞれX線透過支持膜を
エッチングしてX線透過部とX線吸収部の各支持膜の膜
厚を異ならしめることを特徴とする。
Further, the method of manufacturing an X-ray mask according to the present invention comprises:
After patterning the X-ray absorber thin film of the mask blank in which the X-ray absorber thin film is formed on the X-ray transmission support film,
The X-ray transmission support film is etched from the front and back surfaces of the mask, respectively, so that the thickness of each support film in the X-ray transmission portion and the X-ray absorption portion is made different.

【0009】このような本発明にあっては、X線透過部
の支持膜とX線吸収部の支持膜に膜厚差を設け、両者の
分光反射率曲線に位相差を持たせることにより、両者の
光学コントラストを向上させて、高精度のアライメント
を行なうことが出来る。
In the present invention, a difference in film thickness is provided between the supporting film of the X-ray transmitting portion and the supporting film of the X-ray absorbing portion, and a phase difference is provided between the two spectral reflectance curves. By improving the optical contrast between the two, high-precision alignment can be performed.

【0010】以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0011】図1はアライメントの状態を説明するため
の本発明のX線マスクの断面図である。図中、X線マス
ク6は本発明の一実施例の構成を示し、X線透過支持膜
4上にパターン化されたX線吸収体5の薄膜が形成され
ている。さらに、図で明らかなように、X線透過部の支
持膜4aの厚さdsと、X線吸収部の支持膜4bの厚さ
daとは異なっている。
FIG. 1 is a cross-sectional view of the X-ray mask of the present invention for explaining the state of alignment. In the drawing, an X-ray mask 6 shows the structure of one embodiment of the present invention, and a thin film of a patterned X-ray absorber 5 is formed on an X-ray transmission support film 4. Further, as is apparent from the figure, the thickness ds of the support film 4a of the X-ray transmitting portion is different from the thickness da of the support film 4b of the X-ray absorbing portion.

【0012】このような、X線透過部とX線吸収部とで
支持膜の厚さを異ならしめた本発明のX線マスクの製造
方法の一例を図2により説明する。
An example of a method for manufacturing an X-ray mask of the present invention in which the thickness of the support film is different between the X-ray transmitting portion and the X-ray absorbing portion will be described with reference to FIG.

【0013】シリコンウェハーなどの基板7上に、X線
透過支持膜(例えばSiN,SiCなど)4、X線吸収
体(例えばタンタル、タングステンなど)5を順に形成
し、基板7の裏面側にバックエッチング用マスク(例え
ばSiN,SiCなど)8を形成してなるX線マスクブ
ランク9(同図(a)参照)の表面に、X線吸収体エッ
チング用マスク(例えばSiO2など)10を形成する
(同図(b)参照)。薄膜形成は公知のスパッタリン
グ、CVD法、蒸着などの方法を任意に用いて行なうこ
とができる。
An X-ray transmission support film (eg, SiN, SiC, etc.) 4 and an X-ray absorber (eg, tantalum, tungsten, etc.) 5 are sequentially formed on a substrate 7 such as a silicon wafer. An X-ray absorber etching mask (for example, SiO 2 or the like) 10 is formed on the surface of an X-ray mask blank 9 (see FIG. 1A) on which an etching mask (for example, SiN, SiC or the like) 8 is formed. (See FIG. 3B). The thin film can be formed by any known method such as sputtering, CVD, and vapor deposition.

【0014】次に、レジストを塗布してこれをパターン
化11した後(同図(c)参照)、最上層のX線吸収体エ
ッチング用マスク10のエッチングを行なってこれをパタ
ーン化10′し、レジストパターン11をアッシングする
(同図(d)参照)。次いで、露出したX線吸収体5の
エッチングを行なってこれをパターン化5′する(同図
(e)参照)。続いて、裏面側から基板7のバックエッ
チングを行なう(同図(f)参照)。なお、エッチング
は、薄膜の材質にもよるが、高精度のパターニングが可
能であることから、ドライエッチングが望ましい。
Next, after a resist is applied and patterned 11 (see FIG. 1C), the uppermost X-ray absorber etching mask 10 is etched and patterned 10 '. Then, the resist pattern 11 is ashed (see FIG. 3D). Next, the exposed X-ray absorber 5 is etched to form a pattern 5 '(see FIG. 9E). Subsequently, back etching of the substrate 7 is performed from the back surface side (see FIG. 6F). In addition, although the etching depends on the material of the thin film, dry etching is preferable because highly accurate patterning is possible.

【0015】次に、マスクの裏面側から、X線透過支持
膜4のエッチング12を行ない、X線吸収部の支持膜4の
膜厚daを調整する(同図(g)参照)。続いて、X線
吸収体エッチング用マスクパターン10′を剥離すると同
時に、今度はマスクの表面側から、X線透過支持膜4の
エッチング12を行なって、X線透過部の支持膜4の膜厚
dsを調整する(同図(h)参照)。もちろん、この時
のエッチングはX線吸収体のパターン5′には全く損傷
を与えない条件下で行なう。
Next, the X-ray transmitting support film 4 is etched 12 from the back side of the mask to adjust the thickness da of the support film 4 of the X-ray absorbing portion (see FIG. 3G). Subsequently, the X-ray absorber etching mask pattern 10 'is peeled off, and at the same time, the etching 12 of the X-ray transmission supporting film 4 is performed from the mask surface side, and the thickness of the supporting film 4 in the X-ray transmitting portion is changed. ds is adjusted (see FIG. 3H). Of course, the etching at this time is performed under conditions that do not damage the X-ray absorber pattern 5 'at all.

【0016】このようにして、本発明のX線マスク6が
出来上がる。ところで、X線透過支持膜4の膜厚daお
よびdsの調整は、基本的には膜厚daとdsとを異なら
しめることにより行ない、これによってX線透過部とX
線吸収部における反射光の分光反射率曲線に位相差をも
たせる。本発明では特に、アライメント光の波長に対し
て、X線透過部とX線吸収部における各分光反射率曲線
が各々ピークとボトム(又はボトムとピーク)になるよ
うな位相差を持たせるように、膜厚daおよびdsを調整
することが望ましい。反射光A,B(図1参照)の強度
差が大きいほど両者の光学コントラストが十分に取れて
高くなるため、本発明のX線マスクは安定した高精度の
アライメントが行える。
Thus, the X-ray mask 6 of the present invention is completed. The thicknesses da and ds of the X-ray transmission supporting film 4 are basically adjusted by making the thicknesses da and ds different from each other.
A phase difference is given to the spectral reflectance curve of the reflected light at the line absorbing section. In the present invention, in particular, the phase difference is set so that the spectral reflectance curves of the X-ray transmitting portion and the X-ray absorbing portion have a peak and a bottom (or a bottom and a peak) with respect to the wavelength of the alignment light. It is desirable to adjust the thicknesses da and ds. The greater the difference in intensity between the reflected lights A and B (see FIG. 1), the more sufficient the optical contrast between them can be obtained, and the higher the contrast. Therefore, the X-ray mask of the present invention can perform stable and accurate alignment.

【0017】[0017]

【実施例】以下、実施例を示して本発明を更に具体的に
詳述する。
The present invention will be described below in more detail with reference to examples.

【0018】シリコンウェハー基板上に、X線透過支持
膜として2μm厚のSiNxをLPCVD法により形成
し、さらにその上にX線吸収体として0.7μm厚のタンタ
ル(Ta)をスパッタリングにより形成したX線マスク
ブランクから、図2に示す工程に従って本発明のX線マ
スクを作製した。なお、図2(g)(h)のX線透過支
持膜のエッチングはC26ガスの反応性イオンエッチン
グにより行なった。ここで、X線透過支持膜のX線吸収
部とX線透過部における膜厚daおよびdsは、X線透過
部からの反射光AとX線吸収部からの反射光B(図1参
照)とを検出し、その各々の分光反射率曲線(図3参
照)がアライメント光の波長(本実施例ではg線 436nm
を使用)に対してリップルのボトムとピークに近くなる
ように調整した。この時の膜厚差da−dsは約1000Åで
あった。
On a silicon wafer substrate, a 2 μm thick SiNx is formed as an X-ray transmission support film by LPCVD, and a 0.7 μm thick tantalum (Ta) is formed thereon as an X-ray absorber by sputtering. An X-ray mask of the present invention was produced from the mask blank according to the process shown in FIG. The etching of the X-ray transmission supporting film in FIGS. 2G and 2H was performed by reactive ion etching of C 2 F 6 gas. Here, the thicknesses da and ds of the X-ray absorbing portion and the X-ray transmitting portion of the X-ray transmitting support film are determined by the reflected light A from the X-ray transmitting portion and the reflected light B from the X-ray absorbing portion (see FIG. 1). Are detected, and the respective spectral reflectance curves (see FIG. 3) are determined by the wavelength of the alignment light (in this embodiment, g-line 436 nm).
Was adjusted so as to be closer to the bottom and peak of the ripple. At this time, the film thickness difference da-ds was about 1000 °.

【0019】一方、上記本発明のX線マスクと同様に作
製したが、図4に示すようにX線透過支持膜に膜厚差を
設けてないもの、即ちX線吸収部とX線透過部とでX線
透過支持膜の膜厚dが一定のものを比較例のX線マスク
とし、この場合の分光反射率曲線を図5に示した。
On the other hand, an X-ray mask produced in the same manner as the above-mentioned X-ray mask of the present invention, but having no difference in film thickness between the X-ray transmission supporting films as shown in FIG. The film having a constant thickness d of the X-ray transmission supporting film is used as the X-ray mask of the comparative example, and the spectral reflectance curve in this case is shown in FIG.

【0020】比較例では、図5に示すように、AとBの
曲線の波長に対する位相はほとんど同じである。このた
め、アライメント光としてg線(436nm)を使用したと
きに、Aの反射率/Bの反射率=35%/25%=1.4とな
り、非常に低コントラストである。
In the comparative example, as shown in FIG. 5, the phases of the curves A and B with respect to the wavelength are almost the same. Therefore, when g-line (436 nm) is used as the alignment light, the reflectance of A / the reflectance of B = 35% / 25% = 1.4, which is a very low contrast.

【0021】これに対して、本発明では、図3に示すよ
うに、Aの曲線とBの曲線に位相差が生じ、しかも各々
の曲線のピークとボトムに近くなるようにX線透過支持
膜の膜厚dsおよびdaが調整された結果、同じくアライ
メント光としてg線(436nm)を使用したときに、Aの
反射率/Bの反射率=48%/13%=3.7となり、非常に
高いコントラストが得られることがわかる。
On the other hand, in the present invention, as shown in FIG. 3, the X-ray transmission supporting film has a phase difference between the curve A and the curve B, and is close to the peak and bottom of each curve. As a result of adjusting the film thicknesses ds and da, the reflectance of A / the reflectance of B = 48% / 13% = 3.7 when g-line (436 nm) is also used as the alignment light, which is a very high contrast. Is obtained.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
れば、X線透過部とX線吸収部でのX線透過支持膜に膜
厚差を設けることにより、両者の分光反射率曲線に位相
差を持たせて、使用するアライメント光の波長における
両者の光学コントラストを著しく向上することができる
ので、この結果安定した高精度のアライメントを行なう
ことが可能となる。
As described above in detail, according to the present invention, by providing a film thickness difference between the X-ray transmitting portion and the X-ray transmitting support film in the X-ray absorbing portion, the spectral reflectance curve of the two can be obtained. Since the optical contrast between the two can be remarkably improved at the wavelength of the alignment light to be used, a stable and highly accurate alignment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 アライメントの状態を説明するための本発明
のX線マスクの断面図である。
FIG. 1 is a cross-sectional view of an X-ray mask of the present invention for explaining an alignment state.

【図2】 本発明のX線マスクの製造方法を工程順に示
す断面図である。
FIG. 2 is a cross-sectional view showing a method for manufacturing an X-ray mask of the present invention in the order of steps.

【図3】 本発明のX線マスクの分光反射率曲線図であ
る。
FIG. 3 is a spectral reflectance curve diagram of the X-ray mask of the present invention.

【図4】 アライメントの状態を説明するための従来の
X線マスクの断面図である。
FIG. 4 is a cross-sectional view of a conventional X-ray mask for explaining an alignment state.

【図5】 従来のX線マスクの分光反射率曲線図であ
る。
FIG. 5 is a spectral reflectance curve diagram of a conventional X-ray mask.

【符号の説明】[Explanation of symbols]

1,6 X線マスク 2 アライメント光 3 転写用基板 4 X線透過支持膜 5 X線吸収体 7 基板 8 バックエッチング用マスク 9 X線マスクブランク 10 X線吸収体エッチング用マスク 11 レジストパターン 12 エッチング 1,6 X-ray mask 2 Alignment light 3 Transfer substrate 4 X-ray transmission support film 5 X-ray absorber 7 Substrate 8 Back etching mask 9 X-ray mask blank 10 X-ray absorber etching mask 11 Resist pattern 12 Etching

フロントページの続き (72)発明者 田中 正二 東京都台東区台東一丁目5番1号 凸版 印刷株式会社内 (72)発明者 大久保 欽司 東京都台東区台東一丁目5番1号 凸版 印刷株式会社内 (56)参考文献 特開 昭60−168145(JP,A) 特開 昭62−20310(JP,A) 特開 平1−128524(JP,A) 特開 平4−130712(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 1/16 Continuation of the front page (72) Inventor Shoji Tanaka 1-1-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. (72) Inventor Kinji 1-5-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. (56) References JP-A-60-168145 (JP, A) JP-A-62-20310 (JP, A) JP-A-1-128524 (JP, A) JP-A-4-130712 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/027 G03F 1/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線透過支持膜上にパターン化されたX
線吸収体の薄膜を形成したX線露光用マスクにおいて、
X線透過部の支持膜とX線吸収部の支持膜に膜厚差を設
けたことを特徴とするX線露光用マスク。
1. An X-ray patterned on an X-ray transparent support film.
In an X-ray exposure mask formed with a thin film of a line absorber,
An X-ray exposure mask, wherein a thickness difference is provided between a support film of an X-ray transmitting portion and a support film of an X-ray absorbing portion.
【請求項2】 X線透過部とX線吸収部の各支持膜から
の反射光の分光反射率曲線がアライメント光の波長に対
して位相が異なるように前記各支持膜の膜厚が調整され
ている請求項1記載のX線露光用マスク。
2. The thickness of each support film is adjusted so that the spectral reflectance curves of the light reflected from each support film of the X-ray transmitting portion and the X-ray absorption portion have different phases with respect to the wavelength of the alignment light. The mask for X-ray exposure according to claim 1.
【請求項3】 X線透過支持膜上にX線吸収体の薄膜を
形成したマスクブランクの該X線吸収体の薄膜をパター
ニングした後、マスクの表面および裏面からそれぞれX
線透過支持膜をエッチングしてX線透過部とX線吸収部
の各支持膜の膜厚を異ならしめることを特徴とするX線
露光用マスクの製造方法。
3. After patterning the thin film of the X-ray absorber of the mask blank in which the thin film of the X-ray absorber is formed on the X-ray transmitting support film, X-rays are respectively applied from the front surface and the back surface of the mask.
A method for manufacturing an X-ray exposure mask, characterized in that the X-ray transmitting support film is etched to make the thickness of each of the X-ray transmitting portions and the X-ray absorbing portion support films different.
JP8069191A 1991-03-19 1991-03-19 X-ray exposure mask and method of manufacturing the same Expired - Fee Related JP3013348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8069191A JP3013348B2 (en) 1991-03-19 1991-03-19 X-ray exposure mask and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8069191A JP3013348B2 (en) 1991-03-19 1991-03-19 X-ray exposure mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04290420A JPH04290420A (en) 1992-10-15
JP3013348B2 true JP3013348B2 (en) 2000-02-28

Family

ID=13725358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8069191A Expired - Fee Related JP3013348B2 (en) 1991-03-19 1991-03-19 X-ray exposure mask and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3013348B2 (en)

Also Published As

Publication number Publication date
JPH04290420A (en) 1992-10-15

Similar Documents

Publication Publication Date Title
US5234780A (en) Exposure mask, method of manufacturing the same, and exposure method using the same
JP2891332B2 (en) Phase grating and method of manufacturing phase grating
US5902493A (en) Method for forming micro patterns of semiconductor devices
JPH0799730B2 (en) Pattern formation method
US5733713A (en) Method of manufacturing semiconductor device
JPS60149130A (en) Method for pattern detection
JP6258830B2 (en) Mask blank, mask blank manufacturing method, and transfer mask manufacturing method
US20040063001A1 (en) Method of making an integrated circuit using a photomask having a dual antireflective coating
JP3478067B2 (en) Halftone phase shift mask and blank for halftone phase shift mask
JP2010122304A (en) Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP3013348B2 (en) X-ray exposure mask and method of manufacturing the same
JPH04162039A (en) Photomask
JP2979651B2 (en) Method for forming wiring of semiconductor device
JP2817477B2 (en) X-ray exposure mask and blank thereof
US5294506A (en) Photomask
JP2924146B2 (en) X-ray exposure mask and method of manufacturing the same
KR100274149B1 (en) Metal thin film patterning method
JP3066967B2 (en) Method for manufacturing semiconductor device
JP3046631B2 (en) Method for manufacturing phase shift photomask
JP3167398B2 (en) Method for manufacturing semiconductor device
JP3253774B2 (en) X-ray exposure mask and mask blank used therefor
JP3339201B2 (en) X-ray exposure mask and X-ray exposure mask blank
TW432483B (en) Method for forming anti-reflective layer with double-layer structure
JPH05234843A (en) Substrate chuck of aligner
JP4273776B2 (en) Extreme UV exposure mask

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees