JP3008664B2 - Electromigration detection method - Google Patents

Electromigration detection method

Info

Publication number
JP3008664B2
JP3008664B2 JP4104435A JP10443592A JP3008664B2 JP 3008664 B2 JP3008664 B2 JP 3008664B2 JP 4104435 A JP4104435 A JP 4104435A JP 10443592 A JP10443592 A JP 10443592A JP 3008664 B2 JP3008664 B2 JP 3008664B2
Authority
JP
Japan
Prior art keywords
insulation resistance
measured
value
electromigration
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4104435A
Other languages
Japanese (ja)
Other versions
JPH0643194A (en
Inventor
千春 石先
優司 生田
正年 位地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4104435A priority Critical patent/JP3008664B2/en
Publication of JPH0643194A publication Critical patent/JPH0643194A/en
Application granted granted Critical
Publication of JP3008664B2 publication Critical patent/JP3008664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プリント配線板のエレ
クトロマイグレ−ションの検出方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting electromigration of a printed wiring board.

【0002】[0002]

【従来の技術】プリント配線板に使用するはんだ付用樹
脂系フラックスの配線への腐食性を評価する目的で電圧
印加耐湿性試験(たとえばJIS Z3197)がひろ
く行なわれている。これは通常櫛形基板(たとえばIP
C−SM−840に規定された櫛形電極など)にフラッ
クスを塗布し予め初期絶縁抵抗を常温常湿環境下で測定
し、次に櫛形基板をエレクトロマイグレ−ションの発生
し易い環境すなわち配線間に一定電圧を印加しながら高
温高湿状態で一定時間保持したのち、絶縁抵抗を再び常
温常湿環境下で測定することで、エレクトロマイグレ−
ションを配線間の絶縁抵抗値より評価するというもので
ある。
2. Description of the Related Art A voltage application moisture resistance test (for example, JIS Z3197) has been widely conducted in order to evaluate the corrosiveness of a soldering resin flux used for a printed wiring board to wiring. This is usually a comb-shaped substrate (eg, IP
A flux is applied to a comb-shaped electrode specified in C-SM-840, and the initial insulation resistance is measured in advance at normal temperature and normal humidity. Then, the comb-shaped substrate is placed in an environment where electromigration is likely to occur, that is, between wirings. After holding for a certain period of time in a high-temperature and high-humidity state while applying a constant voltage, the insulation resistance is measured again in a normal-temperature and normal-humidity environment, so that the electromigration can be performed.
The evaluation is based on the insulation resistance between the wirings.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の電圧印
加耐湿試験では一定時間後の配線間絶縁抵抗を測定し、
もしその絶縁抵抗値が初期値に比べ著しく小さい場合は
配線間にマイグレ−ションが存在することが判るものの
何時マイグレ−ションにより短絡したかという情報が得
られない。またマイグレ−ションにより以前短絡してい
たとしても測定時点で短絡していなければ著しい絶縁抵
抗の低下は発現しないため、最終的には目視によりエレ
クトロマイグレ−ションの痕跡を確認する必要があっ
た。しかし目視検査で微細なマイグレ−ション痕跡の確
認は非常に困難で熟練した技術を要するばかりでなく、
見落としてしまう可能性があった。
However, in the conventional voltage application humidity test, the insulation resistance between wirings after a certain time is measured.
If the insulation resistance value is significantly smaller than the initial value, it is known that migration exists between the wirings, but information as to when the migration caused a short circuit cannot be obtained. In addition, even if a short circuit occurred before the migration, if the short circuit did not occur at the time of the measurement, a remarkable decrease in insulation resistance did not occur, so that it was finally necessary to visually confirm the trace of the electromigration. However, confirmation of minute migration traces by visual inspection is extremely difficult and requires not only skilled techniques, but also
There was a possibility of overlooking it.

【0004】[0004]

【課題を解決するための手段】本発明はプリント配線板
の配線間絶縁抵抗を5分以下の間隔で測定し、測定され
た絶縁抵抗値が前記プリント配線板固有の絶縁抵抗の定
常値より低下していることを判定することによってエレ
クトロマイグレーションを検出する方法である。また
発明はプリント配線板の配線間絶縁抵抗を5分以下の間
隔で測定しこの測定された絶縁抵抗値がその直前に測定
された絶縁抵抗の定常値の4/5以下かを判定すること
を特徴としたエレクトロマイグレ−ション検出方法であ
る。さらに本発明はプリント配線板の配線間絶縁抵抗を
5分以下の間隔で測定しこの測定された絶縁抵抗値が
測定された時点からさかのぼり少なくとも2回の絶縁抵
抗測定における最高値の4/5以下かを判定することを
特徴としたエレクトロマイグレ−ション検出方法であ
る。なお、ここでいう定常値とは同一基板固有の絶縁抵
抗値のことをいうが、極初期に不安定で絶縁抵抗値が緩
やかに上昇する場合も含む。
Means for Solving the Problems The present invention is an inter-wiring insulation resistance of the printed wiring board was measured at 5-minute intervals of less than, as measured
The insulation resistance value is the value of the insulation resistance inherent in the printed wiring board.
This is a method of detecting electromigration by determining that it is lower than a normal value . Also book
The invention reduces the insulation resistance between wirings of a printed wiring board to 5 minutes or less.
Electro measured the measured insulation resistance value interval is characterized by determining 4/5 or less constant value of the measured insulation resistance immediately before Migrating - a Deployment detection method. Further, the present invention reduces the insulation resistance between wirings of a printed wiring board.
Measured at 5-minute intervals of less than the measured insulation resistance value,
An electromigration detection method characterized in that it is determined whether the measured value is 4/5 or less of a maximum value in at least two insulation resistance measurements from a time point when the measurement is performed. Note that the steady value here is the insulation resistance unique to the same substrate.
The resistance value is unstable at the very beginning and the insulation resistance is slow.
Includes a gradual rise.

【0005】[0005]

【作用】通常エレクトロマイグレ−ションで配線間が短
絡するには数十時間から数百時間を要するが、エレクト
ロマイグレ−ションの初期の短絡は図1の(ハ)にも示
す様に非常に短時間で終了し再び通常の絶縁抵抗値(定
常値)を示す場合が多く、またその前兆は絶縁抵抗の著
しい低下として現われない場合が多い。これは、エレク
トロマイグレーションにより発生したヒゲ状析出物が細
いために、電圧印加状態で流れる電流により切断するた
め短絡から短時間で、元の絶縁抵抗値に復帰することに
よるものと考えられる。このため初期のマイグレーショ
ンの短絡を絶縁抵抗の変化から判定するにはできるだけ
測定間隔を小さく、できれば連続モニタを行い著しい低
下を発見することが最も確実である。しかし絶縁抵抗の
測定は通常超微小電流測定を行うがこの場合精度を挙げ
るためにはある程度のチャージ/ディスチャージ等の処
理時間を必要とし、また1つの測定機で多数の配線間の
絶縁抵抗を測定する場合もあり実際には連続測定が出来
ないことが多い。
Normally, it takes tens to hundreds of hours to short-circuit between wirings by electromigration, but the initial short-circuit of electromigration is very short as shown in FIG. ends at time again normal insulation resistance value (constant
(Normal value) in many cases, and the precursor does not often appear as a remarkable decrease in insulation resistance. This is considered to be due to the fact that the whisker-like precipitate generated by the electromigration is broken by the current flowing in the voltage application state, and is restored to the original insulation resistance value in a short time after the short circuit. For this reason, in order to judge an initial migration short-circuit from a change in insulation resistance, it is most certain to make the measurement interval as small as possible, and if possible, to monitor continuously to find a significant decrease. However, the measurement of insulation resistance usually involves measurement of a very small current, but in this case, a certain amount of processing time such as charge / discharge is required in order to improve the accuracy. In some cases, continuous measurement is not possible in some cases.

【0006】本発明者らは、鋭意エレクトロマイグレー
ションによる短絡痕跡と絶縁抵抗の変化を解析した結
果、1配線間あたりの測定間隔が5分以下であれば充分
絶縁抵抗の急激な低下を捕らえることが可能で、エレク
トロマイグレーションの検出に有効であることを見い出
した。さらにこの絶縁抵抗の急激な低下が観測された直
前の絶縁抵抗の定常値の4/5以下になるとエレクトロ
マイグレーションによる短絡痕跡に著しい相関性がある
ことを見いだし、本発明に至ったものである。
The inventors of the present invention have analyzed the trace of short-circuit and the change in insulation resistance due to electromigration. As a result, if the measurement interval per wiring is 5 minutes or less, a sufficient drop in insulation resistance can be sufficiently captured. It is possible and found to be effective in detecting electromigration. Furthermore, it has been found that when the insulation resistance becomes 4/5 or less of the steady-state value of the insulation resistance immediately before the sudden decrease of the insulation resistance is observed, there is a remarkable correlation between the traces of the short circuit due to electromigration, and the present invention has been accomplished.

【0007】すなわちエレクトロマイグレーションによ
る短絡の痕跡がある配線間の絶縁抵抗は図1(ハ)に示
す様に何の前兆もなく急激な絶縁抵抗の低下が繰り返し
みられた状態(図1中のパルス状の絶縁抵抗の低下)
続き、その後図1(ニ)に見られるように絶縁抵抗値は
定常値(図1の場合1.7×10 10 Ω)まで回復せず低
下したままとなる。(ハ)にみられる絶縁抵抗の低下現
象は実施例2にも示すように同一のエレクトロマイグレ
ーションによる短絡に起因していると考えられるが、そ
の間隔はおおよそ数十分間隔で生じることが多く、短絡
している時間は数分以下と短い。なお(ハ)の領域絶縁
抵抗の定常値は配線の間隔や配線間に存在するイオン性
物質量によりもまちまちであるが同一基板ではほぼ一定
している。
That is, as shown in FIG. 1 (c), the insulation resistance between wirings having traces of short circuits due to electromigration shows a state in which the insulation resistance suddenly and repeatedly sharply drops without any sign (the pulse in FIG. 1). Jo decrease in insulation resistance) is followed, then view the insulation resistance as seen in 1 (d) remains decreased not recover to a steady value (the case of FIG. 1 1.7 × 10 10 Ω). Although the phenomenon of lowering the insulation resistance seen in (c) is considered to be caused by the same short circuit caused by electromigration as shown in Example 2, the interval is often about several tens of minutes, The short-circuiting time is as short as several minutes or less. The steady value of the region insulation resistance in (c) varies depending on the distance between the wirings and the amount of the ionic substance existing between the wirings, but is substantially constant on the same substrate.

【0008】本発明の検出法によれば、絶縁抵抗の測定
間隔を5分以下としているが実施例1に示すように充分
この急激な低下現象を捕らえることが可能となる。また
エレクトロマイグレーションによる短絡を伴わない櫛形
電極間の絶縁抵抗は定常値(絶縁抵抗の時間に対する
化は非常に緩やかなもの)を示すものであり、絶縁抵抗
の低下量が定常値の4/5以下であればその時点をもっ
てエレクトロマイグレーションによる短絡が発生したと
判断でき、さらに測定系のノイズも無視することが可能
となるばかりか、一旦短絡があった場合でも後続の短絡
現象をモニタする事が可能となる
According to the detection method of the present invention, the measurement interval of the insulation resistance is set to 5 minutes or less. However, as shown in the first embodiment, it is possible to sufficiently catch this sharp decrease phenomenon. In addition, the insulation resistance between the comb-shaped electrodes without a short circuit due to electromigration shows a steady value (the insulation resistance changes with time very slowly), and the amount of decrease in the insulation resistance is a steady value. If it is 4/5 or less, it can be determined at that point in time that a short circuit due to electromigration has occurred, and furthermore, it is possible to ignore the noise of the measurement system, and even if there is a short circuit, the subsequent short circuit phenomenon It becomes possible to monitor .

【0009】[0009]

【実施例】以下本発明の実施例を図を用いて詳述する。 実施例1 櫛形電極間に直流電圧100Vを印加しながら絶縁抵抗
の変化を測定した。図1は5秒間隔の波形を、図2は5
分間隔の波形、図3は60分間隔の波形を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1 A change in insulation resistance was measured while applying a DC voltage of 100 V between the comb electrodes. FIG. 1 shows a waveform at 5-second intervals, and FIG.
Waveforms at minute intervals, FIG. 3 shows waveforms at 60 minute intervals.

【0010】本発明による5分以下の測定間隔でとらえ
た波形図1および図2では、極初期に不安定で絶縁抵抗
が緩やかに上昇する初期状態の間に絶縁抵抗が瞬間的
に低下する(イ)の領域(以下単に「(イ)の領域」と
称す)があり、次に絶縁抵抗の測定値がほぼ一定の値と
なり定常値で推移する(図1、図2、図3では約1.7
×101 0 Ω)(ロ)の領域(以下単に「(ロ)の領
域」と称す)がみられ、更に絶縁抵抗のパルス状の低下
と定常値への回復の繰り返しがみられる(ハ)の領域
(以下単に「(ハ)の領域」と称す)がそれに続き、最
後には(ハ)の領域の定常値まで回復しきれず低い絶縁
抵抗値を示す(ニ)の領域(以下単に「(ニ)の領域」
と称す)が捕らえられている。
[0010] In the waveform diagram 1 and 2 taken by the measurement interval of 5 minutes or less according to the present invention, very early in the unstable insulation resistance
There is a region (a) where the insulation resistance decreases momentarily during the initial state in which the value gradually increases (hereinafter simply referred to as “region (a)”), and the measured insulation resistance is then almost constant And changes to a steady value (about 1.7 in FIGS. 1, 2 and 3).
× 1010 Ω) (b) region (hereinafter simply referred to as “(b) region”), and furthermore, the pulse-like reduction of the insulation resistance and the recovery to the steady value are repeated. A region (hereinafter simply referred to as “region (c)”) follows, and finally a region (d) showing a low insulation resistance value that cannot be recovered to the steady value in the region (c) (hereinafter simply referred to as “(d) Area)
) Is captured.

【0011】一方、本発明によらない測定間隔60分の
波形図3では前述の瞬間的に低下する波形即ち(ハ)の
領域は捕らえられず、(ニ)の領域にみられる低下波形
のみが観測された。
On the other hand, in the waveform shown in FIG. 3 at a measurement interval of 60 minutes, which is not according to the present invention, the above-mentioned instantaneously decreasing waveform, that is, the region (c) is not captured, and only the decreasing waveform seen in the region (d) is detected. Observed.

【0012】更にこれらの波形から本発明の判断基準で
ある (a)測定された絶縁抵抗値が測定直前の定常値の4/
5以下を満たす時間をa軸方向に検出として本発明によ
らない判断基準である (b)一律1010 Ω以下を満たす時間をb軸方向に検
出として (c)測定された絶縁抵抗値が測定直前の定常値の9/
10以下を満たす時間をc軸方向に検出としてそれぞれ
図1、図2および図3に示した。この結果、判断基準
(a)では(イ)の領域のノイズを消去しかつ(ハ)や
(ニ)の領域の低下ピ−クと一致している。一方判断基
準(b)では、(ハ)の領域の中で一部検出できていな
い低下ピ−クが存在し、また(ニ)の領域に至っては全
ての領域があてはまり低下ピ−クとしては捕らえられて
いない。さらに判断基準(c)では、(ハ)や(ニ)の
領域での検出と低下ピ−クは一致するものの、(イ)の
領域でも一部検出されている。
Furthermore criteria are (a) the measured insulation resistance value is constant value of the measurement immediately before the present invention from these waveforms 4 /
A time satisfying 5 or less is detected in the a-axis direction and is a criterion not according to the present invention. (B) A time satisfying 10 10 Ω or less is detected in the b-axis direction. (C) The measured insulation resistance value is measured. 9 /
Times satisfying 10 or less are detected in the c-axis direction and are shown in FIGS. 1, 2 and 3, respectively. As a result, in the criterion (a), the noise in the area (a) is eliminated and coincides with the peaks in the areas (c) and (d). On the other hand, according to the judgment criterion (b), there is a declined peak that cannot be partially detected in the region (c), and all the regions fall into the region (d) and the declined peak is Not caught. Further, according to the criterion (c), although the detection peaks in the areas (c) and (d) coincide with the decrease peaks, the detection peaks are partially detected also in the area (a).

【0013】実施例2 櫛形基板の櫛形電極間に直流電圧100Vを印加しなが
ら絶縁抵抗の変化を5分間隔で測定し、上記(イ)、
(ロ)、(ハ)および(ニ)の各領域の波形を示した櫛
形基板を取り出し、櫛形間に存在した短絡の痕跡数の調
査を行なった。表1に取り出したときの波形パタ−ンと
短絡の痕跡の平均値の調査結果を示す。
Example 2 A change in insulation resistance was measured at 5-minute intervals while a DC voltage of 100 V was applied between the comb-shaped electrodes of the comb-shaped substrate.
The comb-shaped substrates showing the waveforms in the respective regions (b), (c) and (d) were taken out, and the number of traces of the short-circuit between the combs was investigated. Table 1 shows the results of an investigation of the average value of the waveform pattern and the trace of the short circuit when taken out.

【0014】この結果、(イ)の領域で仮に低下ピ−ク
が検出されたとしても、そこにはエレクトロマイグレ−
ションの短絡はなかったと判断される。また(ロ)の領
域で短絡の痕跡平均数0.2となっているが、これは測
定間隔5分で捕らえきれなかった低下ピ−クがあった
(すなわちその痕跡は本来(ハ)の領域でカウントされ
るべきものであった)と考えれば、本質的には短絡現象
はなかったと考えられる。(ハ)の領域では短絡の痕跡
平均数1.2となっているが、本質的には単一のエレク
トロマイグレ−ションによる短絡切断現象が繰り返され
ていると考えられる。そして最後の(ニ)の領域では複
数のエレクトロマイグレ−ションが成長し従って絶縁抵
抗の定常値も1図のように低下し、さらにこれら複数の
(表1では平均4.2個の)エレクトロマイグレ−ショ
ンにより短絡が繰り返されていると考えられよう。
As a result, even if a decline peak is detected in the region (a), the peak is not detected.
It is determined that there was no short circuit in the application. In the area (b), the average number of traces of the short-circuit was 0.2, but there was a decline peak that could not be caught at the measurement interval of 5 minutes (that is, the trace was originally in the area (c)). It was considered that there was essentially no short circuit phenomenon. In the area (c), the average number of traces of the short circuit is 1.2, but it is considered that the short circuit breaking phenomenon by a single electromigration is essentially repeated. In the last region (d), a plurality of electromigrations grow, so that the steady value of the insulation resistance also decreases as shown in FIG. -It may be considered that the short circuit is repeated by the application.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】実施例1に示すように、本発明の検出法
の第一の特徴である測定間隔を5分以下にすれば、
(イ)(ハ)および(ニ)の領域にみられる瞬間的な絶
縁抵抗の低下現象を捕らえることが可能となる。また、
その波形において本発明の第二の特徴である測定された
絶縁抵抗値が測定直前の定常値(さらに詳しくは測定前
少なくとも2回の測定での最高値)の4/5以下で検出
すれば、例えば実施例1のc軸にみられる(イ)の領域
のノイズを消去することが可能になり、また実施例1の
b軸にみられるような(ハ)や(ニ)の領域でのカウン
トしきれないピ−クも検出出来るばかりか、櫛形電極の
電極間距離が異なっている場合や櫛形電極に残留してい
るイオン性物質の量によっても絶縁抵抗の定常値は変化
するが、このようなまちまちの定常値でも効率よく絶縁
抵抗の瞬間的低下現象を捕らえることが可能となる。さ
らに、実施例2にも示したように、これら低下ピ−クが
検出された場合、殆どはそこにエレクトロマイグレ−シ
ョンが存在している。従来の評価方法では、エレクトロ
マイグレ−ションが存在しているかどうかの判断は絶縁
抵抗が初期値より著しく低下した場合すなわち(ニ)の
領域になって初めて判断されるか、実際に櫛形電極目視
や顕微鏡で観察して判断されていたが、これら従来の方
法では何時エレクトロマイグレ−ションが発生したかの
情報が得られないばかりか目視による検査は電圧印加耐
湿試験を中断する必要があった。さらに中断後再び試験
を継続した場合中断による影響のためそれまでの試験結
果から全く予想できない挙動を示し継続試験が無意味な
ことすらあった。。しかしながら本発明のエレクトロマ
イグレ−ション検出方法は、何時エレクトロマイグレ−
ションが発生したかという情報を試験を中断することな
く提供することを可能にする。即ち本発明によるエレク
トロマイグレ−ション検出方法はプリント配線板の長期
信頼性評価を再現性よく、かつ効果的に進めることを可
能とするものである。
As shown in Embodiment 1, if the measurement interval, which is the first feature of the detection method of the present invention, is set to 5 minutes or less,
(A) It is possible to catch the instantaneous decrease in insulation resistance in the regions (C) and (D). Also,
If the measured insulation resistance value, which is the second feature of the present invention, is detected in the waveform at 4/5 or less of the steady-state value immediately before the measurement (more specifically, the maximum value of at least two measurements before the measurement), For example, it is possible to eliminate noise in the region (a) seen on the c-axis in the first embodiment, and to count in the regions (c) and (d) seen on the b-axis in the first embodiment. Not only can peaks that cannot be detected be detected, but also the steady-state value of the insulation resistance varies depending on the distance between the electrodes of the comb electrode or the amount of ionic substance remaining on the comb electrode. Even at various steady values, it is possible to efficiently capture the instantaneous decrease in insulation resistance. Furthermore, as shown in Example 2, when these decline peaks are detected, most of them have electromigration. According to the conventional evaluation method, whether or not electromigration is present is determined only when the insulation resistance is significantly lower than the initial value, that is, only when the region (d) is reached. Although it was judged by observing with a microscope, in these conventional methods, not only information on when electromigration occurred but also visual inspection had to interrupt the voltage application moisture resistance test. Further, when the test was continued again after the interruption, the behavior was completely unpredictable from the test results up to that point due to the influence of the interruption, and the continuous test was even meaningless. . However, the method for detecting electromigration of the present invention
Information can be provided without interrupting the test. That is, the electromigration detection method according to the present invention enables the long-term reliability evaluation of a printed wiring board to be performed with good reproducibility and effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による測定間隔で測定した絶縁抵抗と本
発明による判断基準で検出されたピ−ク(a)および本
発明によらない判断基準で検出されたピ−ク(b)
(c)を示す図である。
FIG. 1 shows an insulation resistance measured at a measurement interval according to the present invention, and a peak (a) detected according to a criterion according to the present invention and a peak (b) detected according to a criterion not according to the present invention.
It is a figure showing (c).

【図2】本発明による測定間隔で測定した絶縁抵抗と本
発明による判断基準で検出されたピ−ク(a)および本
発明によらない判断基準で検出されたピ−ク(b)
(c)を示す図である。
FIG. 2 shows an insulation resistance measured at a measurement interval according to the present invention and a peak (a) detected based on a criterion according to the present invention and a peak (b) detected based on a criterion not according to the present invention.
It is a figure showing (c).

【図3】本発明によらない測定間隔で測定した絶縁抵抗
と本発明による判断基準で検出されたピ−ク(a)およ
び本発明によらない判断基準で検出されたピ−ク(b)
(c)を示す図である。
FIG. 3 shows an insulation resistance measured at a measurement interval not according to the present invention and a peak (a) detected based on the criterion according to the present invention, and a peak (b) detected based on a criterion not according to the present invention.
It is a figure showing (c).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−83247(JP,A) 特開 平3−279851(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/02 G01R 27/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-83247 (JP, A) JP-A-3-279851 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 31/02 G01R 27/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プリント配線板の配線間絶縁抵抗を5分以
下の間隔で測定し、測定された絶縁抵抗値が前記プリン
ト配線板固有の絶縁抵抗の定常値より低下していること
を判定することによってエレクトロマイグレーションを
検出する方法。
An insulation resistance between wirings of a printed wiring board is measured at intervals of 5 minutes or less, and the measured insulation resistance value is measured by the printer.
G is lower than the steady-state value of the inherent insulation resistance
A method of detecting electromigration by determining
【請求項2】前記測定された絶縁抵抗値がその直前に測
定された絶縁抵抗の定常値の4/5以下かを判定するこ
とを特徴とした請求項1記載のエレクトロマイグレ−シ
ョン検出方法。
Wherein said measured insulation resistance value electroporation Migrating things according to claim 1, wherein the said determining 4/5 or less constant value of the measured insulation resistance immediately before - Deployment detection method.
【請求項3】前記測定された絶縁抵抗値が測定された
時点からさかのぼり少なくとも2回の絶縁抵抗測定にお
ける最高値の4/5以下かを判定することを特徴とした
請求項1記載のエレクトロマイグレ−ション検出方法。
Wherein the measured insulation resistance value, contact the insulation resistance measurement of at least two dates from the measured time
It was characterized to determine the 4/5 or less the maximum value takes
The method for detecting electromigration according to claim 1 .
JP4104435A 1992-04-23 1992-04-23 Electromigration detection method Expired - Fee Related JP3008664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104435A JP3008664B2 (en) 1992-04-23 1992-04-23 Electromigration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104435A JP3008664B2 (en) 1992-04-23 1992-04-23 Electromigration detection method

Publications (2)

Publication Number Publication Date
JPH0643194A JPH0643194A (en) 1994-02-18
JP3008664B2 true JP3008664B2 (en) 2000-02-14

Family

ID=14380592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104435A Expired - Fee Related JP3008664B2 (en) 1992-04-23 1992-04-23 Electromigration detection method

Country Status (1)

Country Link
JP (1) JP3008664B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242883B2 (en) 1998-08-05 2001-12-25 日東電工株式会社 Inspection method of flexible wiring board
KR102592921B1 (en) 2015-12-31 2023-10-23 삼성전자주식회사 Method of inspecting pattern defect

Also Published As

Publication number Publication date
JPH0643194A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
US5180968A (en) Method and apparatus for compensation of double layer charging current in electrochemical cells
JP3008664B2 (en) Electromigration detection method
EP0196496B1 (en) Printed circuit conductor test system
JP3179394B2 (en) Electrical inspection device and electrical inspection method for printed wiring board
EP3442087B1 (en) Method for ac arc fault detection using multidimensional energy points
JP3077446B2 (en) Cable shielding layer, sheath abnormality monitoring method
Ready et al. A novel test circuit for automatically detecting electrochemical migration and conductive anodic filament formation
US5568055A (en) Adiabatic conductor analyzer method and system
JP2841345B2 (en) DC voltage application test circuit for capacitors
DE3905856C1 (en) Method and device for testing cable access connections
JP2994911B2 (en) Screening method for ceramic electronic components
EP0789244A2 (en) Electronic signal measurement apparatus and method for the acquisition and display of short-duration analog signal events
JP3227697B2 (en) Circuit board inspection method and apparatus
DE102015210602B4 (en) measuring device
WO2019120789A1 (en) Sensor assembly for detecting particles of a measurement gas in a measurement gas chamber, and method for detecting particles of a measurement gas in a measurement gas chamber
JPH0829460A (en) Insulation testing device for substrate
JPS58108465A (en) Method and circuit for processing current probe signal
JPH0792216A (en) Device and method for searching for short-circuited plate between power source and gnd of packaged printed circuit board
JP2655533B2 (en) Sensor connection judgment circuit in constant potential electrolysis type gas measurement device
DE102023201750A1 (en) Method for operating a semiconductor gas sensor and semiconductor gas sensor
CN115184784A (en) Digital circuit connection type intermittent fault testing system and method based on power supply current
DD219587A1 (en) PROCESS FOR EXHAUST GAS MONITORING
JPH0335930A (en) Discharge state display device
Turbini et al. Characterising Soldering Fluxes
JPH06222117A (en) Detecting method for deterioration of motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102

LAPS Cancellation because of no payment of annual fees