JP2999116B2 - Branched polyimide and method for producing the same - Google Patents

Branched polyimide and method for producing the same

Info

Publication number
JP2999116B2
JP2999116B2 JP7324994A JP7324994A JP2999116B2 JP 2999116 B2 JP2999116 B2 JP 2999116B2 JP 7324994 A JP7324994 A JP 7324994A JP 7324994 A JP7324994 A JP 7324994A JP 2999116 B2 JP2999116 B2 JP 2999116B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
triamine
film
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7324994A
Other languages
Japanese (ja)
Other versions
JPH07278300A (en
Inventor
育紀 吉田
正博 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP7324994A priority Critical patent/JP2999116B2/en
Publication of JPH07278300A publication Critical patent/JPH07278300A/en
Application granted granted Critical
Publication of JP2999116B2 publication Critical patent/JP2999116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は加工性の良好なポリイミ
ドの製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing a polyimide having good processability.

【0002】[0002]

【従来の技術】従来からテトラカルボン酸とジアミンと
の反応により得られるポリイミドは種々の優れた物性
や、良好な耐熱性を有するために今後もエレクトロニク
スの分野や宇宙・航空産業分野等での利用が期待されて
いる。
2. Description of the Related Art Conventionally, polyimides obtained by the reaction of a tetracarboxylic acid and a diamine have various excellent physical properties and good heat resistance, so that they will be used in the fields of electronics, the aerospace industry, etc. Is expected.

【0003】従来開発されたポリイミドは優れた特性を
示すものが多いが、優れた耐熱性を有するけれども加工
性はとぼしく、また、加工性を向上する目的で開発され
た樹脂は耐熱性に劣るなど性能に一長一短があった。例
えば式(7)
Conventionally developed polyimides often have excellent properties, but have excellent heat resistance but poor workability, and resins developed for the purpose of improving workability have poor heat resistance. There were advantages and disadvantages in performance. For example, equation (7)

【0004】[0004]

【化8】 Embedded image

【0005】で表されるような基本骨格からなるポリイ
ミド(デュポン社製:商品名 Kapton,Vespel )は明瞭
なガラス転移温度を有せず、耐熱性に優れたポリイミド
であるが、成形材料として用いる場合に加工が困難であ
り、粉末焼結成形などの特殊な手法を用いて加工しなけ
ればならない。また、電気電子部品の材料として用いる
際に寸法安定性、絶縁性、はんだ耐熱性に悪影響を及ぼ
す吸水率が高いという性質がある。また、式(8)
A polyimide having a basic skeleton represented by the following formula (manufactured by DuPont, trade name: Kapton, Vespel) is a polyimide having no clear glass transition temperature and excellent heat resistance, but is used as a molding material. In such cases, processing is difficult, and processing must be performed using a special method such as powder sintering. In addition, when used as a material for electrical and electronic components, it has a property of having a high water absorption that adversely affects dimensional stability, insulation properties, and solder heat resistance. Equation (8)

【0006】[0006]

【化9】 Embedded image

【0007】で表されるような基本骨格からなるポリエ
ーテルイミド(ゼネラル・エレクトリック社製:商品名
Ultem )は加工性の優れた樹脂であるが、ガラス転移
温度が217℃と低く、またメチレンクロライドなどの
ハロゲン化炭化水素に可溶で、耐熱性、耐溶剤性の面か
らは満足のゆく樹脂ではない。これらの欠点を解消すべ
く、鋭意検討した結果、我々は一般式(9)
A polyetherimide having a basic skeleton represented by the following formula (trade name, manufactured by General Electric Co., Ltd.)
Ultem) is a resin with excellent processability, but has a low glass transition temperature of 217 ° C, is soluble in halogenated hydrocarbons such as methylene chloride, and is satisfactory in terms of heat resistance and solvent resistance. is not. As a result of intensive studies to solve these disadvantages, we found that the general formula (9)

【0008】[0008]

【化10】 Embedded image

【0009】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表される新規なポリイミド樹脂を見いだし、既に
出願した(特開平1−110530等)。
(Wherein, X, Y 1 to Y 4 and R are the same as those described above), and have already filed an application (Japanese Patent Application Laid-Open No. 110530/1991).

【0010】該ポリイミド樹脂は、170℃〜270℃
の範囲に明瞭なガラス転移温度を示し、400℃付近で
もほとんど重量減少がなく、加工性が良好である。ま
た、耐薬品性にも優れ、従来のポリイミドの欠点を補う
ものであった。
The polyimide resin has a temperature of 170 ° C. to 270 ° C.
Shows a clear glass transition temperature in the range, almost no reduction in weight even at around 400 ° C., and good workability. In addition, it has excellent chemical resistance and compensates for the disadvantages of conventional polyimides.

【0011】該ポリイミド樹脂の合成方法は種々あり、
原料のテトラカルボン酸二無水物とジアミンを反応さ
せ、ポリアミド酸とした後、熱により脱水環化させる方
法や、無水酢酸により脱水環化させてポリイミドを得る
方法が知られている。
There are various methods for synthesizing the polyimide resin.
A method is known in which a raw material, tetracarboxylic dianhydride, is reacted with a diamine to obtain a polyamic acid, and then subjected to dehydration cyclization by heat or a method of obtaining a polyimide by dehydration cyclization with acetic anhydride.

【0012】しかしながら該ポリイミド樹脂も、分子量
が高くなるに従い加工性がとぼしくなり、加工時に樹脂
のゲル化が起こったり、樹脂の粘度が増加するなどの問
題点がある。
However, this polyimide resin also has problems such that the processability becomes poorer as the molecular weight increases, the resin gels during processing, and the viscosity of the resin increases.

【0013】該問題点を解決するため、これまで本発明
者等は、ジアミンの両末端にジカルボン酸無水物を付加
させ、さらに脱水環化させた一般式(10)
In order to solve the above problem, the present inventors have heretofore carried out the general formula (10) wherein dicarboxylic acid anhydride is added to both ends of a diamine and further dehydration cyclization is carried out.

【0014】[0014]

【化11】 Embedded image

【0015】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表されるビスイミド化合物、及び該ビスイミド化
合物を該ポリイミド樹脂に添加することによって加工性
が向上することを見いだし、既に出願した(特願平03
−004963、特願平03−086558)。また、
本発明者等はポリイミドを合成する際、上記のジアミン
とテトラカルボン酸二無水物をある特定のモル比で合成
することにより、一般式(9)
Wherein X, Y 1 to Y 4 and R are the same as described above, and that the processability is improved by adding the bisimide compound to the polyimide resin. Application already filed (Japanese Patent Application No. 03
-004963, Japanese Patent Application No. 03-086558). Also,
The inventors of the present invention synthesize the polyimide by synthesizing the above diamine and tetracarboxylic dianhydride in a specific molar ratio to obtain a compound represented by the general formula (9).

【0016】[0016]

【化12】 Embedded image

【0017】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表される低分子量のポリイミドオリゴマーが得ら
れること、及び該ポリイミドオリゴマーを該ポリイミド
樹脂に添加することによって加工性が向上することを見
いだし、既に出願した(特願平04−340138、特
願平04−342548)。
(Wherein X, Y 1 to Y 4 and R are the same as those described above), and a processability is obtained by adding the polyimide oligomer to the polyimide resin. And have already filed applications (Japanese Patent Application Nos. 04-340138 and 04-342548).

【0018】さらに本発明者等は、ポリイミドをある特
定の反応条件で合成することによって、低分子量のポリ
イミドオリゴマーを含んだ加工性良好なポリイミド樹脂
をワンポットで得られることを見いだし、既に出願した
(特願平05−276387)。このようにポリイミド
樹脂にビスイミド化合物やポリイミドオリゴマーなどの
ような低分子量成分が存在することにより加工性は向上
するが、その場合でも問題点がある。
Further, the present inventors have found that by synthesizing a polyimide under a specific reaction condition, a polyimide resin having good processability containing a low molecular weight polyimide oligomer can be obtained in one pot, and has already filed an application ( Japanese Patent Application No. 05-276387). As described above, the workability is improved by the presence of a low molecular weight component such as a bisimide compound or a polyimide oligomer in the polyimide resin, but there is a problem even in such a case.

【0019】[0019]

【発明が解決しようとする課題】一般にビスイミド化合
物やポリイミドオリゴマーのような低分子量成分を多く
含んだポリイミド樹脂は、押出成形などにおける加工性
は良好になるけれども、押出成形したフィルムを延伸し
ようとすると均一な延伸ができず、延伸したフィルムに
ムラができることになる。均一に延伸できるフィルムを
得るためには、分子量の高いポリイミドでフィルムを作
ればよいが、分子量が高いと加工性が悪くなり、肝心の
延伸に供する原反フィルムを得ることができない。
Generally, a polyimide resin containing a large amount of low molecular weight components such as a bisimide compound or a polyimide oligomer has good workability in extrusion molding or the like, but it is difficult to stretch an extruded film. Uniform stretching cannot be performed, resulting in unevenness in the stretched film. In order to obtain a film which can be stretched uniformly, a film may be made of a polyimide having a high molecular weight. However, if the molecular weight is high, the processability is deteriorated and a raw film to be used for essential stretching cannot be obtained.

【0020】低分子量成分を多く含むポリイミドは延伸
のような二次加工においてこのような問題点が生じるな
ど一長一短があり、押出成形法においても良好な加工性
を示し、延伸などの二次加工においても均一な延伸がで
きるようなポリイミド樹脂及びその製造方法が望まれて
いた。
Polyimides containing a large amount of low molecular weight components have advantages and disadvantages, such as the occurrence of such problems in secondary processing such as stretching, and exhibit good workability even in extrusion molding methods. There has been a demand for a polyimide resin and a method for producing the same, which enable uniform stretching.

【0021】[0021]

【課題を解決するための手段】本発明者等は前記の問題
点を解決するために鋭意検討を行なった結果、該ポリイ
ミド樹脂に、ある特定の第3成分をある特定の割合導入
し、分岐状にすることにより、従来の方法で合成したポ
リイミド樹脂よりも押出成形などの成形加工性が良好な
だけではなく、延伸性も良好なポリイミド樹脂が得られ
ることを見いだし、本発明を完成させるに至った。すな
わち、本発明は下記式(1)
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, introduced a specific third component into the polyimide resin at a specific ratio, and branched the polyimide resin. By making the shape, not only the moldability such as extrusion molding is better than the polyimide resin synthesized by the conventional method, but it is also found that a polyimide resin having good stretchability can be obtained, and to complete the present invention. Reached. That is, the present invention provides the following formula (1)

【0022】[0022]

【化13】 Embedded image

【0023】(式中、Xは直結、炭素数1〜10の2価
の炭化水素基、六弗素化されたイソプロピリデン基、カ
ルボニル基、チオ基、スルフィニル基、スルホニル基ま
たはオキシドからなる群より選ばれた基を示し、Y1
2 、Y3 、Y4 はそれぞれ独立に水素、低級アルキル
基、低級アルコキシ基、塩素または臭素からなる群より
選ばれた基を示し、同じであっても異なっていてもよ
い。Rは炭素数2以上の脂肪族基、環式脂肪族基、単環
式芳香族基、縮合多環式芳香族基、芳香族基が直接また
は架橋員により相互に連結された非縮合環式芳香族基か
らなる群より選ばれた4価の基を示し、Wは少なくとも
3個の炭素原子を有する3価の基を示し、3個のアミノ
基は互いに異なる炭素原子に結合し、さらに互いに隣接
した炭素原子に結合していない)の繰り返し単位で示さ
れる分岐ポリイミド樹脂であり、さらにWが下記式
(2)
(Wherein, X is a group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group or an oxide. Represents a selected group, Y 1 ,
Y 2 , Y 3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine, and may be the same or different. R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, a non-condensed cyclic group in which aromatic groups are connected to each other directly or by a bridge member. Represents a tetravalent group selected from the group consisting of aromatic groups, W represents a trivalent group having at least three carbon atoms, and three amino groups are bonded to different carbon atoms; (Not bonded to adjacent carbon atoms), and W is the following formula (2)

【0024】[0024]

【化14】 から選ばれる1種または2種以上の混合物である請求項
1記載の分岐ポリイミド樹脂であり、さらに該分岐ポリ
イミド樹脂の製造方法に於いて、ジアミンが下記式
(3)
Embedded image 2. The branched polyimide resin according to claim 1, wherein the diamine is one or a mixture of two or more selected from the group consisting of:

【0025】[0025]

【化15】 Embedded image

【0026】(式中、Xは直結、炭素数1〜10の2価
の炭化水素基、六弗素化されたイソプロピリデン基、カ
ルボニル基、チオ基、スルフィニル基、スルホニル基ま
たはオキシドからなる群より選ばれた基を示し、Y1
2 、Y3 、Y4 はそれぞれ独立に水素、低級アルキル
基、低級アルコキシ基、塩素または臭素からなる群より
選ばれた基を示す。)で表されるジアミン化合物であ
り、テトラカルボン酸二無水物が下記式(4)
(Wherein X is a group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group or an oxide. Represents a selected group, Y 1 ,
Y 2 , Y 3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine. ) Is a diamine compound represented by the following formula (4):

【0027】[0027]

【化16】 Embedded image

【0028】(式中、Rは炭素数2以上の脂肪族基、環
式脂肪族基、単環式芳香族基、縮合多環式芳香族基、芳
香族基が直接または架橋員により相互に連結された非縮
合環式芳香族基からなる群より選ばれた4価の基を示
す。)で表されるテトラカルボン酸二無水物であり、さ
らに下記式(5)
(Wherein R represents an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, or an aromatic group, either directly or by a bridge member. A tetravalent dianhydride selected from the group consisting of linked non-condensed cyclic aromatic groups.) And further represented by the following formula (5)

【0029】[0029]

【化17】 Embedded image

【0030】(式中、Wは少なくとも3個の炭素原子を
有する3価の基を示し、3個のアミノ基は互いに異なる
炭素原子に結合し、さらに互いに隣接した炭素原子に結
合していない)で表されるトリアミンの存在のもとで行
なわれ、さらに反応式が下記式(6)
Wherein W is a trivalent group having at least three carbon atoms, and the three amino groups are bonded to different carbon atoms and are not bonded to adjacent carbon atoms. The reaction is carried out in the presence of a triamine represented by the following formula.

【0031】[0031]

【化18】 Embedded image

【0032】(式中、Zは単環式芳香族基、縮合多環式
芳香族基、芳香族基が直接または架橋員により相互に連
結された非縮合多環式芳香族基から成る群より選ばれた
2価の基を示す。)で表されるジカルボン酸無水物の存
在のもとに行なわれ、テトラカルボン酸二無水物の量が
ジアミン1モル当たり0.90〜0.99モル比であ
り、かつジアミン1モルに対しトリアミンの量が0.0
01〜0.1モル比であり、かつジアミンとトリアミン
の当量数の合計1に対しテトラカルボン酸二無水物とジ
カルボン酸無水物の当量数の合計の比が1.0〜2.0
である式(1)
(Wherein Z is a group consisting of a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which the aromatic groups are connected to each other directly or by a bridging member. The reaction is carried out in the presence of a dicarboxylic anhydride represented by the following formula: wherein the amount of tetracarboxylic dianhydride is 0.90 to 0.99 mole ratio per mole of diamine. And the amount of triamine is 0.0
And the ratio of the total number of equivalents of tetracarboxylic dianhydride and dicarboxylic anhydride to the total number of equivalents of diamine and triamine is 1.0 to 2.0.
Equation (1) that is

【0033】[0033]

【化19】 Embedded image

【0034】(式中、X、Y1 〜Y4 、WおよびRは前
記に同じ)で表される繰り返し単位を基本骨格として有
する分岐ポリイミド樹脂の製造方法であり、さらにトリ
アミンがメラミン、1,3,5−トリアミノベンゼン、
1,3,5−トリアミノシクロヘキサン、1,4,5−
トリアミノナフタレンから選ばれる1種または2種以上
の混合物である該分岐ポリイミド樹脂の製造方法であ
り、さらに該分岐ポリイミド樹脂より得られたフィルム
である。
(Wherein X, Y 1 to Y 4 , W and R are the same as described above). This is a method for producing a branched polyimide resin having a repeating unit represented by the following formula: 3,5-triaminobenzene,
1,3,5-triaminocyclohexane, 1,4,5-
A method for producing the branched polyimide resin, which is one or a mixture of two or more selected from triaminonaphthalenes, and a film obtained from the branched polyimide resin.

【0035】以下に本発明を詳細に説明する。本発明で
得られるポリイミド樹脂は、ジアミン化合物とテトラカ
ルボン酸二無水物とを反応させてポリイミド樹脂を得る
際、アミノ基を3つ有するトリアミンを添加して反応さ
せることにより、ポリイミド骨格中に分岐状構造を有す
ることに特徴が有る。
Hereinafter, the present invention will be described in detail. When the polyimide resin obtained in the present invention is obtained by reacting a diamine compound with a tetracarboxylic dianhydride to obtain a polyimide resin, a triamine having three amino groups is added and reacted to form a branch in the polyimide skeleton. It has a characteristic that it has a shape like structure.

【0036】本発明で得られるポリイミド樹脂は、分岐
状構造にすることにより、同等の分子量の従来の直鎖状
ポリイミド樹脂と比較すると、押出成形などの溶融成形
時には同等の溶融粘度を示し、同等の原反フィルムを得
ることができる上に、分子間のからみあいが増している
ため、より均一な延伸が可能である。
The polyimide resin obtained in the present invention has a branched structure, so that when compared with a conventional linear polyimide resin having the same molecular weight, it exhibits the same melt viscosity during melt molding such as extrusion molding, and has the same melt viscosity. And a more uniform stretching is possible because the intermolecular entanglement is increased.

【0037】本発明で使用されるジアミンとしては、ビ
ス〔4−(3−アミノフェノキシ)フェニル〕メタン、
1,1−ビス〔4−(3−アミノフェノキシ)フェニ
ル〕エタン、1,2−〔4−(3−アミノフェノキシ)
フェニル〕エタン、2,2−ビス〔4−(3−アミノフ
ェノキシ)フェニル〕プロパン、2,2−ビス〔4−
(3−アミノフェノキシ)フェニル〕ブタン、2,2−
ビス〔4−(3−アミノフェノキシ)フェニル〕−1,
1,1,3,3,3,−ヘキサフルオロプロパン、4,
4´−ビス(3−アミノフェノキシ)ビフェニル、ビス
〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビ
ス〔4−(3−アミノフェノキシ)フェニル〕スルフィ
ド、ビス〔4−(3−アミノフェノキシ)フェニル〕ス
ルホキシド、ビス〔4−(3−アミノフェノキシ)フェ
ニル〕スルホン、ビス〔4−(3−アミノフェノキシ)
フェニル〕エーテル等が挙げられ、これらは単独あるい
は2種類以上混合して用いられる。
The diamine used in the present invention includes bis [4- (3-aminophenoxy) phenyl] methane,
1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2- [4- (3-aminophenoxy)
Phenyl] ethane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4-
(3-aminophenoxy) phenyl] butane, 2,2-
Bis [4- (3-aminophenoxy) phenyl] -1,
1,1,3,3,3-hexafluoropropane, 4,
4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) Phenyl] sulfoxide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)
Phenyl] ether and the like, and these are used alone or in combination of two or more.

【0038】テトラカルボン酸二無水物としてはエチレ
ンテトラカルボン酸二無水物、シクロペンタンカルボン
酸二無水物、ピロメリット酸二無水物、3.3´,4,
4´−ベンゾフェノンテトラカルボン酸二無水物、2,
2´,3,3´−ベンゾフェノンテトラカルボン酸二無
水物、3,3´,4,4´−ビフェニルテトラカルボン
酸二無水物、2,2´,3,3´−ビフェニルテトラカ
ルボン酸二無水物、2,2´−ビス(3,4−ジカルボ
キシフェニル)プロパン二無水物、2,2´−ビス
(2,3−ジカルボキシフェニル)プロパン二無水物、
ビス(3,4−ジカルボキシフェニル)エーテル二無水
物、ビス(3,4−ジカルボキシフェニル)スルホン二
無水物、1,1−ビス(2,3−ジカルボキシフェニ
ル)エタン二無水物、ビス(2,3−ジカルボキシフェ
ニル)メタン二無水物、1,1−ビス(2,3−ジカル
ボキシフェニル)エタン二無水物、ビス(3,4−ジカ
ルボキシフェニル)メタン二無水物、2,3,6,7−
ナフタレンテトラカルボン酸二無水物、1,4,5,8
−ナフタレンテトラカルボン酸二無水物、1,2,5,
6−ナフタレンテトラカルボン酸二無水物、1,2,
3,4−ベンゼンテトラカルボン酸二無水物、3,4,
9,10−ベリレンテトラカルボン酸二無水物、2,
3,6,7−アントラセンカルボン酸二無水物、1,
2,7,8−フェナントレンカルボン酸二無水物等が挙
げられ、これらは単独あるいは2種類以上混合して用い
られる。
As the tetracarboxylic dianhydride, ethylene tetracarboxylic dianhydride, cyclopentanecarboxylic dianhydride, pyromellitic dianhydride, 3.3 ', 4
4'-benzophenonetetracarboxylic dianhydride, 2,
2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2′-bis (2,3-dicarboxyphenyl) propane dianhydride,
Bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2, 3,6,7-
Naphthalenetetracarboxylic dianhydride, 1,4,5,8
-Naphthalenetetracarboxylic dianhydride, 1,2,5
6-naphthalenetetracarboxylic dianhydride, 1,2,2
3,4-benzenetetracarboxylic dianhydride, 3,4
9,10-berylenetetracarboxylic dianhydride, 2,
3,6,7-anthracenecarboxylic dianhydride, 1,
Examples thereof include 2,7,8-phenanthrene carboxylic dianhydride and the like, which are used alone or in combination of two or more.

【0039】トリアミンとしては、メラミン、1,3,
5−トリアミノベンゼン、1,3,5−トリアミノシク
ロヘキサン、1,4,5−トリアミノナフタレンなどが
挙げられ、これらは単独あるいは2種類以上混合して用
いられる。本発明で末端封止剤として用いられる一般式
(4)で表されるジカルボン酸無水物としては、無水フ
タル酸、2,3−ベンゾフェノンジカルボン酸無水物、
3,4−ベンゾフェノンジカルボン酸無水物、2,3−
ジカルボキシフェニル−フェニル−エーテル無水物、
3,4−ジカルボキシフェニル−フェニル−エーテル無
水物、3,4−ビフェニルジカルボン酸無水物、2,3
−ジカルボキシフェニル−フェニル−スルホン無水物、
2,3−ジカルボキシフェニル−フェニル−スルフィド
無水物、1,2−ナフタレンジカルボン酸無水物、2,
3−ナフタレンジカルボン酸無水物、1,8−ナフタレ
ンジカルボン酸無水物、2,3−アントラセンジカルボ
ン酸無水物、1,9−アントラセンジカルボン酸無水物
などが挙げられ、これらは単独あるいは2種類以上混合
して用いられる。
As the triamine, melamine, 1,3,
Examples thereof include 5-triaminobenzene, 1,3,5-triaminocyclohexane, and 1,4,5-triaminonaphthalene, which may be used alone or as a mixture of two or more. Examples of the dicarboxylic anhydride represented by the general formula (4) used as a terminal blocking agent in the present invention include phthalic anhydride, 2,3-benzophenone dicarboxylic anhydride,
3,4-benzophenone dicarboxylic anhydride, 2,3-
Dicarboxyphenyl-phenyl-ether anhydride,
3,4-dicarboxyphenyl-phenyl-ether anhydride, 3,4-biphenyldicarboxylic anhydride, 2,3
-Dicarboxyphenyl-phenyl-sulfone anhydride,
2,3-dicarboxyphenyl-phenyl-sulfide anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,
3-naphthalenedicarboxylic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, 2,3-anthracenedicarboxylic acid anhydride, 1,9-anthracenedicarboxylic acid anhydride, etc., and these may be used alone or in combination of two or more. Used as

【0040】本発明の方法で有機溶媒に、出発原料のジ
アミン、テトラカルボン酸二無水物、トリアミン、ジカ
ルボン酸無水物を添加、反応させる方法としては、
(イ)ジアミン、トリアミン、テトラカルボン酸二無水
物を反応させた後に、ジカルボン酸無水物を添加して反
応を続ける方法、(ロ)ジアミン、トリアミン、ジカル
ボン酸無水物を加えて反応させた後、テトラカルボン酸
二無水物を添加し、さらに反応を続ける方法、(ハ)ジ
アミン、トリアミン、テトラカルボン酸二無水物、ジカ
ルボン酸無水物を同時に添加、反応させる方法、(ニ)
ジアミン、テトラカルボン酸二無水物を反応させた後、
トリアミンを加え、さらに反応を続け、さらにジカルボ
ン酸無水物を添加、反応を続ける方法、など、いずれの
添加、反応をとっても差支えない。
According to the method of the present invention, a starting material diamine, tetracarboxylic dianhydride, triamine, dicarboxylic anhydride is added to an organic solvent and reacted.
(A) A method in which a diamine, a triamine, and a tetracarboxylic dianhydride are reacted, and then a dicarboxylic anhydride is added to continue the reaction. (B) A diamine, a triamine, and a dicarboxylic anhydride are added and reacted. (D) adding diamine, triamine, tetracarboxylic dianhydride and dicarboxylic anhydride at the same time and reacting them.
After reacting diamine, tetracarboxylic dianhydride,
Any addition or reaction may be used, such as a method of adding triamine, continuing the reaction, further adding a dicarboxylic anhydride, and continuing the reaction.

【0041】本発明に用いるトリアミンは、その3個の
アミノ基が互いに異なる炭素原子に結合し、さらに互い
に隣接した炭素原子に結合していないことが必要であ
る。もし同じ炭素原子に結合していたり、隣接した炭素
原子に結合していたりすると、立体的な障害があるた
め、完全に反応せず、未反応のアミノ基が残ったり、あ
るいは中間体であるアミド酸基の状態のままである場合
があるからである。また、隣接した炭素原子に結合して
いる場合は式(11)
The triamine used in the present invention must have three amino groups bonded to different carbon atoms and not bonded to carbon atoms adjacent to each other. If they are bonded to the same carbon atom or bonded to adjacent carbon atoms, they will not react completely due to steric hindrance, leaving unreacted amino groups, or amide as an intermediate This is because the state of the acid group may remain. In the case where the compound is bonded to an adjacent carbon atom, the formula (11)

【0042】[0042]

【化20】 Embedded image

【0043】(式中、R、Wは前記に同じ)なるラダー
構造をとるため、分岐状ポリイミドにならず、本発明の
ポリイミド樹脂が持つ効果を得ることができない。
Since a ladder structure of (where R and W are the same as above) is adopted, the polyimide resin does not become a branched polyimide, and the effect of the polyimide resin of the present invention cannot be obtained.

【0044】テトラカルボン酸二無水物の量はジアミン
1モル当たり0.90〜0.99モル比であり、好まし
くは0.91〜0.988モル比、より好ましくは0.
915〜0.985モル比、最も好ましくは0.92〜
0.98モル比の範囲である。0.90モル比未満では
単独では十分な強度が得られず、0.99モル比を越え
ると溶融時の粘度が非常に高く、成形が困難になる。
The amount of tetracarboxylic dianhydride is 0.90 to 0.99 mole ratio, preferably 0.91 to 0.988 mole ratio, more preferably 0.1 to 0.9 mole ratio per mole of diamine.
915 to 0.985 molar ratio, most preferably 0.92 to 0.92
It is in the range of 0.98 mole ratio. If the molar ratio is less than 0.90, sufficient strength alone cannot be obtained. If the molar ratio exceeds 0.99, the viscosity at the time of melting becomes extremely high, and molding becomes difficult.

【0045】トリアミンの量はジアミン1モル当たり
0.001〜0.1モル比であり、好ましくは0.00
2〜0.08モル比、より好ましくは0.005〜0.
07モル比、更に好ましくは0.008〜0.06モル
比、最も好ましくは0.01〜0.05モル比の範囲で
ある。0.001モル比未満では分岐の効果が現われ
ず、0.1モル比を越えると合成時ゲル化をおこした
り、溶融時の粘度が非常に高く、成形が困難になる。
The amount of the triamine is 0.001 to 0.1 mole ratio per mole of diamine, preferably 0.001 to 0.1.
2 to 0.08 mole ratio, more preferably 0.005 to 0.
07 molar ratio, more preferably 0.008 to 0.06 molar ratio, most preferably 0.01 to 0.05 molar ratio. If the molar ratio is less than 0.001 mole, the effect of branching does not appear. If the molar ratio exceeds 0.1 mole ratio, gelation occurs during synthesis or the viscosity at the time of melting is extremely high, and molding becomes difficult.

【0046】更に、末端封止に用いるジカルボン酸無水
物の量はジアミンとトリアミンの合計量1モルに対しテ
トラカルボン酸二無水物とジカルボン酸無水物の合計量
が当量比で1.0〜2.0となるように調整する必要が
ある。より好ましくは1.0〜1.5の範囲である。
1.0モル比未満では十分な末端停止の効果が現われ
ず、2.0モル比を越えると効果はあまり変わず、経済
的に不利となる。
Further, the amount of dicarboxylic anhydride used for terminal capping is such that the total amount of tetracarboxylic dianhydride and dicarboxylic anhydride is equivalent to 1.0 to 2 with respect to 1 mol of total of diamine and triamine. It is necessary to adjust so as to be 0.0. More preferably, it is in the range of 1.0 to 1.5.
If the ratio is less than 1.0 mole ratio, no sufficient effect of terminating the terminal appears, and if it exceeds 2.0 mole ratio, the effect does not change much and it is economically disadvantageous.

【0047】重合に用いる溶媒としては、例えばN,N
−ジメチルホルムアミド、N,N−ジメチルアセトアミ
ド、N,N−ジエチルアセトアミド、N,N−ジメチル
メトキシアセトアミド、N−メチル−2−ピロリドン、
1,3−ジメチル−2−イミダゾリジノン、N−メチル
カプロラクタム、1,2−ジメトキシエタン、ビス(2
−メトキシエチル)エーテル、1,2−ビス(2−メト
キシエトキシ)エタン、ビス〔2−(2−メトキシエト
キシ)エチル〕エーテル、テトラヒドロフラン、1,3
−ジオキサン、1,4−ジオキサン、ピリジン、ピコリ
ン、ジメチルスルホキシド、ジメチルスルホン、テトラ
メチル尿素、ヘキサメチルホスホルアミド、フェノー
ル、m−クレゾール、p−クレゾール、p−クロロフェ
ノール、アニソールなどが挙げられる。これらは混合し
て用いてもよい。これらの中でもm−クレゾール、p−
クレゾールは特に好ましい。
As the solvent used for the polymerization, for example, N, N
-Dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone,
1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane, bis (2
-Methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] ether, tetrahydrofuran, 1,3
-Dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethyl urea, hexamethyl phosphoramide, phenol, m-cresol, p-cresol, p-chlorophenol, anisole and the like. These may be used as a mixture. Among these, m-cresol, p-
Cresol is particularly preferred.

【0048】反応温度は、通常0℃〜250℃の範囲で
ある。好ましくは60℃〜240℃、より好ましくは1
00℃〜220℃、更に好ましくは140℃〜210
℃、最も好ましくは180℃〜200℃の温度範囲で反
応を行えばよい。反応圧力は、特に限定されず、減圧、
常圧、加圧のいずれの条件下で行なっても何等差支えが
ない。
The reaction temperature is usually in the range of 0 ° C. to 250 ° C. Preferably 60 ° C to 240 ° C, more preferably 1 ° C to 240 ° C.
00 ° C to 220 ° C, more preferably 140 ° C to 210
The reaction may be carried out at a temperature in the range of 180C to 200C. The reaction pressure is not particularly limited,
It does not matter at all whether it is carried out under normal pressure or under pressure.

【0049】反応時間はその反応温度によって異なる
が、一般的に1時間以上であり、特に2時間から6時間
の範囲が好ましい。1時間よりも短い反応時間では、生
成ポリマーの分子量が十分に上がらない。また、6時間
よりも長く反応時間をとっても生成ポリマーの物性に大
差はない。
The reaction time varies depending on the reaction temperature, but is generally at least 1 hour, particularly preferably in the range of 2 to 6 hours. If the reaction time is shorter than 1 hour, the molecular weight of the produced polymer will not be sufficiently increased. Even if the reaction time is longer than 6 hours, there is no great difference in the physical properties of the produced polymer.

【0050】本発明のポリイミドを溶融成形に供する場
合、本発明の目的を損なわない範囲で他の熱可塑性樹
脂、例えば、ポリエチレン、ポリプロピレン、ポリカー
ボネート、ポリアリレート、ポリアミド、ポリスルホ
ン、ポリエーテルスルホン、ポリエーテルケトン、ポリ
エーテルエーテルケトン、ポリフェニレンスルフィド、
ポリアミドイミド、ポリエーテルイミド、変性ポリフェ
ニレンオキシドなどを目的に応じて適当量を配合するこ
とも可能である。
When the polyimide of the present invention is subjected to melt molding, other thermoplastic resins such as polyethylene, polypropylene, polycarbonate, polyarylate, polyamide, polysulfone, polyethersulfone, and polyether may be used as long as the object of the present invention is not impaired. Ketone, polyetheretherketone, polyphenylene sulfide,
An appropriate amount of polyamide imide, polyether imide, modified polyphenylene oxide or the like can be blended according to the purpose.

【0051】また、さらに通常の樹脂組成物に使用する
次のような充填剤などを発明の目的を損なわない程度で
用いてもよい。すなわち、グラファイト、カーボランダ
ム、ケイ石粉、二硫化モリブデン、フッ素樹脂などの耐
摩耗性向上材、ガラス繊維、カーボン繊維、ボロン繊
維、炭化ケイ素繊維、カーボンウィスカー、アスベス
ト、金属繊維、セラミック繊維などの補強材、三酸化ア
ンチモン、炭酸マグネシウム、炭酸カルシウムなどの難
燃性向上材、クレー、マイカなどの電気的特性向上材、
アスベスト、シリカ、グラファイトなどの耐トラッキン
グ向上材、硫酸バリウム、シリカ、メタケイ酸カルシウ
ムなどの耐酸性向上材、鉄粉、亜鉛粉、アルミニウム
粉、銅粉などの熱伝導度向上材、その他ガラスビーズ、
ガラス球タルク、ケイ藻土、アルミナ、シラスバルン、
水和アルミナ、金属酸化物、着色料などである。
Further, the following fillers and the like used in ordinary resin compositions may be used to such an extent that the object of the invention is not impaired. That is, reinforcement of abrasion resistance materials such as graphite, carborundum, silica stone powder, molybdenum disulfide, fluororesin, glass fiber, carbon fiber, boron fiber, silicon carbide fiber, carbon whisker, asbestos, metal fiber, ceramic fiber, etc. Materials, flame retardant materials such as antimony trioxide, magnesium carbonate, calcium carbonate, etc., electric property improving materials such as clay and mica,
Tracking resistance improving materials such as asbestos, silica and graphite, acid resistance improving materials such as barium sulfate, silica and calcium metasilicate, heat conductivity improving materials such as iron powder, zinc powder, aluminum powder and copper powder, and other glass beads,
Glass sphere talc, diatomaceous earth, alumina, Silasbarn,
Hydrated alumina, metal oxides, coloring agents and the like.

【0052】[0052]

【実施例】以下、本発明を実施例および比較例により具
体的に説明するが、本発明はこれら実施例に何等限定さ
れるものではない。 実施例1 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4’−ビス(3−アミノフェノキシ)ビフ
ェニル368.4g(1.0モル)、無水フタル酸2
6.64g(0.18モル)、無水ピロメリット酸20
6.1g(0.945モル)、メラミン3.15g
(0.025モル)およびm−クレゾール2,200g
を装入し、攪拌下200℃まで加熱し、200℃にて6
時間保温した。次いで反応溶液にトルエンを装入し、析
出物を濾別し、さらにトルエンにて洗浄を数回行なった
後、窒素雰囲気下250℃で6時間乾燥を行ない、51
2gのポリイミド粉を得た。得られたポリイミド粉を窒
素気流下に200℃で20時間乾燥し、水分を十分に除
去した後、25mmベント式押出機に供給し、400℃
で直径3mmのダイスより溶融押出し、冷却固化しペレ
タイザーにより切断し、直径約2mm、長さ約3mmの
ポリイミドペレットを得た。このポリイミドペレットを
窒素気流下に200℃で20時間乾燥し、水分を十分に
除去した後、25mm押出機に供給し、410℃で加熱
溶融し、幅150mmのスリットダイ(隙間0.6m
m)から押出し、220℃のロール上に引取り厚さ、約
200μmのポリイミドフィルムを得た。このポリイミ
ドフィルムの対数粘度は、0.55dl/gであった。
ここに対数粘度はパラクロロフェノール:フェノール
(重量比90:10)の混合溶媒を用い、濃度0.5g
/100ml溶媒で、35℃で測定した値である。本実
施例で得られたポリイミドフィルムを用い、高化式フロ
ーテスター(島津製作所製、CFT−500)で直径
0.1cm、長さ1cmのオリフィスを用いて、溶融粘
度の経時変化を測定した。420℃の温度に5分間保っ
た後、100kg/cmの圧力で一部押し出し、そ
の粘度を測定した。残りをさらに100kg/cm
の圧力で一部押し出し、その粘度を測定した。420℃
保持時間と溶融粘度の関係を第1表(表1)に示す。保
持時間が延びても、溶融粘度の変化はほとんどなく、熱
安定性の良好なことがわかる。後述する比較例1に比
べ、分岐状構造を含んでいるにもかかわらず、溶融特性
は同等であることがわかる。このフィルムを一辺90m
mの正方形に切りだし、バッチ式延伸機(岩本製作所製
バッチ式延伸機 BIX−703型)にセットし、28
0℃で一軸方向に2.5倍延伸し、続いてそれと直角を
なす方向に2.5倍延伸し、さらに300℃で30分間
熱処理し、二軸延伸フィルムを得た。延伸倍率の評価
は、フィルム面内に5mm間隔の格子線を縦横それぞれ
18本記入し、中央部各10本の交点100点の延伸後
の格子線間の距離を測定して、延伸倍率を求め、平均値
と標準偏差から変動率(標準偏差÷平均値×100%)
を求めた。その結果、二軸目の延伸倍率の平均値が2.
495、変動率が2.90%であり、後述する比較例
1、比較例4に比べ変動率が極めて小さく、良好な均一
延伸がなされていることが認められた。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 368.4 g (1.0 mol) of 4,4′-bis (3-aminophenoxy) biphenyl and phthalic anhydride 2 were placed in a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen inlet tube.
6.64 g (0.18 mol), pyromellitic anhydride 20
6.1 g (0.945 mol), 3.15 g of melamine
(0.025 mol) and 2,200 g of m-cresol
And heated to 200 ° C. with stirring, at 200 ° C. for 6 hours.
Incubated for hours. Next, toluene was charged to the reaction solution, and the precipitate was separated by filtration, washed several times with toluene, and dried at 250 ° C. for 6 hours under a nitrogen atmosphere to obtain 51
2 g of polyimide powder was obtained. The obtained polyimide powder was dried at 200 ° C. for 20 hours under a nitrogen stream, and after sufficiently removing water, it was supplied to a 25 mm vent type extruder, and 400 ° C.
The mixture was melt-extruded from a die having a diameter of 3 mm, cooled and solidified, and cut by a pelletizer to obtain a polyimide pellet having a diameter of about 2 mm and a length of about 3 mm. The polyimide pellet was dried at 200 ° C. for 20 hours under a nitrogen stream to sufficiently remove water, then supplied to a 25 mm extruder, heated and melted at 410 ° C., and slit 150 mm in width using a slit die (having a gap of 0.6 m).
m), and a polyimide film having a thickness of about 200 μm was obtained on a roll at 220 ° C. The logarithmic viscosity of this polyimide film was 0.55 dl / g.
Here, the logarithmic viscosity was determined using a mixed solvent of parachlorophenol and phenol (weight ratio 90:10) at a concentration of 0.5 g.
/ 100 ml solvent, measured at 35 ° C. Using the polyimide film obtained in this example, the change with time of the melt viscosity was measured with an orifice having a diameter of 0.1 cm and a length of 1 cm using a Koka type flow tester (CFT-500, manufactured by Shimadzu Corporation). After keeping the temperature at 420 ° C. for 5 minutes, it was partially extruded at a pressure of 100 kg / cm 2 and the viscosity was measured. 100 kg / cm 2 for the rest
And the viscosity was measured. 420 ° C
The relationship between the holding time and the melt viscosity is shown in Table 1 (Table 1). Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. It can be seen that the melting characteristics are the same as in Comparative Example 1 to be described later, despite the fact that they contain a branched structure. This film is 90m on each side
m and cut into a batch-type stretching machine (Iwamoto Seisakusho's batch-type stretching machine BIX-703 type).
The film was stretched 2.5 times in a uniaxial direction at 0 ° C., then stretched 2.5 times in a direction perpendicular thereto, and further heat-treated at 300 ° C. for 30 minutes to obtain a biaxially stretched film. Evaluation of the stretching ratio is as follows. Eighteen grid lines at 5 mm intervals are written in the film plane in each of the vertical and horizontal directions, and the distance between the grid lines after stretching at 100 points of intersection at each of the 10 central portions is measured to determine the stretching ratio. , The rate of change from the average and standard deviation (standard deviation ÷ average x 100%)
I asked. As a result, the average value of the stretching ratio in the second axis was 2.
495, the fluctuation rate was 2.90%. The fluctuation rate was extremely small as compared with Comparative Examples 1 and 4 described later, and it was recognized that excellent uniform stretching was performed.

【0053】実施例2 原料のトリアミンに1,3,5−トリアミノベンゼン
3.13g(0.025モル)を用いた以外は実施例1
と同様に実験を行ない、511gのポリイミド粉を得、
さらに実施例1と同様にペレット化、フィルム化を行な
った。得られたフィルムの対数粘度は、0.55dl/
gであった。また、溶融粘度の経時変化を第1表(表
1)に示す。保持時間が延びても、溶融粘度の変化はほ
とんどなく、熱安定性の良好なことがわかる。得られた
フィルムを実施例1と同様に二軸延伸した結果、二軸目
の延伸倍率の平均値が2.490、変動率が2.92%
であり、後述する比較例1、比較例4に比べ変動率が極
めて小さく、良好な均一延伸がなされていることが認め
られた。
Example 2 Example 1 was repeated except that 3.13 g (0.025 mol) of 1,3,5-triaminobenzene was used as the starting triamine.
An experiment was performed in the same manner as described above to obtain 511 g of polyimide powder,
Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is 0.55 dl /
g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio in the second axis was 2.490, and the fluctuation rate was 2.92%.
It was confirmed that the variation rate was extremely small as compared with Comparative Examples 1 and 4 described later, and that excellent uniform stretching was performed.

【0054】実施例3 原料のトリアミンに1,3,5−トリアミノシクロヘキ
サン3.23g(0.025モル)を用いた以外は実施
例1と同様に実験を行ない、512gのポリイミド粉を
得、さらに実施例1と同様にペレット化、フィルム化を
行なった。得られたフィルムの対数粘度は、0.55d
l/gであった。また、溶融粘度の経時変化を第1表
(表1)に示す。保持時間が延びても、溶融粘度の変化
はほとんどなく、熱安定性の良好なことがわかる。得ら
れたフィルムを実施例1と同様に二軸延伸した結果、二
軸目の延伸倍率の平均値が2.492、変動率が2.9
4%であり、後述する比較例1、比較例4に比べ変動率
が極めて小さく、良好な均一延伸がなされていることが
認められた。
Example 3 An experiment was conducted in the same manner as in Example 1 except that 3.23 g (0.025 mol) of 1,3,5-triaminocyclohexane was used as a starting triamine to obtain 512 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is 0.55 d
1 / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio in the second axis was 2.492, and the fluctuation rate was 2.9.
It was 4%, which was much smaller than that of Comparative Examples 1 and 4 described later, and it was confirmed that excellent uniform stretching was performed.

【0055】実施例4 原料のトリアミンに1,4,5−トリアミノナフタレン
4.38g(0.025モル)を用いた以外は実施例1
と同様に実験を行ない、513gのポリイミド粉を得、
さらに実施例1と同様にペレット化、フィルム化を行な
った。得られたフィルムの対数粘度は、0.55dl/
gであった。また、溶融粘度の経時変化を第1表(表
1)に示す。保持時間が延びても、溶融粘度の変化はほ
とんどなく、熱安定性の良好なことがわかる。得られた
フィルムを実施例1と同様に二軸延伸した結果、二軸目
の延伸倍率の平均値が2.490、変動率が3.04%
であり、後述する比較例1、比較例4に比べ変動率が極
めて小さく、良好な均一延伸がなされていることが認め
られた。
Example 4 Example 1 was repeated except that 4.38 g (0.025 mol) of 1,4,5-triaminonaphthalene was used as the starting triamine.
The same experiment was performed to obtain 513 g of polyimide powder,
Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is 0.55 dl /
g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio in the second axis was 2.490, and the variation was 3.04%.
It was confirmed that the variation rate was extremely small as compared with Comparative Examples 1 and 4 described later, and that excellent uniform stretching was performed.

【0056】実施例5 原料のトリアミンにメラミン1.89g(0.015モ
ル)、1,3,5−テトラアミノベンゼン1.23g
(0.010モル)を用いた以外は実施例1と同様に実
験を行ない、513gのポリイミド粉を得、さらに実施
例1と同様にペレット化、フィルム化を行なった。得ら
れたフィルムの対数粘度は、0.55dl/gであっ
た。また、溶融粘度の経時変化を第1表(表1)に示
す。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。得られたフィルム
を実施例1と同様に二軸延伸した結果、二軸目の延伸倍
率の平均値が2.495、変動率が3.03%であり、
後述する比較例1、比較例4に比べ変動率が極めて小さ
く、良好な均一延伸がなされていることが認められた。
Example 5 1.89 g (0.015 mol) of melamine and 1.23 g of 1,3,5-tetraaminobenzene were added to the starting triamine.
An experiment was performed in the same manner as in Example 1 except that (0.010 mol) was used, to obtain 513 g of a polyimide powder. Further, pelletization and film formation were performed as in Example 1. The logarithmic viscosity of the obtained film was 0.55 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio in the second axis was 2.495, and the variation was 3.03%.
It was recognized that the variation rate was extremely small as compared with Comparative Examples 1 and 4 described later, and that excellent uniform stretching was performed.

【0057】実施例6 原料のジアミンにビス〔4−(3−アミノフェノキシ)
フェニル〕ケトン396.0g(1.0モル)を用いた
以外は実施例1と同様に実験を行い、524gのポリイ
ミド粉を得、さらに実施例1と同様にペレット化、フィ
ルム化を行なった。得られたフィルムの対数粘度は、
0.58dl/gであった。また、溶融粘度の経時変化
を第1表(表1)に示す。保持時間が延びても、溶融粘
度の変化はほとんどなく、熱安定性の良好なことがわか
る。得られたフィルムを実施例1と同様に二軸延伸した
結果、二軸目の延伸倍率の平均値が2.492、変動率
が3.05%であり、変動率が極めて小さく、良好な均
一延伸がなされていることが認められた。
Example 6 Bis [4- (3-aminophenoxy) was used as the starting diamine.
The experiment was carried out in the same manner as in Example 1 except that 396.0 g (1.0 mol) of [phenyl] ketone was used, and 524 g of a polyimide powder was obtained. Further, pelletization and film formation were carried out as in Example 1. The logarithmic viscosity of the obtained film is
It was 0.58 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis was 2.492, the variation was 3.05%, the variation was extremely small, and the uniformity was excellent. It was recognized that stretching was performed.

【0058】実施例7 原料のテトラカルボン酸二無水物に3,3´,4,4´
−ベンゾフェノンテトラカルボン酸二無水物304.5
g(0.945モル)を用いた以外は実施例1と同様に
実験を行い、591.3gのポリイミド粉を得、さらに
実施例1と同様にペレット化、フィルム化を行なった。
得られたフィルムの対数粘度は、0.59dl/gであ
った。また、溶融粘度の経時変化を第1表(表1)に示
す。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。得られたフィルム
を実施例1と同様に二軸延伸した結果、二軸目の延伸倍
率の平均値が2.492、変動率が3.03%であり、
変動率が極めて小さく、良好な均一延伸がなされている
ことが認められた。
Example 7 3,3 ', 4,4' was added to the starting material tetracarboxylic dianhydride.
-Benzophenonetetracarboxylic dianhydride 304.5
An experiment was conducted in the same manner as in Example 1 except that g (0.945 mol) was used, to obtain 591.3 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1.
The logarithmic viscosity of the obtained film was 0.59 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. As a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis was 2.492, and the variation was 3.03%.
It was recognized that the fluctuation rate was extremely small, and favorable uniform stretching was performed.

【0059】実施例8 原料のトリアミンにメラミン12.6g(0.1モ
ル)、ジカルボン酸無水物に無水フタル酸53.28g
(0.36モル)を用いた以外は実施例1と同様に実験
を行い、561.5gのポリイミド粉を得、さらに実施
例1と同様にペレット化、フィルム化を行なった。得ら
れたフィルムの対数粘度は、0.86dl/gであっ
た。また、溶融粘度の経時変化を第1表(表1)に示
す。保持時間が延びると溶融粘度は増加し、熱安定性は
やや悪いが、フィルムの製造は可能であった。得られた
フィルムを実施例1と同様に二軸延伸した結果、二軸目
の延伸倍率の平均値が2.495、変動率が2.98%
であり、変動率が極めて小さく、良好な均一延伸がなさ
れていることが認められた。
Example 8 12.6 g (0.1 mol) of melamine was used as the starting triamine and 53.28 g of phthalic anhydride was used as the dicarboxylic anhydride.
An experiment was performed in the same manner as in Example 1 except that (0.36 mol) was used, to obtain 561.5 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film was 0.86 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. As the holding time increased, the melt viscosity increased and the thermal stability was somewhat poor, but a film could be produced. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio in the second axis was 2.495, and the fluctuation rate was 2.98%.
It was confirmed that the variation rate was extremely small and good uniform stretching was performed.

【0060】実施例9 原料のトリアミンにメラミン0.126g(0.001
モル)、ジカルボン酸無水物に無水フタル酸17.76
g(0.12モル)を用いた以外は実施例1と同様に実
験を行い、509.5gのポリイミド粉を得、さらに実
施例1と同様にペレット化、フィルム化を行なった。得
られたフィルムの対数粘度は、0.54dl/gであっ
た。また、溶融粘度の経時変化を第1表(表1)に示
す。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。得られたフィルム
を実施例1と同様に二軸延伸した結果、二軸目の延伸倍
率の平均値が2.495、変動率が5.05%であり、
変動率が極めて小さく、良好な均一延伸がなされている
ことが認められた。
Example 9 0.126 g (0.001 g) of melamine was added to triamine as a raw material.
Mol), 17.76 phthalic anhydride to dicarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except that g (0.12 mol) was used, and 509.5 g of a polyimide powder was obtained. Further, pelletization and film formation were performed as in Example 1. The logarithmic viscosity of the obtained film was 0.54 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis was 2.495, and the variation was 5.05%.
It was recognized that the fluctuation rate was extremely small, and favorable uniform stretching was performed.

【0061】実施例10 原料のテトラカルボン酸二無水物に無水ピロメリット酸
200.56g(0.92モル)、ジカルボン酸無水物
に無水フタル酸34.04g(0.23モル)を用いた
以外は実施例1と同様に実験を行い、510.3gのポ
リイミド粉を得、さらに実施例1と同様にペレット化、
フィルム化を行なった。得られたフィルムの対数粘度
は、0.52dl/gであった。また、溶融粘度の経時
変化を第1表(表1)に示す。保持時間が延びても、溶
融粘度の変化はほとんどなく、熱安定性の良好なことが
わかる。得られたフィルムを実施例1と同様に二軸延伸
した結果、二軸目の延伸倍率の平均値が2.497、変
動率が4.55%であり、変動率が極めて小さく、良好
な均一延伸がなされていることが認められた。
Example 10 Except that 200.56 g (0.92 mol) of pyromellitic anhydride was used as the starting tetracarboxylic dianhydride and 34.04 g (0.23 mol) of phthalic anhydride were used as the dicarboxylic anhydride. Conducted an experiment in the same manner as in Example 1 to obtain 510.3 g of a polyimide powder, and further, pelletized as in Example 1,
The film was formed. The logarithmic viscosity of the obtained film was 0.52 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis was 2.497, the fluctuation rate was 4.55%, the fluctuation rate was extremely small, and the uniformity was excellent. It was recognized that stretching was performed.

【0062】実施例11 ジカルボン酸無水物として無水フタル酸368.2g
(2.26モル)を用いた以外は実施例1と同様に実験
を行い、514.0gのポリイミド粉を得、さらに実施
例1と同様にペレット化、フィルム化を行なった。得ら
れたフィルムの対数粘度は、0.50dl/gであっ
た。また、溶融粘度の経時変化を第1表(表1)に示
す。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。得られたフィルム
を実施例1と同様に二軸延伸した結果、二軸目の延伸倍
率の平均値が2.497、変動率が4.54%であり、
変動率が極めて小さく、良好な均一延伸がなされている
ことが認められた。
Example 11 368.2 g of phthalic anhydride as a dicarboxylic anhydride
An experiment was conducted in the same manner as in Example 1 except that (2.26 mol) was used, and 514.0 g of a polyimide powder was obtained. Further, pelletization and film formation were performed as in Example 1. The logarithmic viscosity of the obtained film was 0.50 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. As a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis was 2.497, and the variation was 4.54%.
It was recognized that the fluctuation rate was extremely small, and favorable uniform stretching was performed.

【0063】実施例12 原料のトリアミンにメラミン0.126g(0.001
モル)、テトラカルボン酸無水物に無水ピロメリット酸
196.2g(0.90モル)、ジカルボン酸無水物に
無水フタル酸29.60g(0.20モル)を用いた以
外は実施例1と同様に実験を行い、499.5gのポリ
イミド粉を得、さらに実施例1と同様にペレット化、フ
ィルム化を行なった。得られたフィルムの対数粘度は、
0.46dl/gであった。また、溶融粘度の経時変化
を第1表(表1)に示す。保持時間が延びても、溶融粘
度の変化はほとんどなく、熱安定性の良好なことがわか
る。得られたフィルムを実施例1と同様に二軸延伸した
結果、二軸目の延伸倍率の平均値が2.495、変動率
が6.15%であり、変動率が極めて小さく、良好な均
一延伸がなされていることが認められた。
Example 12 0.126 g (0.001 g) of melamine was added to the starting triamine.
Mol), and 196.2 g (0.90 mol) of pyromellitic anhydride as the tetracarboxylic anhydride and 29.60 g (0.20 mol) of phthalic anhydride as the dicarboxylic anhydride. An experiment was performed to obtain 499.5 g of a polyimide powder, and pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is
It was 0.46 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis was 2.495, the fluctuation rate was 6.15%, the fluctuation rate was extremely small, and the uniformity was excellent. It was recognized that stretching was performed.

【0064】実施例13 原料のトリアミンにメラミン0.126g(0.001
モル)、テトラカルボン酸無水物に無水ピロメリット酸
215.8g(0.99モル)、ジカルボン酸無水物に
無水フタル酸34.04g(0.23モル)を用いた以
外は実施例1と同様に実験を行い、502.2gのポリ
イミド粉を得、さらに実施例1と同様にペレット化、フ
ィルム化を行なった。得られたフィルムの対数粘度は、
0.88dl/gであった。また、溶融粘度の経時変化
を第1表(表1)に示す。保持時間が延びると溶融粘度
は増加し、熱安定性はやや悪いが、フィルムの製造は可
能であった。得られたフィルムを実施例1と同様に二軸
延伸した結果、二軸目の延伸倍率の平均値が2.49
5、変動率が2.99%であり、変動率が極めて小さ
く、良好な均一延伸がなされていることが認められた。
Example 13 0.126 g (0.001 g) of melamine was added to triamine as a raw material.
Mol), 215.8 g (0.99 mol) of pyromellitic anhydride as the tetracarboxylic anhydride and 34.04 g (0.23 mol) of phthalic anhydride as the dicarboxylic anhydride. An experiment was conducted to obtain 502.2 g of a polyimide powder, which was further formed into a pellet and a film in the same manner as in Example 1. The logarithmic viscosity of the obtained film is
0.88 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. As the holding time increased, the melt viscosity increased and the thermal stability was somewhat poor, but a film could be produced. As a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio in the second axis was 2.49.
5. The fluctuation rate was 2.99%, the fluctuation rate was extremely small, and it was recognized that good uniform stretching was performed.

【0065】実施例14 原料のトリアミンにメラミン12.6g(0.1モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸1
96.2g(0.90モル)、ジカルボン酸無水物に無
水フタル酸65.12g(0.44モル)を用いた以外
は実施例1と同様に実験を行い、517.1gのポリイ
ミド粉を得、さらに実施例1と同様にペレット化、フィ
ルム化を行なった。得られたフィルムの対数粘度は、
0.74dl/gであった。また、溶融粘度の経時変化
を第1表(表1)に示す。保持時間が延びると溶融粘度
は増加し、熱安定性はやや悪いが、フィルムの製造は可
能であった。得られたフィルムを実施例1と同様に二軸
延伸した結果、二軸目の延伸倍率の平均値が2.49
7、変動率が3.05%であり、変動率が極めて小さ
く、良好な均一延伸がなされていることが認められた。
Example 14 12.6 g (0.1 mol) of melamine was used as the starting triamine and pyromellitic anhydride 1 was used as the tetracarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except that 96.2 g (0.90 mol) and 65.12 g (0.44 mol) of phthalic anhydride were used as the dicarboxylic anhydride to obtain 517.1 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is
0.74 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. As the holding time increased, the melt viscosity increased and the thermal stability was somewhat poor, but a film could be produced. As a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio in the second axis was 2.49.
7. The fluctuation rate was 3.05%, and the fluctuation rate was extremely small, and it was confirmed that excellent uniform stretching was performed.

【0066】実施例15 原料のトリアミンにメラミン12.6g(0.1モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸2
15.8g(0.99モル)、ジカルボン酸無水物に無
水フタル酸41.44g(0.28モル)を用いた以外
は実施例1と同様に実験を行い、534.6gのポリイ
ミド粉を得、さらに実施例1と同様にペレット化、フィ
ルム化を行なった。得られたフィルムの対数粘度は、
0.95dl/gであった。また、溶融粘度の経時変化
を第1表(表1)に示す。保持時間が延びると溶融粘度
は増加し、熱安定性はやや悪いが、フィルムの製造は可
能であった。得られたフィルムを実施例1と同様に二軸
延伸した結果、二軸目の延伸倍率の平均値が2.49
7、変動率が2.89%であり、変動率が極めて小さ
く、良好な均一延伸がなされていることが認められた。
Example 15 12.6 g (0.1 mol) of melamine was used as the starting triamine, and pyromellitic anhydride 2 was used as the tetracarboxylic anhydride.
The experiment was carried out in the same manner as in Example 1 except that 15.8 g (0.99 mol) and 41.44 g (0.28 mol) of phthalic anhydride were used as the dicarboxylic anhydride to obtain 534.6 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is
0.95 dl / g. Table 1 (Table 1) shows the change over time in the melt viscosity. As the holding time increased, the melt viscosity increased and the thermal stability was somewhat poor, but a film could be produced. As a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio in the second axis was 2.49.
7. The fluctuation rate was 2.89%, the fluctuation rate was extremely small, and it was recognized that good uniform stretching was performed.

【0067】[0067]

【表1】 注:溶融粘度は420℃で測定した値で、単位はセンチ
ポイズである。増粘倍率とは、420℃/30分の値を
420℃/5分の値で割った値である。
[Table 1] Note: The melt viscosity is a value measured at 420 ° C., and the unit is centipoise. The thickening ratio is a value obtained by dividing a value at 420 ° C./30 minutes by a value at 420 ° C./5 minutes.

【0068】比較例1 トリアミンとしてメラミンを用いない以外は実施例1と
同様に実験を行い、507.2gのポリイミド粉を得、
さらに実施例1と同様にペレット化、フィルム化を行な
った。得られたフィルムの対数粘度は、0.54dl/
gであった。また、溶融粘度の経時変化を第2表(表
2)に示す。保持時間が延びても、溶融粘度の変化はほ
とんどなく、熱安定性の良好なことがわかる。しかしな
がら得られたフィルムを実施例1と同様に二軸延伸した
結果、二軸目の延伸倍率の平均値が2.497、変動率
が14.57%にも達し、変動率が大きく、良好な均一
延伸がなされていないことが認められた。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that melamine was not used as a triamine, to obtain 507.2 g of a polyimide powder.
Further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film is 0.54 dl /
g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, the obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis reached 2.497, and the variation rate reached 14.57%. It was recognized that uniform stretching was not performed.

【0069】比較例2 トリアミンとしてメラミンを0.1g(0.0008モ
ル)用いた以外は実施例1と同様に実験を行い、50
6.9gのポリイミド粉を得、さらに実施例1と同様に
ペレット化、フィルム化を行なった。得られたフィルム
の対数粘度は、0.54dl/gであった。また、溶融
粘度の経時変化を第2表(表2)に示す。保持時間が延
びても、溶融粘度の変化はほとんどなく、熱安定性の良
好なことがわかる。しかしながら得られたフィルムを実
施例1と同様に二軸延伸した結果、二軸目の延伸倍率の
平均値が2.496、変動率が9.65%にも達し、変
動率が大きく、良好な均一延伸がなされていないことが
認められた。トリアミンの量が少なく、発明の効果が十
分に現れていないことがわかる。
Comparative Example 2 An experiment was conducted in the same manner as in Example 1 except that 0.1 g (0.0008 mol) of melamine was used as a triamine.
6.9 g of polyimide powder was obtained, and pelletized and formed into a film in the same manner as in Example 1. The logarithmic viscosity of the obtained film was 0.54 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, the obtained film was biaxially stretched in the same manner as in Example 1, and as a result, the average value of the stretching ratio of the second axis reached 2.496, and the variation rate reached 9.65%. It was recognized that uniform stretching was not performed. It can be seen that the amount of triamine is small and the effect of the invention is not sufficiently exhibited.

【0070】比較例3 トリアミンとしてメラミンを13.86g(0.11モ
ル)、ジカルボン酸無水物に無水フタル酸56.24g
(0.38モル)用いた以外は実施例1と同様に実験を
行い、544.6gのポリイミド粉を得、さらに実施例
1と同様にペレット化、フィルム化を行なおうとした
が、溶融粘度が非常に高く、フィルムを得ることができ
なかった。トリアミンの量が多すぎてポリマーが架橋
し、熱可塑性の性質が失われたためと考えられる。
Comparative Example 3 13.86 g (0.11 mol) of melamine as a triamine and 56.24 g of phthalic anhydride in dicarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except for using 0.38 mol, to obtain 544.6 g of a polyimide powder. Further, pelletization and film formation were attempted in the same manner as in Example 1. Was so high that no film could be obtained. This is probably because the amount of the triamine was too large, and the polymer was crosslinked to lose the thermoplastic property.

【0071】比較例4 トリアミンとしてメラミンを用いず、テトラカルボン酸
二無水物として無水ピロメリット酸208.19g
(0.955モル)、ジカルボン酸無水物として無水フ
タル酸13.32g(0.09モル)用いた以外は実施
例1と同様に実験を行ない、508.2gのポリイミド
粉を得、さらに実施例1と同様にペレット化、フィルム
化を行なった。得られたフィルムの対数粘度は、0.5
7dl/gであった。また、溶融粘度の経時変化を第2
表(表2)に示す。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。し
かしながら得られたフィルムを実施例1と同様に二軸延
伸した結果、二軸目の延伸倍率の平均値が2.493、
変動率が8.44%にも達し、変動率が大きく、良好な
均一延伸がなされていないことが認められた。比較例4
で得られたフィルムが対数粘度、溶融粘度とも実施例1
で得られたフィルムより高いにもかかわらず、良好な均
一延伸がなされていないことから、実施例1のトリアミ
ンによる分岐構造の効果が大きいということがわかる。
Comparative Example 4 Melamine was not used as a triamine, and pyromellitic anhydride was 208.19 g as a tetracarboxylic dianhydride.
(0.955 mol), and an experiment was conducted in the same manner as in Example 1 except for using 13.32 g (0.09 mol) of phthalic anhydride as a dicarboxylic anhydride, to obtain 508.2 g of a polyimide powder. As in the case of No. 1, pelletization and film formation were performed. The logarithmic viscosity of the obtained film is 0.5
It was 7 dl / g. In addition, the change with time of the melt viscosity
It is shown in the table (Table 2). Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, as a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis was 2.493,
The variation rate reached 8.44%, indicating that the variation rate was large and good uniform stretching was not performed. Comparative Example 4
The film obtained in Example 1 had a logarithmic viscosity and a melt viscosity of Example 1.
Although the film was higher than the film obtained in Example 1, good uniform stretching was not performed, indicating that the effect of the branched structure by the triamine of Example 1 was large.

【0072】比較例5 トリアミンとして1,2,4−トリアミノベンゼン3.
05g(0.025モル)用いた以外は実施例1と同様
に実験を行ない、511gのポリイミド粉を得、さらに
実施例1と同様にペレット化、フィルム化を行なった。
得られたフィルムの対数粘度は、0.54dl/gであ
った。また、溶融粘度の経時変化を第2表(表2)に示
す。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。しかしながら得ら
れたフィルムを実施例1と同様に二軸延伸した結果、二
軸目の延伸倍率の平均値が2.490、変動率が10.
49%にも達し、変動率が大きく、良好な均一延伸がな
されていないことが認められた。トリアミンの3つのア
ミノ基のうち、隣接した炭素原子に結合しているものが
あるため、ラダー構造をとり、分岐構造にならなかった
ため、発明の効果が十分に現れていないと考えられる。
Comparative Example 5 1,2,4-Triaminobenzene as triamine
An experiment was performed in the same manner as in Example 1 except that 05 g (0.025 mol) was used, to obtain 511 g of a polyimide powder. Further, pelletization and film formation were performed in the same manner as in Example 1.
The logarithmic viscosity of the obtained film was 0.54 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, as a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis was 2.490, and the variation was 10.
As a result, the variation rate was as large as 49%, and it was recognized that good uniform stretching was not performed. Among the three amino groups of the triamine, some of them are bonded to adjacent carbon atoms, so they have a ladder structure and do not have a branched structure, so it is considered that the effects of the invention are not sufficiently exhibited.

【0073】比較例6 ジカルボン酸無水物として無水フタル酸25.16g
(0.17モル)を用いた以外は実施例1と同様に実験
を行い、521.0gのポリイミド粉を得、さらに実施
例1と同様にペレット化、フィルム化を行なった。得ら
れたフィルムの対数粘度は、0.56dl/gであっ
た。また、溶融粘度の経時変化を第2表(表2)に示
す。保持時間が延びると、溶融粘度が増加し、フィルム
は得られたものの実施例1に比べて熱安定性に劣ること
がわかる。これは、無水フタル酸の量が当量に達してい
ないため、未反応末端が残っていたためと考えられる。
ただし、得られたフィルムを実施例1と同様に二軸延伸
した結果、二軸目の延伸倍率の平均値が2.496、変
動率が3.00%であり、変動率が極めて小さく、良好
な均一延伸がなされていることが認められた。
Comparative Example 6 25.16 g of phthalic anhydride as a dicarboxylic anhydride
An experiment was performed in the same manner as in Example 1 except that (0.17 mol) was used, and 521.0 g of a polyimide powder was obtained. Further, pelletization and film formation were performed as in Example 1. The logarithmic viscosity of the obtained film was 0.56 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. When the holding time is prolonged, the melt viscosity increases, and although the film is obtained, it can be seen that the film is inferior in heat stability to Example 1. This is probably because unreacted terminals remained because the amount of phthalic anhydride did not reach the equivalent.
However, the obtained film was biaxially stretched in the same manner as in Example 1, and as a result, the average value of the stretching ratio of the second axis was 2.496, and the variation was 3.00%. It was recognized that uniform stretching was performed.

【0074】比較例7 原料のトリアミンにメラミン0.113g(0.000
9モル)、テトラカルボン酸無水物に無水ピロメリット
酸196.2g(0.90モル)、ジカルボン酸無水物
として無水フタル酸31.08g(0.21モル)を用
いた以外は実施例1と同様に実験を行い、489.5g
のポリイミド粉を得、さらに実施例1と同様にペレット
化、フィルム化を行なった。得られたフィルムの対数粘
度は、0.46dl/gであった。また、溶融粘度の経
時変化を第2表(表2)に示す。保持時間が延びても、
溶融粘度の変化はほとんどなく、熱安定性の良好なこと
がわかる。しかしながら得られたフィルムを実施例1と
同様に二軸延伸した結果、二軸目の延伸倍率の平均値が
2.496、変動率が11.63%にも達し、変動率が
大きく、良好な均一延伸がなされていないことが認めら
れた。トリアミンの量が少なく、発明の効果が十分に現
れていないことがわかる。
Comparative Example 7 0.113 g (0.000 g) of melamine was added to triamine as a raw material.
9 mol), and 196.2 g (0.90 mol) of pyromellitic anhydride as the tetracarboxylic anhydride and 31.08 g (0.21 mol) of phthalic anhydride as the dicarboxylic anhydride. In the same way, 489.5 g
And a pellet was formed into a film in the same manner as in Example 1. The logarithmic viscosity of the obtained film was 0.46 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the retention time is extended,
There was almost no change in the melt viscosity, indicating that the thermal stability was good. However, the obtained film was biaxially stretched in the same manner as in Example 1. As a result, the average value of the stretching ratio of the second axis reached 2.496, and the variation rate reached 11.63%. It was recognized that uniform stretching was not performed. It can be seen that the amount of triamine is small and the effect of the invention is not sufficiently exhibited.

【0075】比較例8 原料のトリアミンにメラミン0.126g(0.001
モル)、テトラカルボン酸無水物に無水ピロメリット酸
194.0g(0.89モル)、ジカルボン酸無水物と
して無水フタル酸34.04g(0.23モル)を用い
た以外は実施例1と同様に実験を行い、479.5gの
ポリイミド粉を得、さらに実施例1と同様にペレット
化、フィルム化を行なった。得られたフィルムの対数粘
度は、0.44dl/gであった。また、溶融粘度の経
時変化を第2表(表2)に示す。保持時間が延びても、
溶融粘度の変化はほとんどなく、熱安定性の良好なこと
がわかる。しかしながら得られたフィルムを実施例1と
同様に二軸延伸した結果、二軸目の延伸倍率の平均値が
2.496、変動率が9.93%にも達し、変動率が大
きく、良好な均一延伸がなされていないことが認められ
た。テトラカルボン酸二無水物の量が少なく、分子量が
低いため発明の効果が十分に現れていないことがわか
る。
Comparative Example 8 0.126 g (0.001 g) of melamine was added to triamine as a raw material.
Mol), and 194.0 g (0.89 mol) of pyromellitic anhydride as the tetracarboxylic anhydride and 34.04 g (0.23 mol) of phthalic anhydride as the dicarboxylic anhydride. An experiment was performed to obtain 479.5 g of a polyimide powder, and further, pelletization and film formation were performed in the same manner as in Example 1. The logarithmic viscosity of the obtained film was 0.44 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the retention time is extended,
There was almost no change in the melt viscosity, indicating that the thermal stability was good. However, as a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis reached 2.496, and the variation rate reached 9.93%. It was recognized that uniform stretching was not performed. It can be seen that the effect of the invention is not sufficiently exhibited because the amount of tetracarboxylic dianhydride is small and the molecular weight is low.

【0076】比較例9 原料のトリアミンにメラミン0.113g(0.000
9モル)、テトラカルボン酸無水物に無水ピロメリット
酸215.8g(0.99モル)、ジカルボン酸無水物
として無水フタル酸2.66g(0.018モル)を用
いた以外は実施例1と同様に実験を行い、499.1g
のポリイミド粉を得、さらに実施例1と同様にペレット
化、フィルム化を行なった。得られたフィルムの対数粘
度は、0.82dl/gであった。また、溶融粘度の経
時変化を第2表(表2)に示す。保持時間が延びても、
溶融粘度の変化はほとんどなく、熱安定性の良好なこと
がわかる。しかしながら得られたフィルムを実施例1と
同様に二軸延伸した結果、二軸目の延伸倍率の平均値が
2.496、変動率が8.46%にも達し、変動率が大
きく、良好な均一延伸がなされていないことが認められ
た。トリアミンの量が少なく、発明の効果が十分に現れ
ていないことがわかる。
Comparative Example 9 0.113 g (0.000 g) of melamine was added to triamine as a raw material.
9 mol), 215.8 g (0.99 mol) of pyromellitic anhydride as tetracarboxylic anhydride, and 2.66 g (0.018 mol) of phthalic anhydride as dicarboxylic anhydride. The same experiment was performed, and 499.1 g was used.
And a pellet was formed into a film in the same manner as in Example 1. The logarithmic viscosity of the obtained film was 0.82 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the retention time is extended,
There was almost no change in the melt viscosity, indicating that the thermal stability was good. However, as a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis reached 2.496, and the variation rate reached 8.46%. It was recognized that uniform stretching was not performed. It can be seen that the amount of triamine is small and the effect of the invention is not sufficiently exhibited.

【0077】比較例10 原料のトリアミンにメラミン12.6g(0.1モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸1
94.0g(0.89モル)、ジカルボン酸無水物とし
て無水フタル酸68.08g(0.46モル)を用いた
以外は実施例1と同様に実験を行い、537.9gのポ
リイミド粉を得、さらに実施例1と同様にペレット化、
フィルム化を行なった。得られたフィルムの対数粘度
は、0.49dl/gであった。また、溶融粘度の経時
変化を第2表(表2)に示す。保持時間が延びても、溶
融粘度の変化はほとんどなく、熱安定性の良好なことが
わかる。しかしながら得られたフィルムを実施例1と同
様に二軸延伸した結果、二軸目の延伸倍率の平均値が
2.496、変動率が7.49%にも達し、変動率が大
きく、良好な均一延伸がなされていないことが認められ
た。テトラカルボン酸二無水物の量が少なく、分子量が
低いため発明の効果が十分に現れていないことがわか
る。
COMPARATIVE EXAMPLE 10 12.6 g (0.1 mol) of melamine was used as the starting triamine, and pyromellitic anhydride 1 was used as the tetracarboxylic anhydride.
The experiment was carried out in the same manner as in Example 1 except that 94.0 g (0.89 mol) and 68.08 g (0.46 mol) of phthalic anhydride were used as the dicarboxylic anhydride to obtain 537.9 g of a polyimide powder. And further pelletized as in Example 1,
The film was formed. The logarithmic viscosity of the obtained film was 0.49 dl / g. Table 2 (Table 2) shows the change over time in the melt viscosity. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, as a result of biaxially stretching the obtained film in the same manner as in Example 1, the average value of the stretching ratio of the second axis reached 2.496, and the fluctuation rate reached 7.49%. It was recognized that uniform stretching was not performed. It can be seen that the effect of the invention is not sufficiently exhibited because the amount of tetracarboxylic dianhydride is small and the molecular weight is low.

【0078】比較例11 原料のトリアミンにメラミン0.126g(0.001
モル)、テトラカルボン酸無水物に無水ピロメリット酸
216.1g(0.991モル)、ジカルボン酸無水物
として無水フタル酸3.11g(0.021モル)を用
いた以外は実施例1と同様に実験を行い、503.4g
のポリイミド粉を得、さらに実施例1と同様にペレット
化、フィルム化を行なおうとしたが、溶融粘度が非常に
高く、フィルムを得ることができなかった。テトラカル
ボン酸二無水物の量が多すぎてポリマーの分子量が高く
なり、熱可塑性の性質が失われたためと考えられる。
Comparative Example 11 0.126 g (0.001 g) of melamine was added to triamine as a raw material.
Mol), 216.1 g (0.991 mol) of pyromellitic anhydride as the tetracarboxylic anhydride, and 3.11 g (0.021 mol) of phthalic anhydride as the dicarboxylic anhydride. Experiment with 503.4g
Polyimide powder was obtained, and pelletization and film formation were attempted in the same manner as in Example 1. However, the melt viscosity was extremely high, and a film could not be obtained. This is probably because the amount of the tetracarboxylic dianhydride was too large, the molecular weight of the polymer was increased, and the thermoplastic property was lost.

【0079】比較例12 原料のトリアミンにメラミン13.9g(0.11モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸1
96.2g(0.90モル)、ジカルボン酸無水物とし
て無水フタル酸68.08g(0.46モル)を用いた
以外は実施例1と同様に実験を行い、527.1gのポ
リイミド粉を得、さらに実施例1と同様にペレット化、
フィルム化を行なおうとしたが、溶融粘度が非常に高
く、フィルムを得ることができなかった。トリアミンの
量が多すぎてポリマーが架橋し、熱可塑性の性質が失わ
れたためと考えられる。
COMPARATIVE EXAMPLE 12 13.9 g (0.11 mol) of melamine was used as the starting triamine, and pyromellitic anhydride 1 was used as the tetracarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except that 96.2 g (0.90 mol) and 68.08 g (0.46 mol) of phthalic anhydride were used as a dicarboxylic anhydride, to obtain 527.1 g of a polyimide powder. And further pelletized as in Example 1,
An attempt was made to form a film, but the melt viscosity was extremely high, and a film could not be obtained. This is probably because the amount of the triamine was too large, and the polymer was crosslinked to lose the thermoplastic property.

【0080】比較例13 原料のトリアミンにメラミン12.6g(0.1モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸2
16.1g(0.991モル)、ジカルボン酸無水物と
して無水フタル酸41.44g(0.28モル)を用い
た以外は実施例1と同様に実験を行い、522.6gの
ポリイミド粉を得、さらに実施例1と同様にペレット
化、フィルム化を行なおうとしたが、溶融粘度が非常に
高く、フィルムを得ることができなかった。テトラカル
ボン酸二無水物の量が多すぎてポリマーの分子量が高く
なり、熱可塑性の性質が失われたためと考えられる。
COMPARATIVE EXAMPLE 13 12.6 g (0.1 mol) of melamine was used as the starting triamine, and pyromellitic anhydride 2 was used as the tetracarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except for using 16.1 g (0.991 mol) and 41.44 g (0.28 mol) of phthalic anhydride as a dicarboxylic anhydride, to obtain 522.6 g of a polyimide powder. Further, pelletization and film formation were attempted in the same manner as in Example 1, but the melt viscosity was extremely high, and a film could not be obtained. This is probably because the amount of the tetracarboxylic dianhydride was too large, the molecular weight of the polymer was increased, and the thermoplastic property was lost.

【0081】比較例14 原料のトリアミンにメラミン13.9g(0.11モ
ル)、テトラカルボン酸無水物に無水ピロメリット酸2
15.8g(0.99モル)、ジカルボン酸無水物とし
て無水フタル酸45.88g(0.31モル)を用いた
以外は実施例1と同様に実験を行い、537.1gのポ
リイミド粉を得、さらに実施例1と同様にペレット化、
フィルム化を行なおうとしたが、溶融粘度が非常に高
く、フィルムを得ることができなかった。トリアミンの
量が多すぎてポリマーが架橋し、熱可塑性の性質が失わ
れたためと考えられる。
Comparative Example 14 13.9 g (0.11 mol) of melamine was used as the starting triamine, and pyromellitic anhydride 2 was used as the tetracarboxylic anhydride.
An experiment was conducted in the same manner as in Example 1 except that 15.8 g (0.99 mol) and 45.88 g (0.31 mol) of phthalic anhydride were used as dicarboxylic anhydride to obtain 537.1 g of a polyimide powder. And further pelletized as in Example 1,
An attempt was made to form a film, but the melt viscosity was extremely high, and a film could not be obtained. This is probably because the amount of the triamine was too large, and the polymer was crosslinked to lose the thermoplastic property.

【0082】[0082]

【表2】 注:溶融粘度は420℃で測定した値で、単位はセンチ
ポイズである。増粘倍率とは、420℃/30分の値を
420℃/5分の値で割った値である。比較例3、1
1、12、13、14はフィルムが得られず、測定不能
である。
[Table 2] Note: The melt viscosity is a value measured at 420 ° C., and the unit is centipoise. The thickening ratio is a value obtained by dividing a value at 420 ° C./30 minutes by a value at 420 ° C./5 minutes. Comparative Examples 3 and 1
1, 12, 13, and 14 did not give a film and could not be measured.

【0083】[0083]

【発明の効果】本発明の方法により、加工時の熱安定性
に優れただけでなく、延伸フィルムの製造においても均
一に延伸可能なポリイミド樹脂を提供することができ
る。工業的にも安価で簡単な方法であり、本発明の意義
は大きい。
According to the method of the present invention, it is possible to provide a polyimide resin which not only has excellent thermal stability during processing but also can be stretched uniformly in the production of a stretched film. It is an inexpensive and simple method industrially, and the present invention is significant.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 73/00 - 73/26 C08J 5/18 C08L 79/00 - 79/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C08G 73/00-73/26 C08J 5/18 C08L 79/00-79/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記式(1) 【化1】 (式中、Xは直結、炭素数1〜10の2価の炭化水素
基、六弗素化されたイソプロピリデン基、カルボニル
基、チオ基、スルフィニル基、スルホニル基またはオキ
シドからなる群より選ばれた基を示し、Y1 、Y2 、Y
3 、Y4 はそれぞれ独立に水素、低級アルキル基、低級
アルコキシ基、塩素または臭素からなる群より選ばれた
基を示し、同じであっても異なっていてもよい。Rは炭
素数2以上の脂肪族基、環式脂肪族基、単環式芳香族
基、縮合多環式芳香族基、芳香族基が直接または架橋員
により相互に連結された非縮合環式芳香族基からなる群
より選ばれた4価の基を示し、Wは少なくとも3個の炭
素原子を有する3価の基を示し、3個のアミノ基は互い
に異なる炭素原子に結合し、さらに互いに隣接した炭素
原子に結合していない)の繰り返し単位で示される分岐
ポリイミド樹脂。
[Claim 1] The following formula (1) (Wherein X is selected from the group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group and an oxide. Y 1 , Y 2 , Y
3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine, and may be the same or different. R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, a non-condensed cyclic group in which aromatic groups are connected to each other directly or by a bridge member. Represents a tetravalent group selected from the group consisting of aromatic groups, W represents a trivalent group having at least three carbon atoms, and three amino groups are bonded to different carbon atoms; (Not bonded to adjacent carbon atoms).
【請求項2】 Wが下記式(2) 【化2】 から選ばれる1種または2種以上の混合物である請求項
1記載の分岐ポリイミド樹脂。
2. W is the following formula (2): The branched polyimide resin according to claim 1, which is one or a mixture of two or more selected from the group consisting of:
【請求項3】 請求項1記載の分岐ポリイミド樹脂の製
造方法に於いて、ジアミンが下記式(3) 【化3】 (式中、Xは直結、炭素数1〜10の2価の炭化水素
基、六弗素化されたイソプロピリデン基、カルボニル
基、チオ基、スルフィニル基、スルホニル基またはオキ
シドからなる群より選ばれた基を示し、Y1 、Y2 、Y
3 、Y4 はそれぞれ独立に水素、低級アルキル基、低級
アルコキシ基、塩素または臭素からなる群より選ばれた
基を示す。)で表されるジアミン化合物であり、テトラ
カルボン酸二無水物が下記式(4) 【化4】 (式中、Rは炭素数2以上の脂肪族基、環式脂肪族基、
単環式芳香族基、縮合多環式芳香族基、芳香族基が直接
または架橋員により相互に連結された非縮合環式芳香族
基からなる群より選ばれた4価の基を示す。)で表され
るテトラカルボン酸二無水物であり、さらに下記式
(5) 【化5】 (式中、Wは少なくとも3個の炭素原子を有する3価の
基を示し、3個のアミノ基は互いに異なる炭素原子に結
合し、さらに互いに隣接した炭素原子に結合していな
い)で表されるトリアミンの存在のもとで行なわれ、さ
らに反応式が下記式(6) 【化6】 (式中、Zは単環式芳香族基、縮合多環式芳香族基、芳
香族基が直接または架橋員により相互に連結された非縮
合多環式芳香族基から成る群より選ばれた2価の基を示
す。)で表されるジカルボン酸無水物の存在のもとに行
なわれ、テトラカルボン酸二無水物の量がジアミン1モ
ル当たり0.90〜0.99モル比であり、かつジアミ
ン1モルに対しトリアミンの量が0.001〜0.1モ
ル比であり、かつジアミンとトリアミンの当量数の合計
1に対しテトラカルボン酸二無水物とジカルボン酸無水
物の当量数の合計の比が1.0〜2.0である式(1) 【化7】 (式中、X、Y1 〜Y4 、WおよびRは前記に同じ)で
表される繰り返し単位を基本骨格として有する分岐ポリ
イミド樹脂の製造方法。
3. The method for producing a branched polyimide resin according to claim 1, wherein the diamine is represented by the following formula (3). (Wherein X is selected from the group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group and an oxide. Y 1 , Y 2 , Y
3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine. Wherein the tetracarboxylic dianhydride is represented by the following formula (4): (Wherein, R represents an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group,
And a tetravalent group selected from the group consisting of a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed cyclic aromatic group in which the aromatic groups are connected to each other directly or by a crosslinking member. Is a tetracarboxylic dianhydride represented by the following formula (5): Wherein W is a trivalent group having at least three carbon atoms, and the three amino groups are bonded to different carbon atoms and are not bonded to adjacent carbon atoms. The reaction is carried out in the presence of triamine, and the reaction is further carried out according to the following formula (6). Wherein Z is selected from the group consisting of a monocyclic aromatic group, a fused polycyclic aromatic group, and a non-fused polycyclic aromatic group in which the aromatic groups are interconnected directly or by a bridging member. The reaction is carried out in the presence of a dicarboxylic anhydride represented by the formula: wherein the amount of tetracarboxylic dianhydride is 0.90 to 0.99 mole ratio per mole of diamine; And the amount of triamine is 0.001 to 0.1 mole ratio with respect to 1 mole of diamine, and the sum of the number of equivalents of tetracarboxylic dianhydride and dicarboxylic anhydride with respect to 1 of the total number of equivalents of diamine and triamine. Formula (1) wherein the ratio of is 1.0 to 2.0. (Wherein, X, Y 1 to Y 4 , W and R are the same as described above) as a basic skeleton.
【請求項4】 トリアミンがメラミン、1,3,5−ト
リアミノベンゼン、1,3,5−トリアミノシクロヘキ
サン、1,4,5−トリアミノナフタレンから選ばれる
1種または2種以上の混合物である請求項3記載の分岐
ポリイミド樹脂の製造方法。
4. The triamine is one or a mixture of two or more selected from melamine, 1,3,5-triaminobenzene, 1,3,5-triaminocyclohexane and 1,4,5-triaminonaphthalene. The method for producing a branched polyimide resin according to claim 3.
【請求項5】 請求項1記載の分岐ポリイミド樹脂より
得られたフィルム。
5. A film obtained from the branched polyimide resin according to claim 1.
JP7324994A 1994-04-12 1994-04-12 Branched polyimide and method for producing the same Expired - Fee Related JP2999116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324994A JP2999116B2 (en) 1994-04-12 1994-04-12 Branched polyimide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324994A JP2999116B2 (en) 1994-04-12 1994-04-12 Branched polyimide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07278300A JPH07278300A (en) 1995-10-24
JP2999116B2 true JP2999116B2 (en) 2000-01-17

Family

ID=13512726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324994A Expired - Fee Related JP2999116B2 (en) 1994-04-12 1994-04-12 Branched polyimide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2999116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689489B2 (en) 2016-06-30 2020-06-23 Lg Chem Ltd. Polyimide-based block copolymer and polyimide-based film comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119781B2 (en) * 2006-07-25 2013-01-16 宇部興産株式会社 Multi-branched polyimide for promoting electroless plating, metal-coated multi-branched polyimide, and production method thereof
KR100929109B1 (en) * 2006-11-08 2009-11-30 주식회사 엘지화학 Branched oligoimide or branched oligoamic acid comprising a functional group capable of thermosetting or photocuring at the end and a method for producing the same
KR101524195B1 (en) * 2009-03-06 2015-05-29 삼성전자주식회사 Self-crosslinking polyamic acid, self-crosslinking polyimide, manufacturing method thereof, and self-crosslinking polyimide film using the same
CN103289092A (en) * 2013-05-20 2013-09-11 西北工业大学 Preparation method of A2+B'B2+B2 type hyperbranched polyimide resin
CN114566759A (en) * 2022-03-31 2022-05-31 大同共聚(西安)科技有限公司 Preparation method of polyimide lithium ion battery insulation diaphragm with dendritic molecular structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689489B2 (en) 2016-06-30 2020-06-23 Lg Chem Ltd. Polyimide-based block copolymer and polyimide-based film comprising the same

Also Published As

Publication number Publication date
JPH07278300A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
JP2596565B2 (en) Polyimide having good thermal stability and method for producing the same
JP2999116B2 (en) Branched polyimide and method for producing the same
JP2624852B2 (en) Method for producing polyimide
EP0459801B1 (en) Readily processable polyimide and preparation process of same
US5268447A (en) Readily processable polyimide and preparation process of same
JP3238258B2 (en) Polyimide having good processability and method for producing the same
JP3638398B2 (en) Heat-resistant resin composition with excellent processability and adhesiveness
JPH055033A (en) Polyimide having excellent thermal stability and production thereof
JP2599171B2 (en) Method for producing polyimide having good thermal stability
JP2999114B2 (en) Heat-resistant polyimide and method for producing the same
JPH0218419A (en) Production of polyimide excellent in thermal stability
JP2748992B2 (en) Crystalline polyimide and method for producing the same
JP2606914B2 (en) Method for producing polyimide having good thermal stability
JP2606912B2 (en) Method for producing polyimide having good thermal stability
JPH0977871A (en) Crystalline polyimide
JP2606913B2 (en) Method for producing polyimide having good thermal stability
JP3083215B2 (en) Method for producing polyimide having good melt fluidity
WO2022244576A1 (en) Melt-processing material and melt-processed article
JPH0551617B2 (en)
JP3327919B2 (en) Method for producing polyimide having good moldability
JP2825510B2 (en) Method for producing polyimide having good thermal stability
JP3327920B2 (en) Method for producing polyimide having good moldability
JP2769497B2 (en) Method for producing polyimide for melt molding
JP2631899B2 (en) Resin composition and method for producing the same
JP3688097B2 (en) Crystalline resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees