JP3006337B2 - Heat-resistant austenitic stainless steel - Google Patents

Heat-resistant austenitic stainless steel

Info

Publication number
JP3006337B2
JP3006337B2 JP5060613A JP6061393A JP3006337B2 JP 3006337 B2 JP3006337 B2 JP 3006337B2 JP 5060613 A JP5060613 A JP 5060613A JP 6061393 A JP6061393 A JP 6061393A JP 3006337 B2 JP3006337 B2 JP 3006337B2
Authority
JP
Japan
Prior art keywords
steel
austenitic stainless
stainless steel
temperature
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5060613A
Other languages
Japanese (ja)
Other versions
JPH06271994A (en
Inventor
佳孝 西山
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5060613A priority Critical patent/JP3006337B2/en
Publication of JPH06271994A publication Critical patent/JPH06271994A/en
Application granted granted Critical
Publication of JP3006337B2 publication Critical patent/JP3006337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、800 ℃以上の高温酸化
雰囲気中で優れた耐酸化性と高温強度を有する耐熱オー
ステナイト系ステンレス鋼に関する。
The present invention relates to a heat-resistant austenitic stainless steel having excellent oxidation resistance and high-temperature strength in a high-temperature oxidizing atmosphere of 800 ° C. or higher.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼は高温強
度や加工性を備えており、例えばSUS310S を代表とする
25Cr−20Ni系、インコロイ800 として知られる21Cr−3
2.5Ni系、さらにSiを添加したSUSXM15J1 等があり、そ
れぞれ、使用目的に応じて選択されて利用されている。
2. Description of the Related Art Austenitic stainless steel has high temperature strength and workability, for example, SUS310S as a representative.
25Cr-20Ni, 21Cr-3 known as Incoloy 800
There are 2.5Ni type and SUSXM15J1 to which Si is further added, and each is selected and used according to the purpose of use.

【0003】しかしながら、用途によっては今日的要求
がますます厳しくなってきており、そのような従来材で
対応するには耐酸化性に限界がある。このようなオース
テナイト系ステンレス鋼の耐酸化性を向上する目的でAl
を添加することにより、従来生成し得なかったAl系主体
の酸化皮膜を表面に生成させ耐酸化性の向上を実現して
いる。。
[0003] However, today's demands are becoming more and more severe depending on the application, and there is a limit in the oxidation resistance to meet such conventional materials. In order to improve the oxidation resistance of such austenitic stainless steel, Al
By adding, an oxide film mainly composed of Al, which could not be formed conventionally, is formed on the surface, thereby improving the oxidation resistance. .

【0004】しかしながら、このような材料を過熱器管
や熱処理炉さらには熱交換器等、800 ℃以上の高温環境
下で使用する場合、同時に高い強度が要求される。近
年、21世紀における石油資源枯渇と大気汚染を含めた環
境問題より、次世代の電力供給源として石炭改質ガスが
利用可能で、かつエネルギー変換効率の高い燃料電池が
脚光を浴び始めている。そのため起電力を発生する本体
部はもちろんのこと、総合発電効率の向上、装置のコン
パクト化から、本体部をとりまく補助機械を含めた発電
装置全体の研究開発が行われている。
However, when such a material is used in a high temperature environment of 800 ° C. or more, such as a superheater tube, a heat treatment furnace, and a heat exchanger, high strength is required at the same time. In recent years, due to the environmental problems including the depletion of petroleum resources and air pollution in the 21st century, fuel cells that can use coal-reformed gas as a next-generation power supply source and have high energy conversion efficiency are beginning to attract attention. For this reason, research and development of the entire power generation device, including auxiliary machines surrounding the main body, has been conducted in order to improve the overall power generation efficiency and to make the device compact, as well as the main body that generates electromotive force.

【0005】特に、固体電解質型燃料電池に用いられる
熱交換器は1000℃近傍の環境になるものもあり長時間に
わたって耐酸化性と高温強度を有する材料が必要であ
る。また同時に長時間使用した場合の延性、靱性も重要
である。
[0005] In particular, some heat exchangers used in solid oxide fuel cells have an environment near 1000 ° C, and require a material having oxidation resistance and high-temperature strength for a long time. In addition, ductility and toughness when used for a long time are also important.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、例え
ば800 ℃以上という高温酸化雰囲気中で長時間にわたっ
て安定な耐酸化性と同時に高温で高い強度を有するオー
ステナイト系ステンレス鋼を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an austenitic stainless steel which has stable oxidation resistance over a long period of time in a high-temperature oxidizing atmosphere of, for example, 800 ° C. or higher and has high strength at high temperatures. is there.

【0007】より具体的には、本発明の目的は、過熱器
管や熱処理炉さらには熱交換器等、800 ℃以上の高温環
境下で使用される材料として適切な耐酸化性と同時に高
温で高い強度を有するオーステナイト系ステンレス鋼を
提供することにある。
More specifically, an object of the present invention is to provide a material suitable for use in a high-temperature environment of 800 ° C. or more, such as a superheater tube, a heat treatment furnace, and a heat exchanger. It is to provide an austenitic stainless steel having high strength.

【0008】[0008]

【課題を解決するための手段】このような優れた高温特
性が要求されるオーステナイト系ステンレス鋼に対し、
AlとSiの成分バランスを適正化することにより高温酸化
雰囲気中でAl系主体の酸化皮膜をより安定に生成させる
ことによって、長時間にわたって優れた耐酸化性を示す
材料が開発された。さらに、その後の開発研究により、
2.5 〜4.0 %Alの領域においてもAl系主体の酸化皮膜の
生成が可能となり、加工性を確保した良耐酸化性材料の
Al、Si適正化オーステナイト系ステンレス鋼も開発され
ている。
SUMMARY OF THE INVENTION An austenitic stainless steel, which is required to have such excellent high-temperature characteristics,
A material that has excellent oxidation resistance over a long period of time has been developed by optimizing the component balance between Al and Si to more stably form an oxide film mainly composed of Al in a high-temperature oxidizing atmosphere. Furthermore, through subsequent development research,
It is possible to form an Al-based oxide film even in the 2.5 to 4.0% Al region, and to obtain a good oxidation-resistant material that ensures workability.
Al and Si optimized austenitic stainless steels have also been developed.

【0009】しかしながら、かかる優れた耐酸化性をも
ったオーステナイト系ステンレス鋼を上述のような高温
環境で使用する場合、高温強度、長時間使用時の高延性
が問題となることが判明した。
However, it has been found that when such austenitic stainless steel having excellent oxidation resistance is used in the above-described high-temperature environment, high-temperature strength and high ductility during long-term use become problems.

【0010】そこで、本発明者らは、上述のような高温
酸化雰囲気中でも優れた耐酸化性と同時に高温強度を有
するオーステナイト系ステンレス鋼の材料開発をめざし
鋭意研究を重ねてきたが、次のような知見を得ることに
より本発明に至った。すなわち、(1) AlとSiの適正化に
よりAlを2.5 %以上含有するオーステナイト系ステンレ
ス鋼において、800 ℃以上の高温酸化雰囲気中で耐酸化
性に優れたものとなる、(2) しかしながら、高温強度、
長時間使用時の高延性に問題がある、(3) 種々の成分変
化材による高温特性試験の結果、鋼中Si、Nが高温強度
に有効な相互作用をもち、Siの制限が高延性を改善させ
る、(4) Bの添加は粒界を強化することにより高温強度
を向上させる、そして(5) これらの複合添加により、さ
らに高強度材料となる。
The present inventors have intensively studied to develop a material of austenitic stainless steel having excellent oxidation resistance and high-temperature strength in the high-temperature oxidizing atmosphere as described above. The present invention has been achieved by obtaining such insights. In other words, (1) Austenitic stainless steel containing 2.5% or more Al by oxidation of Al and Si has excellent oxidation resistance in a high-temperature oxidizing atmosphere at 800 ° C or higher. Strength,
There is a problem with high ductility when used for a long time. (3) As a result of high temperature property tests using various component changing materials, Si and N in steel have an effective interaction for high temperature strength, and the limitation of Si increases high ductility. (4) The addition of B improves the high-temperature strength by strengthening the grain boundaries, and (5) the composite addition of these results in a higher strength material.

【0011】よって、本発明の要旨とするところは、重
量%で、C:0.15 %以下、Si:0.15 %以下、Cr:15 〜30
%、Mn:5.0%以下、Ni:20 〜60%、Al:2.5〜6.0 %、
N:0.10 〜0.35%、残部Feおよび不可避不純物よりなる
ことを特徴とする耐熱オーステナイト系ステンレス鋼で
ある。好適態様によれば、上記鋼は、さらに、重量%
で、B:0.0005 〜0.020 %を含有することによって、高
温強度をさらに改善することができる。
Therefore, the gist of the present invention is that, by weight%, C: 0.15% or less, Si: 0.15% or less, Cr: 15 to 30%
%, Mn: 5.0% or less, Ni: 20-60%, Al: 2.5-6.0%,
N: 0.10 to 0.35%, with the balance being Fe and unavoidable impurities, heat-resistant austenitic stainless steel. According to a preferred embodiment, the steel further comprises:
By adding B: 0.0005 to 0.020%, the high-temperature strength can be further improved.

【0012】[0012]

【作用】次に、本発明を上記範囲に限定した理由を説明
する。 C:Cは、高温での適用時に、あるいは溶接熱影響部に
おいてCr23C6型の炭化物を形成して、加工性およびCrに
よる耐酸化性の向上効果を著しく減ずる影響を有する。
また、スケール剥離をもたらすため低い方が好ましく、
本発明にあっては上限を0.15%とした。ただし、高温で
の強度を重視する場合は、上限近くまで含有させること
もある。
Next, the reason why the present invention is limited to the above range will be described. C: C has the effect of forming a Cr 23 C 6 type carbide at the time of application at a high temperature or in the weld heat affected zone, thereby significantly reducing the effect of improving workability and oxidation resistance by Cr.
In addition, a lower one is preferable to cause scale peeling,
In the present invention, the upper limit is set to 0.15%. However, when emphasis is placed on the strength at high temperatures, the content may be increased to near the upper limit.

【0013】Si:Siは本発明鋼において最も重要な元素
である。その含有量が0.15%を越えると高温酸化雰囲気
でAl主体の酸化物を安定に生成できない。
Si: Si is the most important element in the steel of the present invention. If the content exceeds 0.15%, oxides mainly composed of Al cannot be stably generated in a high-temperature oxidizing atmosphere.

【0014】Cr:CrはAlとともに高温での耐酸化性を得
るのに必要な基本的な元素である。本発明においては、
下限を15%、上限を30%とする。800 ℃を越えて緻密な
Al系酸化皮膜を生成するのに15%以上のCrが必要であ
る。一方、30%を越えて添加しても耐酸化性の向上が見
られないばかりでなく、板の成形性、加工性に悪影響を
及ぼす。
Cr: Cr is a basic element necessary for obtaining oxidation resistance at high temperatures together with Al. In the present invention,
The lower limit is 15% and the upper limit is 30%. Over 800 ℃
15% or more Cr is necessary to form an Al-based oxide film. On the other hand, addition of more than 30% not only does not show improvement in oxidation resistance, but also adversely affects plate formability and workability.

【0015】Mn:Mnは、高温での強度確保のために添加
することがある。また、オーステナイト相安定化にも有
効である。しかしながら5.0 %を越えて添加すると耐酸
化性に悪影響を及ぼすため5.0 %を上限とする。
Mn: Mn may be added to ensure strength at high temperatures. It is also effective for stabilizing the austenite phase. However, if added over 5.0%, the oxidation resistance is adversely affected, so the upper limit is 5.0%.

【0016】Ni:Niはオーステナイト鋼の基本的性質を
与えるのに重要な元素である。また、1000℃近傍での高
温強度ならびに高温クリープ強度を高めるためにも必要
である。20%未満ではオーステナイト相が不安定となる
ほか、Al系の保護皮膜が単一で生成し得ない。一方、60
%を越えるものは、コスト的に実用化し難いものにな
る。上限を60%とする。
Ni: Ni is an important element for providing the basic properties of austenitic steel. It is also necessary to increase high-temperature strength and high-temperature creep strength near 1000 ° C. If it is less than 20%, the austenite phase becomes unstable, and a single Al-based protective film cannot be formed. On the other hand, 60
%, It is difficult to put into practical use in terms of cost. The upper limit is 60%.

【0017】Al:Alは本発明鋼において重要な基本元素
である。Al系酸素皮膜を安定に生成する場合は2.5 %以
上が必要である。2.5 %未満ではSi量の如何にかかわら
ずFe−Cr−Ni系のスピネル型酸化物が生じ、連続したAl
系酸化皮膜とならない。しかしながら6.0 %を超えて添
加すると、熱間での変形抵抗およびNiAl系金属間化合物
の粒内、粒界析出による粒界延性の低下が引き起こす熱
間加工性の劣化が大きくなるばかりか、常温での靱性低
下が極めて顕著となるため、上限を6.0 %とする。
Al: Al is an important basic element in the steel of the present invention. If the Al-based oxygen film is to be formed stably, it must be at least 2.5%. If it is less than 2.5%, a Fe-Cr-Ni-based spinel oxide is generated regardless of the amount of Si, and continuous Al
Does not form a system oxide film. However, if it is added in excess of 6.0%, not only the deformation resistance during hot working and the deterioration in hot workability caused by the decrease in grain boundary ductility due to precipitation of NiAl intermetallic compounds within grains and at grain boundaries increases, but also at room temperature. Since the decrease in toughness becomes extremely noticeable, the upper limit is made 6.0%.

【0018】N:Nは本発明において最も重要な元素の
ひとつである。オーステナイト生成元素であるとともに
オーステナイト地に固溶し強化作用をもたらす。0.10%
以上の添加によりその効果を発揮する。しかし、0.35%
を超えて添加すると加工性を劣化させる。
N: N is one of the most important elements in the present invention. It is an austenite-forming element and forms a solid solution in austenitic ground to provide a strengthening effect. 0.10%
The effect is exhibited by the above addition. But 0.35%
If added in excess of, the workability is degraded.

【0019】S、O:Sは鋼中Mnと化合物を形成し異常
酸化発生起点となる。さらに凝固時の粒界偏析により粒
界の延性が低下し熱間加工時の割れが発生する。このた
め上限を0.0030%望ましくは10ppm に規制するととも
に、必要に応じ、Mnより高温でより安定な硫化物を形成
するCe、La、Y等の希土類元素または、Caを添加するこ
とで固定化する。
S, O: S forms a compound with Mn in steel and becomes a starting point of abnormal oxidation. Further, grain boundary segregation at the time of solidification lowers the ductility of the grain boundaries and causes cracks during hot working. Therefore, the upper limit is regulated to 0.0030%, preferably 10 ppm, and, if necessary, immobilization is performed by adding a rare earth element such as Ce, La, Y or the like which forms a more stable sulfide at a temperature higher than Mn or Ca. .

【0020】熱間加工性確保のためこれらの添加元素の
効果を高めるためには、鋼中の酸素濃度は低い方がよ
い。このことは、これらの添加元素が酸化物を作りやす
く、鋼中のS固定元素として機能する以前に酸化物とし
て消費され、有効量が減少するためである。鋼中のS+
O(%) 値は低い方が好ましいが、S+O(%) ≦0.0080
%、さらに望ましくはS+O(%) ≦0.0050%とする。本
発明にあっては必要によりBを添加してもよい。
In order to enhance the effects of these additional elements to ensure hot workability, the oxygen concentration in the steel is preferably low. This is because these additional elements tend to form oxides, are consumed as oxides before functioning as S-fixing elements in steel, and reduce the effective amount. S + in steel
The lower the O (%) value, the better, but S + O (%) ≦ 0.0080
%, More preferably S + O (%) ≦ 0.0050%. In the present invention, B may be added if necessary.

【0021】B:Bは粒界強化により高温強度を改善す
るが0.0005%未満ではその効果が得られず、また0.020
%を超えると鍛造性が低下する。本発明が適用されるオ
ーステナイト系ステンレス鋼の組成は上述のような組成
を有する限り特に制限はされないが、規格その他を考慮
した場合の実用的観点からは、以下のように成分調整を
行うことが好ましい。
B: B improves the high-temperature strength by strengthening the grain boundaries, but if less than 0.0005%, the effect cannot be obtained.
%, The forgeability decreases. The composition of the austenitic stainless steel to which the present invention is applied is not particularly limited as long as it has the above-described composition, but from a practical viewpoint in consideration of standards and the like, component adjustment may be performed as follows. preferable.

【0022】Ti、Nb、Zr:鋼中のC、Nの悪影響を減じ
て、加工性、耐酸化性を改善するために、CrあるいはAl
よりもC、Nとの親和力の強いTi、Nb、Zr等の安定化元
素を添加してもよい。しかし、Ti、Nb、Zrの過剰な添加
は金属間化合物の析出により靱性の低下をもたらすた
め、Ti+Nb+Zr(%) の上限を2.0 %とする。
Ti, Nb, Zr: Cr or Al for reducing the adverse effects of C and N in steel and improving workability and oxidation resistance.
Alternatively, a stabilizing element such as Ti, Nb, or Zr having a higher affinity for C and N may be added. However, excessive addition of Ti, Nb, and Zr causes a decrease in toughness due to precipitation of an intermetallic compound. Therefore, the upper limit of Ti + Nb + Zr (%) is set to 2.0%.

【0023】希土類元素 (例: Y、Ce、La) 、Ca:これ
らは、耐酸化性改善元素であり、さらに後述する鋼中の
硫化物をMnS より安定な硫化物として固定することで熱
間加工性を改善する。ただし、過剰添加は粗大酸化物の
生成により、逆に耐酸化性に悪影響を及ぼすことから、
さらに熱間加工性が急激に劣化することから、合計量が
0.50%以下の範囲で添加する。
Rare earth elements (Examples: Y, Ce, La), Ca: These are elements for improving oxidation resistance, and further, by fixing sulfide in steel described later as sulfide more stable than MnS, Improve workability. However, excessive addition adversely affects oxidation resistance due to the formation of coarse oxides.
Furthermore, since the hot workability deteriorates rapidly, the total amount
Add in a range of 0.50% or less.

【0024】Mo:Moは高温での強度確保あるいは耐食性
確保のために添加することがある。ただし、10.0%を超
えても一層の性能改善は見られないばかりか、高温での
変形抵抗を高める。 P:Pは積極的には添加しない。原則的に不純物であ
る。0.03%以下含有する。
Mo: Mo may be added for securing strength at high temperatures or securing corrosion resistance. However, even if it exceeds 10.0%, further improvement in performance is not seen, and deformation resistance at high temperature is increased. P: P is not actively added. In principle, it is an impurity. It contains 0.03% or less.

【0025】Cu:鋼中のCuは、Ni源からの不純物として
1.5 %まで許容される。次に具体例をもって本発明をさ
らに説明する。
Cu: Cu in steel is an impurity from a Ni source.
Up to 1.5% is acceptable. Next, the present invention will be further described with reference to specific examples.

【0026】[0026]

【実施例】【Example】

(実施例1)表1のNo.1の鋼組成を基本成分として各主成
分を変化させた供試材を用いて1000℃でのクリープ破断
試験を行った。図1にクリープ破断時間および破断伸び
とSi量の関係を、図2にクリープ破断時間とN量の関係
を示す。これらの結果よりSiを0.5 %以下とすることに
より破断寿命および破断延性が改善される。さらにこの
ようなSi量である供試材ではN量が0.10〜0.35%におい
て優れたクリープ破断特性を持つことが分かった。
(Example 1) A creep rupture test at 1000 ° C was performed using test materials in which each of the main components was changed with the steel composition of No. 1 in Table 1 as a basic component. FIG. 1 shows the relationship between the creep rupture time and rupture elongation and the Si content, and FIG. 2 shows the relationship between the creep rupture time and the N content. From these results, it is possible to improve the rupture life and rupture ductility by reducing the content of Si to 0.5% or less. Further, it was found that the test material having such Si content had excellent creep rupture characteristics when the N content was 0.10 to 0.35%.

【0027】(実施例2)次に、表1に示す種々の化学成
分をする鋼を供試した。鋼No.1〜9が本発明鋼でありN
o.10 〜23は比較鋼である。これらのうち鋼No.1〜9、1
3、23については真空溶解炉にて溶製し、鍛造、熱間圧
延により板厚5mmとした後、1200℃で溶体化処理を施し
た。
Example 2 Next, steels having various chemical components shown in Table 1 were tested. Steel Nos. 1 to 9 are steels of the present invention and N
o.10 to 23 are comparative steels. Of these, steel Nos. 1 to 9, 1
Samples 3 and 23 were melted in a vacuum melting furnace, forged and hot-rolled to a thickness of 5 mm, and then subjected to a solution treatment at 1200 ° C.

【0028】これら供試材についても850 ℃および1000
℃でのクリープ破断試験および高温引張試験を行った。
結果を併せて表2に示す。さらに表1の鋼種のうち本発
明鋼および比較鋼No.10 、15、21の1000℃大気中保持で
の単位面積あたりの酸化増量の経時変化 (mg/cm2)を図
3に示す。
These test materials were also used at 850 ° C. and 1000 ° C.
A creep rupture test at ℃ and a high temperature tensile test were performed.
The results are shown in Table 2. FIG. 3 shows the change over time (mg / cm 2 ) of the increase in oxidation per unit area of the steels of the present invention and Comparative Steels Nos. 10, 15, and 21 among the steel types shown in Table 1 at 1000 ° C. in the atmosphere.

【0029】なお、酸化試験材は2t×20×25mmの大き
さで600 番エメリー紙で端面、表面研磨、脱脂洗浄後供
試した。また酸化試験では、スケール剥離を含めた酸化
後の酸化増量の大小をもって耐酸化性を評価した。
The oxidized test material was 2 t × 20 × 25 mm, and the test was carried out using No. 600 emery paper after polishing the end face, surface polishing and degreasing. In the oxidation test, the oxidation resistance was evaluated based on the amount of increase in oxidation after oxidation including scale peeling.

【0030】表2に示す結果から、本発明が示す適正成
分を有する各鋼種は比較鋼に比べ高温強度特性に優れて
いることが分かる。また耐酸化性試験結果より、本発明
鋼は高温酸化雰囲気中で優れた耐酸化性を有しているこ
とがわかり、耐酸化性と高温での高い強度を併せ持つこ
とが確認された。
From the results shown in Table 2, it can be seen that each steel type having the proper components according to the present invention is superior in the high-temperature strength characteristics as compared with the comparative steel. Further, the results of the oxidation resistance test show that the steel of the present invention has excellent oxidation resistance in a high-temperature oxidation atmosphere, and it has been confirmed that the steel has both oxidation resistance and high strength at high temperatures.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】以上説明してきたように、本発明によれ
ば、Al系主体の酸化皮膜を生成する優れた耐酸化性を有
しかつ高温で強度特性に優れていることから800 ℃の高
温酸化雰囲気で使用される熱交換器等の材料として極め
て有望である。
As described above, according to the present invention, since it has excellent oxidation resistance for forming an oxide film mainly composed of Al and has excellent strength characteristics at a high temperature, it has a high temperature of 800 ° C. It is extremely promising as a material for a heat exchanger used in an oxidizing atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明鋼と同系で1000℃でのクリープ破断時
間、延性と鋼中のSi含有量との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between creep rupture time and ductility at 1000 ° C. and the Si content in steel in the same system as the steel of the present invention.

【図2】本発明鋼と同系で1000℃でのクリープ破断時間
と鋼中のN含有量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between creep rupture time at 1000 ° C. and N content in steel in the same system as the steel of the present invention.

【図3】実施例2において得られた材料の連続酸化試験
における酸化増量変化を示すグラフである。
FIG. 3 is a graph showing changes in the amount of increase in oxidation in a continuous oxidation test of the material obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C22C 19/05 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C22C 19/05

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.15 %以下、Si:0.15 %以下、Cr:15 〜30%、Mn:
5.0%以下、 Ni:20 〜60%、Al:2.5〜6.0 %、N:0.10 〜0.35%以
下、 S:0.0030%以下かつS+O:0.0080%以下、 残部Feおよび不可避不純物よりなることを特徴とする耐
熱オーステナイト系ステンレス鋼。
C. 0.15% or less, Si: 0.15% or less, Cr: 15 to 30%, Mn:
5.0% or less, Ni: 20 to 60%, Al: 2.5 to 6.0%, N: 0.10 to 0.35% or less, S: 0.0030% or less and S + O: 0.0080% or less, balance Fe and inevitable impurities Heat resistant austenitic stainless steel.
【請求項2】 さらに、重量%で、B:0.0005〜0.020
%以下を含有する請求項1記載の耐熱オーステナイト系
ステンレス鋼。
2. B: 0.0005 to 0.020 by weight%
The heat-resistant austenitic stainless steel according to claim 1 containing at most 10% by weight.
JP5060613A 1993-03-19 1993-03-19 Heat-resistant austenitic stainless steel Expired - Fee Related JP3006337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060613A JP3006337B2 (en) 1993-03-19 1993-03-19 Heat-resistant austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060613A JP3006337B2 (en) 1993-03-19 1993-03-19 Heat-resistant austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH06271994A JPH06271994A (en) 1994-09-27
JP3006337B2 true JP3006337B2 (en) 2000-02-07

Family

ID=13147302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060613A Expired - Fee Related JP3006337B2 (en) 1993-03-19 1993-03-19 Heat-resistant austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3006337B2 (en)

Also Published As

Publication number Publication date
JPH06271994A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
EP0016225B2 (en) Use of an austenitic steel in oxidizing conditions at high temperature
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JP5605996B2 (en) Austenitic stainless steel for heat-resistant materials
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JPH06322488A (en) High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
JP2510206B2 (en) High strength austenitic heat resistant steel with low Si content
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JP3827988B2 (en) Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance
JP3006337B2 (en) Heat-resistant austenitic stainless steel
JP2002167655A (en) Stainless cast steel having excellent heat resistance and machinability
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
JP4523696B2 (en) TIG welding material for austenitic heat resistant steel with excellent high temperature strength
JPH06271992A (en) Austenitic stainless steel excellent in oxidation resistance
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP3424314B2 (en) Heat resistant steel
JP3196587B2 (en) High Cr ferritic heat resistant steel
JP3591486B2 (en) High Cr ferritic heat resistant steel
JP3239763B2 (en) Austenitic stainless steel with excellent resistance to sulfuric acid corrosion
CN113195762A (en) Ferritic stainless steel
JP2004285393A (en) Heat resistant material
JP3481418B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH0142346B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991026

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees