JP3010817B2 - Semiconductor optical device - Google Patents

Semiconductor optical device

Info

Publication number
JP3010817B2
JP3010817B2 JP3210615A JP21061591A JP3010817B2 JP 3010817 B2 JP3010817 B2 JP 3010817B2 JP 3210615 A JP3210615 A JP 3210615A JP 21061591 A JP21061591 A JP 21061591A JP 3010817 B2 JP3010817 B2 JP 3010817B2
Authority
JP
Japan
Prior art keywords
quantum well
well layer
layer
active region
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3210615A
Other languages
Japanese (ja)
Other versions
JPH0555684A (en
Inventor
和久 魚見
鈴木  誠
雅博 青木
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16592262&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3010817(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3210615A priority Critical patent/JP3010817B2/en
Publication of JPH0555684A publication Critical patent/JPH0555684A/en
Application granted granted Critical
Publication of JP3010817B2 publication Critical patent/JP3010817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体光素子に係り、特
に光通信システムに用いられる半導体レーザ、半導体光
増幅器等に応用して好適な半導体光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device, and more particularly to a semiconductor optical device suitable for application to a semiconductor laser, a semiconductor optical amplifier and the like used in an optical communication system.

【0002】[0002]

【従来の技術】従来の半導体レーザ、特に変調時にも単
一縦モードで発振する分布帰還型(DFB)半導体レー
ザにおいては、高速変調の上限を決めている緩和振動周
波数を増大する方法として、DFB構造のブラッグ反射
で決まるレーザ発振波長λBを活性領域媒質の利得ピー
ク波長λgに対して短波長側に設定するマイナスデチュ
ーニング方式が極めて有効であることが知られている。
一方、光ファイバ損失の最も少ない波長1.55μm帯
で発振する量子井戸形半導体レーザは、量子井戸構造の
量子サイズ効果を反映した低チャーピング性により、長
距離光ファイバ通信用光源として期待されている。この
1つの例として、アイ・イー・イー・イーフォトニクス
テクノロジー レターズ、ボルーム2、ナンバー4、
(1990年)、第229頁から第230頁[IEEE Pho
tonics Technology Letters, vol.2,No.4, pp.229-23
0, (1990)]が挙げられる。
2. Description of the Related Art In a conventional semiconductor laser, particularly a distributed feedback (DFB) semiconductor laser which oscillates in a single longitudinal mode even during modulation, a method of increasing the relaxation oscillation frequency which determines the upper limit of high-speed modulation is known as DFB. It is known that a minus detuning system in which the laser oscillation wavelength λB determined by the Bragg reflection of the structure is set to a shorter wavelength side than the gain peak wavelength λg of the active region medium is extremely effective.
On the other hand, a quantum well semiconductor laser that oscillates at a wavelength of 1.55 μm with the least optical fiber loss is expected as a light source for long-distance optical fiber communication due to its low chirping property reflecting the quantum size effect of the quantum well structure. I have. One example of this is IEE Photonics Technology Letters, Boroom 2, Number 4,
(1990), pp. 229-230 [IEEE Pho
tonics Technology Letters, vol.2, No.4, pp.229-23
0, (1990)].

【0003】[0003]

【発明が解決しようとする課題】上記従来技術における
マイナスデチューニング方式についてまず説明する。D
FB構造のブラッグ反射で決まるレーザ発振波長λBは
1.55μmに対しマイナスデチューニングの度合いは
特に−10〜−30nmが望ましい。従って、活性領域
媒質の利得ピーク波長λgを約1.57μmに設定する
必要がある。これを満足するためには、図2に示したI
nGaAs量子井戸層膜厚と活性領域媒質の利得ピーク
波長λPLの関係(Δa/a=0%)から、InGaA
s量子井戸層膜厚を約90Åに設定する必要がある。し
かし、この方式では以下のごとき問題がある。図3に、
量子井戸構造の量子サイズ効果の度合いを表す微分利得
(dg/dn)のInGaAs量子井戸層膜厚依存性を
示す。マイナスデチューニングを行うために、InGa
As量子井戸層厚を約90Åに増大すると微分利得(d
g/dn)が大幅に低下する。このため、図4の白丸の
如くマイナスデチューニングを施したにも関わらず、緩
和振動周波数frが逆に低下した。量子井戸構造の活性
領域を有する半導体光素子は、例えば特開平4−152583
号公報、特開平3−3384号公報、並びに特開平2−1309
88号公報にも記載されているが、上述の問題を解決する
技術を見出すことはできなかった。
First, the minus detuning method in the above prior art will be described. D
The laser oscillation wavelength λB determined by the Bragg reflection of the FB structure is 1.55 μm, and the degree of minus detuning is particularly preferably −10 to −30 nm. Therefore, it is necessary to set the gain peak wavelength λg of the active region medium to about 1.57 μm. In order to satisfy this, the I shown in FIG.
From the relationship between the nGaAs quantum well layer thickness and the gain peak wavelength λPL of the active region medium (Δa / a = 0%), InGaAs
It is necessary to set the thickness of the s quantum well layer to about 90 °. However, this method has the following problems. In FIG.
The dependency of the differential gain (dg / dn) representing the degree of the quantum size effect of the quantum well structure on the thickness of the InGaAs quantum well layer is shown. To perform minus detuning, InGa
When the thickness of the As quantum well layer is increased to about 90 °, the differential gain (d
g / dn) is greatly reduced. For this reason, although the negative detuning was performed as indicated by the white circles in FIG. 4, the relaxation oscillation frequency fr was conversely reduced . Activity of quantum well structure
A semiconductor optical device having a region is disclosed in, for example, Japanese Patent Application Laid-Open No.
JP, JP-A-3-3384, and JP-A-2-1309
No. 88, which solves the above problem
No technology could be found.

【0004】本発明の目的は、1.55μm帯量子井戸
形DFB半導体レーザにおいて、マイナスデチューニン
グ方式と同時に量子井戸構造の量子サイズ効果の両者を
両立した半導体光素子を提供することにある。
It is an object of the present invention to provide a semiconductor optical device in a 1.55 μm band quantum well type DFB semiconductor laser which has both a negative detuning method and a quantum size effect of a quantum well structure.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、量子井戸構造の量子サイズ効果を十
分に引き出すためにInGaAs等の化合物半導体材料
からなる量子井戸層膜厚を40〜80Åに設定し、さら
に活性領域の媒質の利得ピーク波長λgを約1.57μ
mに設定しマイナスデチューニングを行うために量子井
戸層に比較的小さな歪を導入する構成を開示するもので
ある。また、別の表現で表すと、量子井戸層を構成する
化合物半導体の元素組成比(例えばInGaAsのIn
モル比)を半導体基板への格子整合組成から若干ずらす
ことに相当する。
Means for Solving the Problems To achieve the above object, the present inventors have proposed a method of forming a quantum well layer made of a compound semiconductor material such as InGaAs in order to sufficiently exploit the quantum size effect of a quantum well structure. 40-80 °, and the gain peak wavelength λg of the medium in the active region is set to about 1.57 μm.
It discloses a configuration in which a relatively small strain is introduced into the quantum well layer in order to perform the negative detuning by setting to m. In other words, the element composition ratio (for example, InGaAs of InGaAs) of the compound semiconductor constituting the quantum well layer
(Molar ratio) is slightly different from the lattice matching composition to the semiconductor substrate.

【0006】[0006]

【作用】以下、本発明の効果について、図2〜4を用い
て説明する。InP基板上のInGaAs層はInモル
比により歪量が変化する。この歪量Δa/aは、InP
基板の格子定数をas、InGaAs層の格子定数をa
wとすると、次式で表すことができる。
The effects of the present invention will be described below with reference to FIGS. The strain amount of the InGaAs layer on the InP substrate changes depending on the In molar ratio. This strain amount Δa / a is determined by InP
Let the lattice constant of the substrate be as and the lattice constant of the InGaAs layer be a
If it is w, it can be expressed by the following equation.

【0007】Δa/a=(aw−as)/as このΔa/aをパラメータにしたときの活性領域媒質の
利得ピーク波長λgのInGaAs量子井戸層膜厚依存
性の一例(Δa/a=±0.4%)を図2中に示す。例
えば、Δa/aが+0.4%のとき、InGaAs量子
井戸層膜厚を54Åに設定すると1.57μmの利得ピ
ーク波長λgを得ることができることが分かる。この量
子井戸層膜厚は、図3から分かるように量子井戸構造の
量子サイズ効果を十分に引き出すことができる膜厚であ
る。このように製作した歪量+0.4%で膜厚が55Å
のInGaAs量子井戸層を有する1.55μm帯量子
井戸形DFB半導体レーザの緩和振動周波数frのデチ
ューニング依存性を図4内に黒丸で示す。緩和振動周波
数frはマイナスデチューニングの度合いと共に増大す
ることが分かる。
Δa / a = (aw−as) / as An example of the dependency of the gain peak wavelength λg of the active region medium on the thickness of the InGaAs quantum well layer when Δa / a is used as a parameter (Δa / a = ± 0) .4%) is shown in FIG. For example, when Δa / a is + 0.4%, it can be seen that a gain peak wavelength λg of 1.57 μm can be obtained by setting the thickness of the InGaAs quantum well layer to 54 °. As can be seen from FIG. 3, the thickness of the quantum well layer is a thickness that can sufficiently bring out the quantum size effect of the quantum well structure. The film thickness is 55 ° at the distortion amount + 0.4% thus manufactured.
The detuning dependence of the relaxation oscillation frequency fr of the 1.55 μm band quantum well type DFB semiconductor laser having the InGaAs quantum well layer of FIG. It can be seen that the relaxation oscillation frequency fr increases with the degree of minus detuning.

【0008】以上の如く、歪量Δa/aにより、利得ピ
ーク波長λgを制御し、DFBレーザのデチューニング
の度合いを調整することが可能となった。このとき、歪
量Δa/aは大きすぎると半導体結晶内に欠陥が発生す
るので、最大値は±0.5%が望ましい。また、小さす
ぎると、利得ピーク波長λgの制御幅が小さいので、Δ
a/aの絶対値としては、±0.2%が最低必要とな
る。従って、本発明における歪量Δa/aの範囲は、
0.2%≦|Δa/a|≦0.5%で、かつ量子井戸層
膜厚Lwは、量子井戸構造の量子サイズ効果を十分に引
き出す範囲である40Å≦Lw≦80Åが望ましい。以
上の歪量Δa/aに対応するInGaAs層のInモル
比yは、0.46≦y≦0.50、あるいは0.56≦
y≦0.61である。
As described above, the gain peak wavelength λg can be controlled by the distortion amount Δa / a, and the degree of detuning of the DFB laser can be adjusted. At this time, if the strain amount Δa / a is too large, a defect occurs in the semiconductor crystal. Therefore, the maximum value is preferably ± 0.5%. On the other hand, if it is too small, the control width of the gain peak wavelength λg is small,
The absolute value of a / a is required to be at least ± 0.2%. Therefore, the range of the strain amount Δa / a in the present invention is:
It is desirable that 0.2% ≦ | Δa / a | ≦ 0.5% and the thickness of the quantum well layer Lw be 40 ° ≦ Lw ≦ 80 °, which is a range that sufficiently brings out the quantum size effect of the quantum well structure. The In molar ratio y of the InGaAs layer corresponding to the above strain amount Δa / a is 0.46 ≦ y ≦ 0.50 or 0.56 ≦
y ≦ 0.61.

【0009】また、波長1.55μm帯の半導体光増幅
器における利得飽和出力レベルの増大に対しても、本発
明は量子井戸構造の量子サイズ効果を十分に引き出すこ
とができるので有効である。さらに、エルビウム・ドー
プファイバ光増幅器用の波長1.48μm高出力半導体
レーザに対しても同様に有効である。
The present invention is also effective in increasing the gain saturation output level in a semiconductor optical amplifier in the 1.55 μm band, since the quantum size effect of the quantum well structure can be sufficiently obtained. Further, the present invention is similarly effective for a high-output semiconductor laser having a wavelength of 1.48 μm for an erbium-doped fiber optical amplifier.

【0010】[0010]

【実施例】以下、本発明の実施例を図1、図5〜6を用
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】〔実施例1〕図1は本発明を1.55μm
帯量子井戸形DFB半導体レーザに適用したものであ
る。回折格子2を有したn−InP基板1上にInGa
AsP光ガイド層3、多重量子井戸活性領域4、p−I
nPクラッド層5を順次形成する。活性領域を突き抜け
るまでのメサストライプをエッチングにより形成した
後、p−InP6、n−InP7を活性領域を埋め込む
ように形成する。その後、p側電極8、n側電極9を形
成し、共振器長150〜500μmに劈開し、素子を形
成した。ここで、多重量子井戸活性領域4は、膜厚60
Å、歪量Δa/aが0.3%のInGaAs量子井戸層
(Inモル比:0.575)4aと膜厚150ÅのIn
GaAsP障壁層4bの周期構造である。この周期は、
1〜25周期とすることができる。試作した素子の発振
波長は、回折格子によるブラッグ反射により約1.55
0μmであり、活性領域媒質の利得ピーク波長λgの約
1.570μmに比べ、デチューニングは約−20nm
に制御できる。この結果、パルス電流40mAの時の緩
和振動周波数fr(黒丸)は図4の如く約12GHz
と、従来のInGaAs量子井戸層膜厚を厚くするデチ
ューニング方法(白丸)に比べ、frを倍増することが
できる。また、量子井戸構造の量子サイズ効果を十分に
引き出しているので、2.4Gbit/s変調時の20
dBダウンのチャーピング量は従来の量子井戸構造DF
Bレーザに比べ約1/2の0.20nmまで大幅に低減
でき、さらにしきい電流の低減にも有効で10mA以下
のしきい電流が安定に得られる。
[Embodiment 1] FIG. 1 shows the present invention at 1.55 μm.
This is applied to a band quantum well type DFB semiconductor laser. InGaP on n-InP substrate 1 having diffraction grating 2
AsP light guide layer 3, multiple quantum well active region 4, p-I
The nP cladding layer 5 is formed sequentially. After a mesa stripe is formed by etching until it penetrates the active region, p-InP6 and n-InP7 are formed so as to bury the active region. Thereafter, a p-side electrode 8 and an n-side electrode 9 were formed, and cleaved to a resonator length of 150 to 500 μm to form an element. Here, the multiple quantum well active region 4 has a thickness of 60
Å, InGaAs quantum well layer (In molar ratio: 0.575) 4a having a strain amount Δa / a of 0.3% and In
This is a periodic structure of the GaAsP barrier layer 4b. This cycle is
It can be 1 to 25 cycles. The oscillation wavelength of the prototype device was about 1.55 due to Bragg reflection by the diffraction grating.
0 μm, and the detuning is about −20 nm compared to about 1.570 μm of the gain peak wavelength λg of the active region medium.
Can be controlled. As a result, the relaxation oscillation frequency fr (black circle) at a pulse current of 40 mA is about 12 GHz as shown in FIG.
And fr can be doubled as compared with the conventional detuning method (open circles) for increasing the thickness of the InGaAs quantum well layer. In addition, since the quantum size effect of the quantum well structure is sufficiently taken out, 20% at 2.4 Gbit / s modulation.
The chirping amount of dB down is the conventional quantum well structure DF.
Compared to the B laser, the current can be reduced to about 0.20 nm, which is about a half of that of the B laser. Further, the threshold current can be effectively reduced, and a threshold current of 10 mA or less can be stably obtained.

【0012】〔実施例2〕図5は本発明を1.48μm
帯高出力半導体レーザに適用したものである。n−In
P基板1上に膜厚55Å、歪量Δa/aが−0.3%の
InGaAs量子井戸層10aと膜厚100ÅのInG
aAsP障壁層10bの2〜15周期構造からなる多重
量子井戸活性領域10、p−InPクラッド層5を順次
形成する。この後、実施例1と同様に活性領域を突き抜
けるまでのメサストライプをエッチングにより形成する
ことにより、活性領域幅約1.5μmのストライプ構造
とした後、p側電極8、n側電極9を形成し、共振器長
150〜1000μmに劈開し、素子を形成する。試作
した素子は、波長1.48μmにおいてしきい電流約1
5mAで発振し、量子サイズ効果を反映して最高出力3
00mWを得る。
[Embodiment 2] FIG. 5 shows the present invention at 1.48 μm.
This is applied to a high power semiconductor laser. n-In
On the P substrate 1, an InGaAs quantum well layer 10a having a thickness of 55 ° and a strain amount Δa / a of −0.3% and InG having a thickness of 100 ° are formed.
A multiple quantum well active region 10 having a 2 to 15 period structure of the aAsP barrier layer 10b and a p-InP cladding layer 5 are sequentially formed. Thereafter, a mesa stripe is formed by etching until it penetrates the active region in the same manner as in the first embodiment to form a stripe structure with an active region width of about 1.5 μm, and then a p-side electrode 8 and an n-side electrode 9 are formed. Then, cleavage is performed to a resonator length of 150 to 1000 μm to form an element. The prototype device has a threshold current of about 1 at a wavelength of 1.48 μm.
It oscillates at 5mA and reflects the quantum size effect and has a maximum output of 3
00mW.

【0013】〔実施例3〕図6は本発明を半導体光増幅
器に適用したものである。n−InP基板1上に膜厚5
5Å、歪量Δa/aが+0.4%のInGaAs量子井
戸層(Inモル比:0.59)11aと膜厚100Åの
InGaAsP障壁層11bの2〜15周期構造からな
る多重量子井戸活性領域11、p−InPクラッド層5
を順次形成した後、実施例1と同様に活性領域を突き抜
けるまでのメサストライプをエッチングにより形成する
ことにより、ストライプ構造とする。次に、端面近傍の
半導体膜を除去した後、FeドープInP層12で埋め
込んだ窓構造とする。p側電極8、n側電極9を形成
し、共振器長200〜1000μmに劈開し、両端面に
誘電体膜からなる低反射膜13を形成し、さらに反射率
の低減を図り、その結果反射率を0.003%にするこ
とができる。試作した素子の利得ピーク波長λgの約
1.550μmであり、量子井戸構造の高い量子サイズ
効果を十分に引き出せたことにより、利得飽和出力レベ
ルを20〜25dBmと従来の量子井戸構造半導体光増
幅器に比べて大きくすることができる。
Embodiment 3 FIG. 6 shows an embodiment in which the present invention is applied to a semiconductor optical amplifier. Film thickness 5 on n-InP substrate 1
A multiple quantum well active region 11 having a 2-15 periodic structure of an InGaAs quantum well layer (In molar ratio: 0.59) 11a having a thickness of 5% and a strain amount Δa / a of + 0.4% and an InGaAsP barrier layer 11b having a thickness of 100%. , P-InP cladding layer 5
Are sequentially formed, and a mesa stripe is formed by etching until it penetrates the active region in the same manner as in the first embodiment to form a stripe structure. Next, a window structure in which the semiconductor film near the end face is removed and embedded with the Fe-doped InP layer 12 is obtained. A p-side electrode 8 and an n-side electrode 9 are formed, cleaved to a resonator length of 200 to 1000 μm, a low-reflection film 13 made of a dielectric film is formed on both end surfaces, and the reflectance is further reduced. The rate can be 0.003%. The gain peak wavelength λg of the prototype device is about 1.550 μm, and the high quantum size effect of the quantum well structure can be sufficiently brought out, so that the gain saturation output level is 20 to 25 dBm, which is equivalent to that of the conventional quantum well structure semiconductor optical amplifier. It can be larger than that.

【0014】[0014]

【発明の効果】本発明では、歪量Δa/a、あるいはI
nモル比を制御することにより、マイナスデチューニン
グ方式と同時に量子井戸構造の量子サイズ効果の両者を
両立した1.55μm帯量子井戸形DFB半導体レーザ
を提供することができる。その結果、しきい電流の低
減、緩和振動周波数の増大、チャーピングの低減に対し
て効果がある。また、波長1.55μm帯の半導体光増
幅器における利得飽和出力レベルの増大に対しても、本
発明は量子井戸構造の量子サイズ効果を十分に引き出す
ことができるので有効である。さらに、エルビウム・ド
ープファイバ光増幅器用の波長1.48μm高出力半導
体レーザに対しても同様に有効である。
According to the present invention, the distortion amount Δa / a or I
By controlling the n mole ratio, it is possible to provide a 1.55 μm band quantum well type DFB semiconductor laser that has both the negative detuning method and the quantum size effect of the quantum well structure. As a result, it is effective in reducing the threshold current, increasing the relaxation oscillation frequency, and reducing chirping. The present invention is also effective for increasing the gain saturation output level in a semiconductor optical amplifier in the 1.55 μm band, since the quantum size effect of the quantum well structure can be sufficiently obtained. Further, the present invention is similarly effective for a high-output semiconductor laser having a wavelength of 1.48 μm for an erbium-doped fiber optical amplifier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を表す構造図である。FIG. 1 is a structural diagram showing an embodiment of the present invention.

【図2】本発明の作用を説明するための図である。FIG. 2 is a diagram for explaining the operation of the present invention.

【図3】本発明の作用を説明するための図である。FIG. 3 is a diagram for explaining the operation of the present invention.

【図4】本発明の作用を説明するための図である。FIG. 4 is a diagram for explaining the operation of the present invention.

【図5】本発明の実施例を説明するための図である。FIG. 5 is a diagram for explaining an embodiment of the present invention.

【図6】本発明の実施例を説明するための図である。FIG. 6 is a diagram for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…n−InP基板、2…回折格子、4、10、11…
多重量子井戸活性領域、4a、10a、11a…歪量Δ
a/aの絶対値が0.2〜0.5%であるInGaAs
量子井戸層、4b、10b、11b…InGaAsP障
壁層。
1 ... n-InP substrate, 2 ... diffraction grating, 4, 10, 11 ...
Multiple quantum well active region, 4a, 10a, 11a... Strain amount Δ
InGaAs having an absolute value of a / a of 0.2 to 0.5%
Quantum well layers, 4b, 10b, 11b... InGaAsP barrier layers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 誠 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平5−29715(JP,A) 特開 平4−373190(JP,A) 特開 平4−284683(JP,A) 特開 平2−130988(JP,A) Electronics Lette rs Vol.22,No.23,pp. 1246−1247 (58)調査した分野(Int.Cl.7,DB名) H01S 3/18 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Makoto Takahashi 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-5-29715 (JP, A) JP-A-4 -373190 (JP, A) JP-A-4-284683 (JP, A) JP-A-2-130988 (JP, A) Electronics Letters Vol. 22, No. 23, pp. 1246-1247 (58) Fields investigated (Int. Cl. 7 , DB name) H01S 3/18 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、この半導体基板上に形成さ
れ、量子井戸層とこの量子井戸層よりも禁制帯幅の大き
い障壁層とを有する活性領域と、光を閉じ込めるための
クラッド層とを有し、上記半導体基板の格子定数をa
s、量子井戸層の格子定数をawとし、上記量子井戸層
の歪量Δa/aを Δa/a=(aw−as)/as で定義し、上記量子井戸層の膜厚をLwとしたときに 0.2%≦|Δa/a|≦0.5% 40Å≦Lw≦80Å の関係を満足する半導体光素子。
A semiconductor substrate, an active region formed on the semiconductor substrate and having a quantum well layer and a barrier layer having a larger bandgap than the quantum well layer, and a cladding layer for confining light. And the lattice constant of the semiconductor substrate is a
s, the lattice constant of the quantum well layer is defined as aw, the strain amount Δa / a of the quantum well layer is defined as Δa / a = (aw−as) / as, and the film thickness of the quantum well layer is defined as Lw. 0.2% ≦ | Δa / a | ≦ 0.5% 40 ° ≦ Lw ≦ 80 °
【請求項2】半導体基板と、この半導体基板上に形成さ
れ、量子井戸層とこの量子井戸層よりも禁制帯幅の大き
い障壁層とを有する活性領域と、光を閉じ込めるための
クラッド層とを有し、上記半導体基板がInPであり、
上記量子井戸層がInGaAsで形成され、このInG
aAsのInモル比をyとし、上記量子井戸層の膜厚を
Lwとしたときに 40Å≦Lw≦80Åでかつ、 0.56≦y≦0.61あるいは 0.46≦y≦0.50 の関係を満足する半導体光素子。
A semiconductor substrate, an active region formed on the semiconductor substrate and having a quantum well layer and a barrier layer having a larger bandgap than the quantum well layer, and a cladding layer for confining light. Wherein the semiconductor substrate is InP;
The quantum well layer is formed of InGaAs.
When the In molar ratio of aAs is y and the thickness of the quantum well layer is Lw, 40 ° ≦ Lw ≦ 80 ° and 0.56 ≦ y ≦ 0.61 or 0.46 ≦ y ≦ 0.50. A semiconductor optical device that satisfies the relationship.
【請求項3】請求項1若しくは請求項2に記載の半導体
光素子において、前記活性領域の近傍に回折格子を有す
る半導体光素子。
3. The semiconductor optical device according to claim 1, wherein the semiconductor optical device has a diffraction grating near the active region.
【請求項4】半導体基板と、この半導体基板上に形成さ
れ、量子井戸層とこの量子井戸層よりも禁制帯幅の大き
い障壁層とを有する活性領域と、光を閉じ込めるための
クラッド層と、上記活性領域の近傍に配設された回折格
子とを有し、上記活性領域から発生する光のピーク波長
をλg、上記回折格子のブラッグ波長をλB、上記量子
井戸層の膜厚をLw、上記半導体基板の格子定数をa
s、上記量子井戸層の格子定数をawとし、上記量子井
戸層の歪量Δa/aを Δa/a=(aw−as)/as で定義したとき、 0.2%≦|Δa/a|≦0.5%、 λB−λg<0、 の関係を満足する半導体光素子。
4. An active region having a semiconductor substrate, a quantum well layer formed on the semiconductor substrate, and a barrier layer having a larger bandgap than the quantum well layer, a cladding layer for confining light, A diffraction grating disposed in the vicinity of the active region, wherein the peak wavelength of light generated from the active region is λg, the Bragg wavelength of the diffraction grating is λB, the thickness of the quantum well layer is Lw, Let the lattice constant of the semiconductor substrate be a
s, when the lattice constant of the quantum well layer is aw and the strain amount Δa / a of the quantum well layer is defined as Δa / a = (aw−as) / as, 0.2% ≦ | Δa / a | ≦ 0.5%, λB−λg <0.
JP3210615A 1991-08-22 1991-08-22 Semiconductor optical device Expired - Lifetime JP3010817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210615A JP3010817B2 (en) 1991-08-22 1991-08-22 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210615A JP3010817B2 (en) 1991-08-22 1991-08-22 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH0555684A JPH0555684A (en) 1993-03-05
JP3010817B2 true JP3010817B2 (en) 2000-02-21

Family

ID=16592262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210615A Expired - Lifetime JP3010817B2 (en) 1991-08-22 1991-08-22 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP3010817B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786802B2 (en) * 2001-01-29 2011-10-05 三菱電機株式会社 Method for manufacturing semiconductor laser, method for manufacturing optical modulator, and method for manufacturing semiconductor laser with optical modulator
JP2005252032A (en) * 2004-03-04 2005-09-15 Furukawa Electric Co Ltd:The Surface emitting laser element and laser module using it
JP5772466B2 (en) * 2011-10-04 2015-09-02 富士通株式会社 OPTICAL SEMICONDUCTOR DEVICE, OPTICAL TRANSMITTER MODULE, OPTICAL TRANSMISSION SYSTEM, AND OPTICAL SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electronics Letters Vol.22,No.23,pp.1246−1247

Also Published As

Publication number Publication date
JPH0555684A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US5926493A (en) Optical semiconductor device with diffraction grating structure
US4634928A (en) Superluminescent light-emitting diode and related method
JPH0629628A (en) Optical coupler and semiconductor laser
JP2822994B2 (en) Mode-locked semiconductor laser
US6088373A (en) Hybrid tunable Bragg laser
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP3086767B2 (en) Laser element
US4794608A (en) Semiconductor laser device
JP3317335B2 (en) Semiconductor laser device
US6130903A (en) Trumpet-flared monolithically integrated semiconductor laser amplifier
JPH07249829A (en) Distributed feedback semiconductor laser
Uomi et al. High‐power operation of index‐guided visible GaAs/GaAlAs multiquantum well lasers
JP3010817B2 (en) Semiconductor optical device
Ohira et al. Distributed reflector laser integrated with active and passive grating sections using lateral quantum confinement effect
JPH09129970A (en) Laser diode element
JP2001168456A (en) Gain combination/distribution feedback type semiconductor laser
US5436924A (en) Semiconductor laser device
JP2002111125A (en) Distributed feedback semiconductor laser
JP2917913B2 (en) Method for manufacturing semiconductor optical device
JP3053139B2 (en) Strained quantum well semiconductor laser
JP2002057405A (en) Semiconductor laser device and its manufacturing method
JP2000114652A (en) Semiconductor laser
Noda et al. Ridge waveguide AlGaAs/GaAs distributed feedback lasers with multiple quantum well structure
JP2004031402A (en) Distributed feedback type semiconductor laser element
JP2941463B2 (en) Semiconductor laser device