JP3005672B2 - Method for producing multi-phase Al-Si-Fe alloy - Google Patents

Method for producing multi-phase Al-Si-Fe alloy

Info

Publication number
JP3005672B2
JP3005672B2 JP10048382A JP4838298A JP3005672B2 JP 3005672 B2 JP3005672 B2 JP 3005672B2 JP 10048382 A JP10048382 A JP 10048382A JP 4838298 A JP4838298 A JP 4838298A JP 3005672 B2 JP3005672 B2 JP 3005672B2
Authority
JP
Japan
Prior art keywords
phase
alloy
matrix
cold working
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10048382A
Other languages
Japanese (ja)
Other versions
JPH11241152A (en
Inventor
修 梅澤
寿 長井
Original Assignee
科学技術庁金属材料技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁金属材料技術研究所長 filed Critical 科学技術庁金属材料技術研究所長
Priority to JP10048382A priority Critical patent/JP3005672B2/en
Publication of JPH11241152A publication Critical patent/JPH11241152A/en
Application granted granted Critical
Publication of JP3005672B2 publication Critical patent/JP3005672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、複相Al
−Si−Fe系合金の製造方法に関するものである。さ
らに詳しくは、この出願の発明は、高強度・高延性と共
に、冷間加工性をも有し、展伸材及び鍛造材としての製
造を可能とする複相Al−Si−Fe系合金の製造方法
に関するものである。
BACKGROUND OF THE INVENTION The invention of this application relates to a multi-phase Al
The present invention relates to a method for producing a Si—Fe alloy. More specifically, the invention of this application is intended to produce a multi-phase Al-Si-Fe alloy having high strength and high ductility as well as cold workability and enabling production as a wrought material and a forged material. It is about the method.

【0002】[0002]

【従来の技術とその課題】従来より、Al−Si−Fe
系合金やAl−Si系合金、Al−Si−Cu系合金、
及びAl−Fe−Mn系合金等については、粗大針状金
属間化合物や粗大六角板状のSi晶等の変形因難かつ脆
性を有する第2相が生成することが知られていた。この
第2相が生成する場合、各合金の機械的性質は良好でな
く、冷間加工性に乏しいため、展伸材及び鍛造材への適
用が困難であった。
2. Description of the Related Art Conventionally, Al-Si-Fe
Alloys, Al-Si alloys, Al-Si-Cu alloys,
It has been known that, for Al-Fe-Mn-based alloys and the like, a second phase that is difficult to deform and has a brittleness, such as a coarse acicular intermetallic compound or a coarse hexagonal plate-like Si crystal, is generated. When this second phase is formed, the mechanical properties of each alloy are not good and the cold workability is poor, so that it has been difficult to apply the alloy to wrought materials and forged materials.

【0003】一方、Al合金の機械的性質の向上を目的
として、特定元素の添加による各種改良処理や共晶温度
近傍での熱間加工による組織微細化と第2相の球状化が
図られている。だが、第2相の分断・破砕は困難であ
り、母相への微細分散化は実現されていない。また、第
2相の球状化には、例えば8時間程度の長い時間の熱処
理が必要である等の問題もあった。
On the other hand, in order to improve the mechanical properties of Al alloys, various refinement treatments by addition of specific elements and finer structure by hot working near the eutectic temperature and spheroidization of the second phase have been attempted. I have. However, it is difficult to divide and crush the second phase, and fine dispersion into the parent phase has not been realized. In addition, there is a problem that the spheroidization of the second phase requires a heat treatment for a long time, for example, about 8 hours.

【0004】一般に、加工による仕事の大部分は、熱エ
ネルギーとして消失し、転位等の格子欠陥として蓄積さ
れるエネルギーは10%未満に過ぎないとされている。
また、Alは積層欠陥エネルギーが高く、らせん転位の
交差すべりが容易なため、変形が進むと動的回復が起こ
る。このような動的回復を抑制し、より高い歪みエネル
ギーを蓄積させるためには、極低温での加工が有効であ
り、急速加熱と組み合わせることにより、Al母相の再
結晶粒を微細化できる可能性は指摘されている。
[0004] In general, it is said that most of the work by processing is lost as thermal energy, and energy stored as lattice defects such as dislocations is less than 10%.
Further, Al has a high stacking fault energy and facilitates the cross-slip of screw dislocations, so that dynamic deformation occurs as the deformation proceeds. In order to suppress such dynamic recovery and accumulate higher strain energy, processing at cryogenic temperature is effective. By combining with rapid heating, recrystallized grains of Al matrix can be refined. Sex is pointed out.

【0005】この出願の発明は、以上の従来技術を踏ま
え、高強度・高延性と共に、冷間加工性をも有し、展伸
材及び鍛造材としての製造を可能とする複相Al−Si
−Fe系合金の製造方法を提供することを目的としてい
る。
[0005] The invention of this application is based on the above-mentioned prior art, and has a high strength and a high ductility, and also has a cold workability, and is capable of being manufactured as a wrought material and a forged material.
An object of the present invention is to provide a method for producing an Fe-based alloy.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、延性的Al母相と変形因
難な第2相を有する複相Al−Si−Fe系合金材料を
液体窒素温度以下の極低温に冷却し、多パス冷間加工に
より第2相に微小クラックを導入して、これを分断・破
砕し、母相に微細分散させることを特徴とする複相Al
−Si−Fe系合金の製造方法(請求項1)を提供す
る。
Means for Solving the Problems The present invention solves the above-mentioned problems by providing a multi-phase Al-Si-Fe alloy material having a ductile Al matrix and a second phase which is hardly deformed. A multi-phase Al which is cooled to a cryogenic temperature lower than the liquid nitrogen temperature, introduces microcracks into the second phase by multi-pass cold working, and divides and crushes them, and finely disperses them in the matrix.
A method for producing a Si-Fe alloy (claim 1) is provided.

【0007】また、この出願の発明は、複相Al−Si
−Fe系合金材料は、スプレーデポジション法により作
製されたものであること(請求項2)、並びに、多パス
冷間加工を回復熱処理と組み合わせて行い、回復熱処理
によりクラックを消滅させ、再度の冷間加工により第2
相の分断・破砕を進行させ、母相により均一に微細分散
させること(請求項3)をそれぞれ好ましい態様として
提供する。
[0007] The invention of the present application discloses a multi-phase Al-Si
-The Fe-based alloy material is produced by the spray deposition method (Claim 2), and the multi-pass cold working is performed in combination with the recovery heat treatment, the crack is eliminated by the recovery heat treatment, and the second heat treatment is performed again. Second by cold working
It is provided as a preferred embodiment that the phase separation / crushing is advanced and the phase is finely dispersed more uniformly in the mother phase.

【0008】[0008]

【発明の実施の形態】Al−Si−Fe系合金は、延性
的Al母相とと共に、粗大でFeリッチな金属間化合物
及び粗大六角板状のSi晶を変形因難な第2相として有
する複相合金である。このAl−Si−Fe系合金で
は、冷間加工時に、それら脆性的な第2相の割れが問題
になっている。この出願の発明では、このような複相A
l−Si−Fe系合金材料を液体窒素温度以下の極低温
に冷却し、多パス冷間加工を行うことにより、第2相に
微小クラックを導入し、これを分断・破砕して、母相に
微細分散させる。
BEST MODE FOR CARRYING OUT THE INVENTION An Al-Si-Fe alloy has a coarse Fe-rich intermetallic compound and a coarse hexagonal plate-like Si crystal as a second phase which is hardly deformed, together with a ductile Al matrix. It is a two-phase alloy. In this Al-Si-Fe alloy, the brittle cracks of the second phase are problematic during cold working. In the invention of this application, such a multiphase A
The l-Si-Fe alloy material is cooled to a cryogenic temperature lower than the temperature of liquid nitrogen and subjected to multi-pass cold working to introduce minute cracks into the second phase, which is divided and crushed to form a matrix. Finely disperse.

【0009】Al母相は、低温ではより硬度及び強度が
上昇する。動的回復が抑制され、第2相との硬度差が少
なくなり、冷間加工によりAl母相のみでなく、第2相
にも変形応力が生じる。その結果、第2相の分断・破砕
が容易に生じ、Al母相に微細分散される。また、Al
母相は、より高い歪みエネルギーの蓄積を可能とする微
細な組織となる。冷間加工は、多パスとし、その加工度
並びに加工回数は、加工対象である複相Al−Si−F
e系合金材料の組成、冷却下での硬度等に基づいて定め
ることができる。一般的には、加工圧下率は4〜20%
程度、加工回数は5〜10回程度を目安とすることがで
きる。この多パス冷間加工には、比較的軽圧でのスエー
ジング、溝圧延、平圧延等が例示される。
[0009] The hardness and strength of the Al matrix are increased at low temperatures. Dynamic recovery is suppressed, the hardness difference with the second phase is reduced, and deformation stress is generated not only in the Al matrix but also in the second phase by cold working. As a result, the second phase is easily separated and crushed, and finely dispersed in the Al matrix. Also, Al
The parent phase has a fine structure that allows higher strain energy to be stored. The cold working is performed in multiple passes, and the working degree and the number of working times are determined by the multi-phase Al-Si-F to be worked.
It can be determined based on the composition of the e-based alloy material, hardness under cooling, and the like. Generally, the processing draft is 4 to 20%.
The degree and the number of times of processing can be set to about 5 to 10 times. Examples of the multi-pass cold working include swaging under relatively light pressure, groove rolling, and flat rolling.

【0010】また、この出願の発明では、複相Al−S
i−Fe系合金材料は、スプレーデポジション法により
作製されたものとすることができる。スプレーデポジシ
ョン法で作製された複相Al−Si−Fe系合金材料に
おいて第2相は、数μmサイズで均一に分散している
が、このスプレーデポジション法で作製された複相Al
−Si−Fe系合金材料を液体窒素温度以下の極低温に
冷却し、多パス冷間加工を行うことによって、第2層
は、より微細に分断・破砕され、母相により均一かつ微
細に分散される。
Also, in the invention of this application, the multi-phase Al-S
The i-Fe-based alloy material can be made by a spray deposition method. In the multi-phase Al—Si—Fe-based alloy material prepared by the spray deposition method, the second phase is uniformly dispersed with a size of several μm.
By cooling the Si-Fe-based alloy material to a cryogenic temperature lower than the liquid nitrogen temperature and performing multi-pass cold working, the second layer is more finely divided and crushed, and is uniformly and finely dispersed in the matrix. Is done.

【0011】さらに、この出願の発明では、多パス冷間
加工を回復熱処理と組み合わせ、回復熱処理と冷間加工
を繰り返し行うことが考慮される。回復熱処理は、極低
温での冷間加工により導入したクラックを消失させ、A
l母相の物質移動を可能とし、また、微細析出物の均一
かつ微細な析出を可能とする。その条件は、一般的に
は、450〜550℃、0.5〜1.5時間程度が考慮
される。そして、回復熱処理後の極低温での冷間加工に
より、第2相は、再び分断・破砕され、Al母相により
均一に微細分散される。
Further, in the invention of this application, it is considered that the multi-pass cold working is combined with the recovery heat treatment and the recovery heat treatment and the cold work are repeatedly performed. The recovery heat treatment eliminates cracks introduced by cold working at extremely low temperatures,
(1) It enables mass transfer of the mother phase and enables uniform and fine precipitation of fine precipitates. Generally, the conditions are 450 to 550 ° C. for about 0.5 to 1.5 hours. Then, by cold working at an extremely low temperature after the recovery heat treatment, the second phase is again divided and crushed, and is uniformly finely dispersed by the Al matrix.

【0012】こうして、この出願の発明は、実用Al合
金として鋳造材、鍛造材、さらに進展材の各分野に適用
可能な高強度・高延性をも有する複相Al−Si−Fe
系合金の製造を可能にする。なお、この出願の発明で
は、冷間加工の対象となる複相Al−Si−Fe系合金
材料は、Cu、Mn、Mg、Li、Zn等の成分を含有
するものまで考慮される。以下、実施例を示し、この出
願の発明についてさらに詳しく説明する。
[0012] Thus, the invention of this application is to provide a multi-phase Al-Si-Fe alloy having high strength and high ductility applicable to various fields of cast material, forged material, and developed material as a practical Al alloy.
Enables production of base alloys. In the invention of this application, the multi-phase Al—Si—Fe-based alloy material to be subjected to cold working is considered even to those containing components such as Cu, Mn, Mg, Li, and Zn. Hereinafter, examples will be shown, and the invention of this application will be described in more detail.

【0013】[0013]

【実施例】表1に示したNo.1〜9の合金をφ30×
200mmインゴットケースに鋳造して供試材とした。
また、No.10の合金をスプレーデポジション法によ
り作製し、熱間押出しによりφ30に成形して供試材と
した。
EXAMPLE No. 1 shown in Table 1 was used. Alloys 1 to 9 are φ30 ×
The test material was cast in a 200 mm ingot case.
In addition, No. An alloy No. 10 was prepared by a spray deposition method, and was formed into a test material by being formed into φ30 by hot extrusion.

【0014】[0014]

【表1】 [Table 1]

【0015】各供試材を液体窒素中(77K)で冷却
し、直ちにスエージング加工を行った。1サイクルの圧
下率は約20%とした。表2にスエージング加工の結果
を示した。
Each test material was cooled in liquid nitrogen (77K) and immediately swaged. The rolling reduction in one cycle was about 20%. Table 2 shows the results of swaging.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示した通りに、各供試材とも極低温
の77Kの加工は、室温(293K)における加工より
も容易であり、また、第2相は、Al母相に微細に分散
した。
As shown in Table 2, working at 77K at extremely low temperature is easier than working at room temperature (293K) for each test material, and the second phase is finely dispersed in the Al matrix. did.

【0018】[0018]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、実用Al合金として鋳造材、鍛造材、さら
に進展材の各分野に適用可能な複相Al−Si−Fe系
合金の製造が可能となる。Al−Si−Fe系合金によ
る展伸材の高強度・高延性化が図られ、ピストン、VT
Rシリンダー等の各種機械部品へのAl−Si−Fe系
合金の適用が可能となり、それら機械部品の性能向上が
期待される。
As described above in detail, according to the invention of this application, it is possible to produce a multi-phase Al-Si-Fe-based alloy applicable to various fields of cast material, forged material, and developed material as a practical Al alloy. Becomes High strength and high ductility of the wrought material by the Al-Si-Fe alloy are achieved, and the piston, VT
Al-Si-Fe alloys can be applied to various mechanical parts such as R cylinders, and the performance of these mechanical parts is expected to be improved.

【0019】また、この出願の発明は、現在の工業設備
における製造ラインの一部を改編するだけで適用可能で
あり、従って、Al−Si−Fe系合金の冷間加工材を
安価に提供することが可能ともなる。
Further, the invention of this application can be applied only by remodeling a part of the production line in the current industrial equipment, and therefore provides a cold-worked material of an Al-Si-Fe alloy at low cost. It is also possible.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 685 C22F 1/00 685Z 694 694A Continued on the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 685 C22F 1/00 685Z 694 694A

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 延性的Al母相と変形困難な第2相を有
する複相Al−Si−Fe系合金材料を液体窒素温度以
下の極低温に冷却し、多パス冷間加工により第2相に微
小クラックを導入して、これを分断・破砕し、母相に微
細分散させることを特徴とする複相Al−Si−Fe系
合金の製造方法。
1. A multi-phase Al—Si—Fe alloy material having a ductile Al matrix and a second phase that is difficult to deform is cooled to an extremely low temperature of liquid nitrogen temperature or lower, and the second phase is subjected to multi-pass cold working. A multi-phase Al-Si-Fe-based alloy, characterized in that microcracks are introduced into the matrix, the cracks are divided and crushed, and finely dispersed in a matrix.
【請求項2】 複相Al−Si−Fe系合金材料は、ス
プレーデポジション法により作製されたものである請求
項1記載の複相Al−Si−Fe系合金の製造方法。
2. The method for producing a multi-phase Al—Si—Fe alloy according to claim 1, wherein the multi-phase Al—Si—Fe alloy material is produced by a spray deposition method.
【請求項3】 多パス冷間加工を回復熱処理と組み合わ
せて行い、回復熱処理によりクラックを消滅させ、再度
の冷間加工により第2相の分断・破砕を進行させ、母相
により均一に微細分散させる請求項1又は2記載の複相
Al−Si−Fe系合金の製造方法。
3. The multi-pass cold working is performed in combination with the recovery heat treatment, the cracks are eliminated by the recovery heat treatment, and the second phase is separated and crushed by the cold work again, and the fine phase is uniformly dispersed in the mother phase. The method for producing a multi-phase Al-Si-Fe alloy according to claim 1 or 2.
JP10048382A 1998-02-27 1998-02-27 Method for producing multi-phase Al-Si-Fe alloy Expired - Lifetime JP3005672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10048382A JP3005672B2 (en) 1998-02-27 1998-02-27 Method for producing multi-phase Al-Si-Fe alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10048382A JP3005672B2 (en) 1998-02-27 1998-02-27 Method for producing multi-phase Al-Si-Fe alloy

Publications (2)

Publication Number Publication Date
JPH11241152A JPH11241152A (en) 1999-09-07
JP3005672B2 true JP3005672B2 (en) 2000-01-31

Family

ID=12801774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10048382A Expired - Lifetime JP3005672B2 (en) 1998-02-27 1998-02-27 Method for producing multi-phase Al-Si-Fe alloy

Country Status (1)

Country Link
JP (1) JP3005672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238970B (en) * 2015-11-18 2016-12-28 全椒县志宏机电设备设计有限公司 A kind of aluminium alloy of high-strength high-tractility

Also Published As

Publication number Publication date
JPH11241152A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
Liu et al. Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening
Abdulwahab et al. Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356. 0-type Al–Si–Mg alloy
EP3108025B1 (en) Aluminum superalloys for use in high temperature applications
CN111172446B (en) Strong corrosion-resistant non-equal atomic ratio high-entropy alloy and preparation method thereof
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JP2004505176A (en) Aluminum base alloy and method of forming its workpiece
CN108690926A (en) Aluminium alloy and its method of manufacture
Belov et al. Improving the properties of cold-rolled Al–6% Ni sheets by alloying and heat treatment
JP3873313B2 (en) Method for producing high-strength titanium alloy
AU757115B2 (en) Copper base alloy casting, and methods for producing casting and forging employing copper base alloy casting
CN103290285B (en) Magnesium-zinc-manganese-tin-yttrium alloy and preparation method of same
Liao et al. The effect of double extrusion on the microstructure and mechanical properties of AZ80RE alloy
JP3475236B2 (en) Manufacturing method of wrought aluminum alloy
RU2215807C2 (en) Aluminum-base alloy, article made of thereof and method for making article
JP3005672B2 (en) Method for producing multi-phase Al-Si-Fe alloy
Sun et al. A uniformly fine-grained Mg-Y-Nd-Zr magnesium alloy with simultaneously optimized strength and ductility processed by forging and ECAP
Lobry et al. Effect of rapid solidification on structure and mechanical properties of Al-6Mn-3Mg alloy
JPH01152237A (en) Aluminum alloy material for engine member
Adeosun et al. Strength and ductility of forged 1200 aluminum alloy reinforced with steel particles
RU2606685C1 (en) METHOD FOR THERMOMECHANICAL TREATMENT OF CAST (γ+α2)-INTERMETALLIC ALLOYS BASED ON TITANIUM ALUMINIDE γ-TiAl
Reznik et al. Influence of Al-Cu-Mn-Fe-Ti alloy composition and production parameters of extruded semi-finished products on their structure and mechanical properties
Kheradmand et al. Modified age hardening of Al–Zn–Mg–Cu with minor amount of scandium and zirconium
JP3005673B2 (en) Method for producing Al-Si-Fe alloy
Meng et al. The effects of annealing on the microstructure and mechanical properties of Fe 28 Ni 18 Mn 33 Al 21
JPS60149751A (en) Metal composition

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term