JP2999114B2 - Heat-resistant polyimide and method for producing the same - Google Patents

Heat-resistant polyimide and method for producing the same

Info

Publication number
JP2999114B2
JP2999114B2 JP6919894A JP6919894A JP2999114B2 JP 2999114 B2 JP2999114 B2 JP 2999114B2 JP 6919894 A JP6919894 A JP 6919894A JP 6919894 A JP6919894 A JP 6919894A JP 2999114 B2 JP2999114 B2 JP 2999114B2
Authority
JP
Japan
Prior art keywords
group
mol
polyimide powder
tetramine
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6919894A
Other languages
Japanese (ja)
Other versions
JPH07278299A (en
Inventor
育紀 吉田
正博 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP6919894A priority Critical patent/JP2999114B2/en
Publication of JPH07278299A publication Critical patent/JPH07278299A/en
Application granted granted Critical
Publication of JP2999114B2 publication Critical patent/JP2999114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は加工性の良好なポリイミ
ドの製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing a polyimide having good processability.

【0002】[0002]

【従来の技術】従来からテトラカルボン酸とジアミンと
の反応により得られるポリイミドは種々の優れた物性
や、良好な耐熱性を有するために今後もエレクトロニク
スの分野や宇宙・航空産業分野等での利用が期待されて
いる。
2. Description of the Related Art Conventionally, polyimides obtained by the reaction of a tetracarboxylic acid and a diamine have various excellent physical properties and good heat resistance, so that they will be used in the fields of electronics, the aerospace industry, etc. Is expected.

【0003】従来開発されたポリイミドは優れた特性を
示すものが多いが、優れた耐熱性を有するけれども加工
性はとぼしく、また、加工性を向上する目的で開発され
た樹脂は耐熱性に劣るなど性能に一長一短があった。例
えば式(7)
Conventionally developed polyimides often have excellent properties, but have excellent heat resistance but poor workability, and resins developed for the purpose of improving workability have poor heat resistance. There were advantages and disadvantages in performance. For example, equation (7)

【0004】[0004]

【化8】 Embedded image

【0005】で表されるような基本骨格からなるポリイ
ミド(デュポン社製:商品名 Kapton,Vespel )は明瞭
なガラス転移温度を有せず、耐熱性に優れたポリイミド
であるが、成形材料として用いる場合に加工が困難であ
り、粉末焼結成形などの特殊な手法を用いて加工しなけ
ればならない。また、電気電子部品の材料として用いる
際に寸法安定性、絶縁性、はんだ耐熱性に悪影響を及ぼ
す吸水率が高いという性質がある。また、式(8)
A polyimide having a basic skeleton represented by the following formula (manufactured by DuPont, trade name: Kapton, Vespel) is a polyimide having no clear glass transition temperature and excellent heat resistance, but is used as a molding material. In such cases, processing is difficult, and processing must be performed using a special method such as powder sintering. In addition, when used as a material for electrical and electronic components, it has a property of having a high water absorption that adversely affects dimensional stability, insulation properties, and solder heat resistance. Equation (8)

【0006】[0006]

【化9】 Embedded image

【0007】で表されるような基本骨格からなるポリエ
ーテルイミド(ゼネラル・エレクトリック社製:商品名
Ultem )は加工性の優れた樹脂であるが、ガラス転移
温度が217℃と低く、またメチレンクロライドなどの
ハロゲン化炭化水素に可溶で、耐熱性、耐溶剤性の面か
らは満足のゆく樹脂ではない。これらの欠点を解消すべ
く、鋭意検討した結果、我々は一般式(9)
A polyetherimide having a basic skeleton represented by the following formula (trade name, manufactured by General Electric Co., Ltd.)
Ultem) is a resin with excellent processability, but has a low glass transition temperature of 217 ° C, is soluble in halogenated hydrocarbons such as methylene chloride, and is satisfactory in terms of heat resistance and solvent resistance. is not. As a result of intensive studies to solve these disadvantages, we found that the general formula (9)

【0008】[0008]

【化10】 Embedded image

【0009】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表される新規なポリイミド樹脂を見いだし、既に
出願した。(特開平1−110530等)
(Wherein X, Y 1 to Y 4 , and R are the same as those described above) and have already filed an application. (Japanese Unexamined Patent Publication No. 1-110530)

【0010】該ポリイミド樹脂は、170℃〜270℃
の範囲に明瞭なガラス転移温度を示し、400℃付近で
もほとんど重量減少がなく、加工性が良好である。ま
た、耐薬品性にも優れ、従来のポリイミドの欠点を補う
ものであった。
The polyimide resin has a temperature of 170 ° C. to 270 ° C.
Shows a clear glass transition temperature in the range, almost no reduction in weight even at around 400 ° C., and good workability. In addition, it has excellent chemical resistance and compensates for the disadvantages of conventional polyimides.

【0011】該ポリイミド樹脂の合成方法は種々あり、
原料のテトラカルボン酸二無水物とジアミンを反応さ
せ、ポリアミド酸とした後、熱により脱水環化させる方
法や、無水酢酸により脱水環化させてポリイミドを得る
方法が知られている。しかしながら該ポリイミド樹脂
も、分子量が高くなるに従い加工性がとぼしくなり、加
工時に樹脂のゲル化が起こったり、樹脂の粘度が増加す
るなどの問題点がある。該問題点を解決するため、これ
まで本発明者等は、ジアミンの両末端にジカルボン酸無
水物を付加させ、さらに脱水環化させた一般式(10)
There are various methods for synthesizing the polyimide resin.
A method is known in which a raw material, tetracarboxylic dianhydride, is reacted with a diamine to obtain a polyamic acid, and then subjected to dehydration cyclization by heat or a method of obtaining a polyimide by dehydration cyclization with acetic anhydride. However, such a polyimide resin also has problems such that the processability becomes poorer as the molecular weight increases, the resin gels during processing, and the viscosity of the resin increases. In order to solve the above problem, the present inventors have heretofore carried out the addition of a dicarboxylic anhydride to both ends of a diamine, and further a dehydration cyclization of the general formula (10)

【0012】[0012]

【化11】 Embedded image

【0013】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表されるビスイミド化合物、及び該ビスイミド化
合物を該ポリイミド樹脂に添加することによって加工性
が向上することを見いだし、既に出願した(特願平03
−004963、特願平03−086558)。また、
本発明者等はポリイミドを合成する際、上記のジアミン
とテトラカルボン酸二無水物をある特定のモル比で合成
することにより、一般式(9)
(Wherein X, Y 1 to Y 4 , and R are the same as described above), and that the processability is improved by adding the bisimide compound to the polyimide resin. Application already filed (Japanese Patent Application No. 03
-004963, Japanese Patent Application No. 03-086558). Also,
The inventors of the present invention synthesize the polyimide by synthesizing the above diamine and tetracarboxylic dianhydride in a specific molar ratio to obtain a compound represented by the general formula (9).

【0014】[0014]

【化12】 Embedded image

【0015】(式中、X、Y1 〜Y4 、Rは前記に同
じ)で表される低分子量のポリイミドオリゴマーが得ら
れること、及び該ポリイミドオリゴマーを該ポリイミド
樹脂に添加することによって加工性が向上することを見
いだし、既に出願した(特願平04−340138、特
願平04−342548)。
(Wherein X, Y 1 to Y 4 and R are the same as described above), and a processability is obtained by adding the polyimide oligomer to the polyimide resin. And have already filed applications (Japanese Patent Application Nos. 04-340138 and 04-342548).

【0016】さらに本発明者等は、ポリイミドをある特
定の反応条件で合成することによって、低分子量のポリ
イミドオリゴマーを含んだ加工性良好なポリイミド樹脂
をワンポットで得られることを見いだし、既に出願した
(特願平05−276387)。このようにポリイミド
樹脂にビスイミド化合物やポリイミドオリゴマーなどの
ような低分子量成分が存在することにより加工性は向上
するが、その場合でも問題点がある。
Further, the present inventors have found that by synthesizing a polyimide under a specific reaction condition, a polyimide resin containing a low molecular weight polyimide oligomer and having good processability can be obtained in one pot, and has already filed an application ( Japanese Patent Application No. 05-276387). As described above, the workability is improved by the presence of a low molecular weight component such as a bisimide compound or a polyimide oligomer in the polyimide resin, but there is a problem even in such a case.

【0017】[0017]

【発明が解決しようとする課題】一般にビスイミド化合
物やポリイミドオリゴマーのような低分子量成分を多く
含んだポリイミド樹脂は、押出成形などにおける加工性
は良好になるけれども、低分子量成分を多く含んでいる
ためポリマーが臨界分子量に達せず、射出成形などで得
られた成形物のガラス転移温度や融点が低くなったり、
熱変形温度が低くなったりする場合がある。また、耐疲
労特性が十分なものではない。該問題点を解決するに
は、分子量を高くしたり、低分子量成分の少ないポリマ
ーを製造すればよいが、分子量が高いと加工性が悪くな
り、溶融成形により成形物を得るのが困難になる。低分
子量成分を多く含むポリイミドは成形後の物性において
このような問題点が生じるなど一長一短がある。
Generally, a polyimide resin containing a large amount of low molecular weight components such as a bisimide compound and a polyimide oligomer has good workability in extrusion molding and the like, but contains a large amount of low molecular weight components. The polymer does not reach the critical molecular weight, and the glass transition temperature and melting point of molded products obtained by injection molding etc. decrease,
The heat distortion temperature may be low. Further, the fatigue resistance is not sufficient. In order to solve this problem, it is only necessary to increase the molecular weight or to produce a polymer having a low molecular weight component, but if the molecular weight is high, the processability becomes poor, and it becomes difficult to obtain a molded product by melt molding. . Polyimide containing a large amount of low molecular weight components has advantages and disadvantages such as the occurrence of such problems in physical properties after molding.

【0018】さて、従来から耐熱性を向上させるポリマ
ーとして、ポリマー主鎖中にベンゾイミダゾール環やイ
ミダゾピロロン環を単独に有する耐熱性重合体の存在が
知られている。例えば特公昭44−23112には、テ
トラミンと酸無水物とを反応させた前駆体とトリアミン
を反応させ、イミド結合とラダー構造を骨格内に含む耐
熱性重合体が記されている。
As a polymer for improving heat resistance, there has been known a heat-resistant polymer having a benzimidazole ring or an imidazopyrrolo ring alone in a polymer main chain. For example, JP-B-44-23112 describes a heat-resistant polymer containing a imide bond and a ladder structure in the skeleton by reacting a precursor obtained by reacting tetramine and an acid anhydride with triamine.

【0019】また、特開平5−254064にはポリイ
ミド前駆体にトリアミンあるいはテトラミンを添加し
て、変性させるなどの記載がある。しかしながら、これ
らの方法で得られる重合体は、いずれも熱硬化性であ
り、反応してポリイミドとなった後は溶融成形すること
ができず、その用途が非常に限られるものである。
Japanese Patent Application Laid-Open No. 5-254064 describes that a polyimide precursor is modified by adding triamine or tetramine. However, the polymers obtained by these methods are all thermosetting, cannot be melt-molded after they have reacted to form polyimide, and their uses are very limited.

【0020】このように、溶融成形可能で押出成形、射
出成形においても良好な加工性を示し、さらに成形物の
耐熱性、耐疲労特性が損なわれないポリイミド樹脂及び
その製造方法が望まれていた。
Thus, a polyimide resin which can be melt-molded, exhibits good processability in extrusion molding and injection molding, and does not impair heat resistance and fatigue resistance of a molded product and a method for producing the same have been desired. .

【0021】[0021]

【課題を解決するための手段】本発明者等は前記の問題
点を解決するために鋭意検討を行なった結果、該ポリイ
ミド樹脂にある特定の第3成分をある特定の割合導入
し、骨格の一部をラダー構造とすることにより、従来の
方法で合成したポリイミド樹脂よりも押出成形などの成
形加工性が良好なだけではなく、耐熱性が損なわれない
ようなポリイミド樹脂が得られることを見いだし、本発
明を完成させるに至った。すなわち、本発明は下記式
(1)
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, introduced a specific third component into the polyimide resin at a specific ratio, thereby obtaining a skeleton. By using a part of the ladder structure, it was found that not only polyimide resin synthesized by the conventional method has better moldability such as extrusion molding, but also a polyimide resin that does not impair heat resistance can be obtained. Thus, the present invention has been completed. That is, the present invention provides the following formula (1)

【0022】[0022]

【化13】 Embedded image

【0023】(式中、Xは直結、炭素数1〜10の2価
の炭化水素基、六弗素化されたイソプロピリデン基、カ
ルボニル基、チオ基、スルフィニル基、スルホニル基ま
たはオキシドからなる群より選ばれた基を示し、Y1
2 、Y3 、Y4 はそれぞれ独立に水素、低級アルキル
基、低級アルコキシ基、塩素または臭素からなる群より
選ばれた基を示し、同じであっても異なっていてもよ
い。Rは炭素数2以上の脂肪族基、環式脂肪族基、単環
式芳香族基、縮合多環式芳香族基、芳香族基が直接また
は架橋員により相互に連結された非縮合環式芳香族基か
らなる群より選ばれた4価の基を示し、Wは少なくとも
4個の炭素原子を有する4価の基を示し、(a)と
(b)の結合、及び(c)と(d)の結合は互いに隣接
した炭素原子に結合している)の繰り返し単位で示され
るポリイミド樹脂であり、さらにWが下記式(2)
(Wherein, X is a group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group or an oxide. Represents a selected group, Y 1 ,
Y 2 , Y 3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine, and may be the same or different. R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, a non-condensed cyclic group in which aromatic groups are connected to each other directly or by a bridge member. A tetravalent group selected from the group consisting of aromatic groups; W represents a tetravalent group having at least 4 carbon atoms; a bond between (a) and (b), and (c) and ( The bond d) is a polyimide resin represented by a repeating unit of the formula (2) wherein W is bonded to carbon atoms adjacent to each other.

【0024】[0024]

【化14】 Embedded image

【0025】から選ばれる1種または2種以上の混合物
である該ポリイミド樹脂であり、さらに該ポリイミド樹
脂の製造方法に於いて、ジアミンが下記式(3)
The polyimide resin is one or a mixture of two or more selected from the group consisting of a polyimide resin and a diamine represented by the following formula (3):

【0026】[0026]

【化15】 Embedded image

【0027】(式中、Xは直結、炭素数1〜10の2価
の炭化水素基、六弗素化されたイソプロピリデン基、カ
ルボニル基、チオ基、スルフィニル基、スルホニル基ま
たはオキシドからなる群より選ばれた基を示し、Y1
2 、Y3 、Y4 はそれぞれ独立に水素、低級アルキル
基、低級アルコキシ基、塩素または臭素からなる群より
選ばれた基を示す。)で表されるジアミン化合物であ
り、テトラカルボン酸二無水物が下記式(4)
(Wherein X is a group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group or an oxide. Represents a selected group, Y 1 ,
Y 2 , Y 3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine. ) Is a diamine compound represented by the following formula (4):

【0028】[0028]

【化16】 Embedded image

【0029】(式中、Rは炭素数2以上の脂肪族基、環
式脂肪族基、単環式芳香族基、縮合多環式芳香族基、芳
香族基が直接または架橋員により相互に連結された非縮
合環式芳香族基からなる群より選ばれた4価の基を示
す。)で表されるテトラカルボン酸二無水物であり、さ
らに下記式(5)
(In the formula, R represents an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, or an aromatic group, either directly or by a crosslinking member. A tetravalent dianhydride selected from the group consisting of linked non-condensed cyclic aromatic groups.) And further represented by the following formula (5)

【0030】[0030]

【化17】 Embedded image

【0031】(式中、Wは少なくとも4個の炭素原子を
有する4価の基を表し、(a)と(b)の結合、及び
(c)と(d)の結合は互いに隣接した炭素原子に結合
している)で表されるテトラミンの存在のもとで行なわ
れ、さらに反応式が下記式(6)
(Wherein W represents a tetravalent group having at least 4 carbon atoms, and the bond between (a) and (b) and the bond between (c) and (d) are carbon atoms adjacent to each other. The reaction is carried out in the presence of tetramine represented by the following formula (6):

【0032】[0032]

【化18】 Embedded image

【0033】(式中、Zは単環式芳香族基、縮合多環式
芳香族基、芳香族基が直接または架橋員により相互に連
結された非縮合多環式芳香族基から成る群より選ばれた
2価の基を示す。)で表されるジカルボン酸無水物の存
在のもとに行なわれ、テトラカルボン酸二無水物の量が
ジアミンとテトラミンの合計1モル当たり0.90〜
0.99モル比であり、かつジアミンとテトラミンの合
計1モルに対しテトラミンの量が0.001〜0.3モ
ル比であり、かつジアミンとテトラミンの合計量1モル
に対し、テトラカルボン酸二無水物とジカルボン酸無水
物の合計量が当量比で1.0〜2.0である式(1)
(Wherein Z is a group consisting of a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which the aromatic groups are connected to each other directly or by a bridging member. The reaction is carried out in the presence of a dicarboxylic anhydride represented by the following formula: and the amount of tetracarboxylic dianhydride is 0.90 to 0.90 per mole of the total of diamine and tetramine.
0.99 mole ratio, and the amount of tetramine is 0.001 to 0.3 mole ratio with respect to 1 mole of the total of diamine and tetramine, and 1 mole of the total amount of diamine and tetramine, and Formula (1) wherein the total amount of anhydride and dicarboxylic anhydride is 1.0 to 2.0 in equivalent ratio

【0034】[0034]

【化19】 Embedded image

【0035】(式中、X、Y1 〜Y4 、WおよびRは前
記に同じ)で表される繰り返し単位を基本骨格として有
するポリイミド樹脂の製造方法であり、さらには、テト
ラミンが3,3´−ジアミノベンジジン、1,2,4,
5−テトラアミノベンゼン、3,3´,4,4´−テト
ラアミノフェニルエーテル、3,3´,4,4´−テト
ラアミノフェニルスルホン、3,3´,4,4´−テト
ラアミノフェニルケトンから選ばれる1種または2種以
上の混合物である該ポリイミド樹脂の製造方法である。
(Wherein X, Y 1 to Y 4 , W and R are the same as those described above). This is a method for producing a polyimide resin having a repeating unit represented by the following formula: '-Diaminobenzidine, 1,2,4
5-tetraaminobenzene, 3,3 ', 4,4'-tetraaminophenyl ether, 3,3', 4,4'-tetraaminophenylsulfone, 3,3 ', 4,4'-tetraaminophenylketone Or a mixture of two or more selected from the group consisting of polyimide resins.

【0036】以下に本発明を詳細に説明する。本発明で
得られるポリイミド樹脂は、ある特定のジアミン化合物
とテトラカルボン酸二無水物とを反応させてポリイミド
樹脂を得る際、ある特定のテトラミンを添加して反応さ
せることにより、ポリイミド骨格中に一部ラダー構造を
有することに特徴が有る。
Hereinafter, the present invention will be described in detail. When the polyimide resin obtained in the present invention is obtained by reacting a specific diamine compound with tetracarboxylic dianhydride to obtain a polyimide resin, a specific tetramine is added and reacted to form a polyimide resin having a one-dimensional structure. It is characterized by having a partial ladder structure.

【0037】本発明で得られるポリイミド樹脂は、同等
の分子量の従来のポリイミド樹脂と同等の加工性を有し
ているにもかかわらず、一部分を耐熱性に優れたラダー
構造にすることにより、ガラス転移温度、融点、熱変形
温度が上昇し、耐熱性、耐疲労特性が向上する。
Although the polyimide resin obtained by the present invention has a workability equivalent to that of a conventional polyimide resin having an equivalent molecular weight, a part of the polyimide resin has a ladder structure having excellent heat resistance, and thus the glass has a glass composition. The transition temperature, melting point, and heat deformation temperature are increased, and the heat resistance and fatigue resistance are improved.

【0038】本発明で使用されるジアミンとしては、ビ
ス〔4−(3−アミノフェノキシ)フェニル〕メタン、
1,1−ビス〔4−(3−アミノフェノキシ)フェニ
ル〕エタン、1,2−〔4−(3−アミノフェノキシ)
フェニル〕エタン、2,2−ビス〔4−(3−アミノフ
ェノキシ)フェニル〕プロパン、2,2−ビス〔4−
(3−アミノフェノキシ)フェニル〕ブタン、2,2−
ビス〔4−(3−アミノフェノキシ)フェニル〕−1,
1,1,3,3,3,−ヘキサフルオロプロパン、4,
4´−ビス(3−アミノフェノキシ)ビフェニル、ビス
〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビ
ス〔4−(3−アミノフェノキシ)フェニル〕スルフィ
ド、ビス〔4−(3−アミノフェノキシ)フェニル〕ス
ルホキシド、ビス〔4−(3−アミノフェノキシ)フェ
ニル〕スルホン、ビス〔4−(3−アミノフェノキシ)
フェニル〕エーテル等が挙げられ、これらは単独あるい
は2種類以上混合して用いられる。
The diamine used in the present invention includes bis [4- (3-aminophenoxy) phenyl] methane,
1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2- [4- (3-aminophenoxy)
Phenyl] ethane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4-
(3-aminophenoxy) phenyl] butane, 2,2-
Bis [4- (3-aminophenoxy) phenyl] -1,
1,1,3,3,3-hexafluoropropane, 4,
4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) Phenyl] sulfoxide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)
Phenyl] ether and the like, and these are used alone or in combination of two or more.

【0039】テトラカルボン酸二無水物としてはエチレ
ンテトラカルボン酸二無水物、シクロペンタンカルボン
酸二無水物、ピロメリット酸二無水物、3,3´,4,
4´−ベンゾフェノンテトラカルボン酸二無水物、2,
2´,3,3´−ベンゾフェノンテトラカルボン酸二無
水物、3,3´,4,4´−ビフェニルテトラカルボン
酸二無水物、2,2´,3,3´−ビフェニルテトラカ
ルボン酸二無水物、2,2´−ビス(3,4−ジカルボ
キシフェニル)プロパン二無水物、2,2´−ビス
(2,3−ジカルボキシフェニル)プロパン二無水物、
ビス(3,4−ジカルボキシフェニル)エーテル二無水
物、ビス(3,4−ジカルボキシフェニル)スルホン二
無水物、1,1−ビス(2,3−ジカルボキシフェニ
ル)エタン二無水物、ビス(2,3−ジカルボキシフェ
ニル)メタン二無水物、1,1−ビス(2,3−ジカル
ボキシフェニル)エタン二無水物、ビス(3,4−ジカ
ルボキシフェニル)メタン二無水物、2,3,6,7−
ナフタレンテトラカルボン酸二無水物、1,4,5,8
−ナフタレンテトラカルボン酸二無水物、1,2,5,
6−ナフタレンテトラカルボン酸二無水物、1,2,
3,4−ベンゼンテトラカルボン酸二無水物、3,4,
9,10−ベリレンテトラカルボン酸二無水物、2,
3,6,7−アントラセンカルボン酸二無水物、1,
2,7,8−フェナントレンカルボン酸二無水物等が挙
げられ、これらは単独あるいは2種類以上混合して用い
られる。
Examples of the tetracarboxylic dianhydride include ethylene tetracarboxylic dianhydride, cyclopentanecarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4
4'-benzophenonetetracarboxylic dianhydride, 2,
2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2′-bis (2,3-dicarboxyphenyl) propane dianhydride,
Bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2, 3,6,7-
Naphthalenetetracarboxylic dianhydride, 1,4,5,8
-Naphthalenetetracarboxylic dianhydride, 1,2,5
6-naphthalenetetracarboxylic dianhydride, 1,2,2
3,4-benzenetetracarboxylic dianhydride, 3,4
9,10-berylenetetracarboxylic dianhydride, 2,
3,6,7-anthracenecarboxylic dianhydride, 1,
Examples thereof include 2,7,8-phenanthrene carboxylic dianhydride and the like, which are used alone or in combination of two or more.

【0040】テトラミンとしては、3,3´−ジアミノ
ベンジジン、1,2,4,5−テトラアミノベンゼン、
3,3´,4,4´−テトラアミノフェニルエーテル、
3,3´,4,4´−テトラアミノフェニルスルホン、
3,3´,4,4´−テトラアミノフェニルケトンなど
が挙げられ、これらは単独あるいは2種類以上混合して
用いられる。
Examples of tetramine include 3,3'-diaminobenzidine, 1,2,4,5-tetraaminobenzene,
3,3 ′, 4,4′-tetraaminophenyl ether,
3,3 ′, 4,4′-tetraaminophenylsulfone,
3,3 ', 4,4'-tetraaminophenylketone and the like can be mentioned, and these can be used alone or as a mixture of two or more.

【0041】本発明で末端封止剤として用いられる一般
式(4)で表されるジカルボン酸無水物としては、無水
フタル酸、2,3−ベンゾフェノンジカルボン酸無水
物、3,4−ベンゾフェノンジカルボン酸無水物、2,
3−ジカルボキシフェニル−フェニル−エーテル無水
物、3,4−ジカルボキシフェニル−フェニル−エーテ
ル無水物、3,4−ビフェニルジカルボン酸無水物、
2,3−ジカルボキシフェニル−フェニル−スルホン無
水物、2,3−ジカルボキシフェニル−フェニル−スル
フィド無水物、1,2−ナフタレンジカルボン酸無水
物、2,3−ナフタレンジカルボン酸無水物、1,8−
ナフタレンジカルボン酸無水物、2,3−アントラセン
ジカルボン酸無水物、1,9−アントラセンジカルボン
酸無水物などが挙げられ、これらは単独あるいは2種類
以上混合して用いられる。
The dicarboxylic anhydride represented by the general formula (4) used as a terminal blocking agent in the present invention includes phthalic anhydride, 2,3-benzophenone dicarboxylic anhydride, and 3,4-benzophenone dicarboxylic acid. Anhydride, 2,
3-dicarboxyphenyl-phenyl-ether anhydride, 3,4-dicarboxyphenyl-phenyl-ether anhydride, 3,4-biphenyldicarboxylic anhydride,
2,3-dicarboxyphenyl-phenyl-sulfone anhydride, 2,3-dicarboxyphenyl-phenyl-sulfide anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, 1, 8-
Examples thereof include naphthalene dicarboxylic anhydride, 2,3-anthracene dicarboxylic anhydride, and 1,9-anthracene dicarboxylic anhydride, and these may be used alone or as a mixture of two or more.

【0042】本発明の方法で有機溶媒に、出発原料のジ
アミン、テトラカルボン酸二無水物、テトラミン、ジカ
ルボン酸無水物を添加、反応させる方法としては、
(イ)ジアミン、テトラミン、テトラカルボン酸二無水
物を反応させた後に、ジカルボン酸無水物を添加して反
応を続ける方法、(ロ)ジアミン、テトラミン、ジカル
ボン酸無水物を加えて反応させた後、テトラカルボン酸
二無水物を添加し、さらに反応を続ける方法、(ハ)ジ
アミン、テトラミン、テトラカルボン酸二無水物、ジカ
ルボン酸無水物を同時に添加、反応させる方法、(ニ)
ジアミン、テトラカルボン酸二無水物を反応させた後、
テトラミンを加え、さらに反応を続け、さらにジカルボ
ン酸無水物を添加、反応を続ける方法、など、いずれの
添加、反応をとっても差支えない。本発明に用いるテト
ラミンは、式(5)
According to the method of the present invention, the starting materials diamine, tetracarboxylic dianhydride, tetramine and dicarboxylic anhydride are added to the organic solvent and reacted.
(A) A method in which a diamine, a tetramine, and a tetracarboxylic dianhydride are reacted, and then a dicarboxylic anhydride is added to continue the reaction. (Ii) A diamine, a tetramine, and a dicarboxylic anhydride are added and reacted. (D) adding diamine, tetramine, tetracarboxylic dianhydride and dicarboxylic anhydride simultaneously and reacting them.
After reacting diamine, tetracarboxylic dianhydride,
Any addition or reaction may be used, such as a method of adding tetramine, continuing the reaction, further adding a dicarboxylic anhydride, and continuing the reaction. The tetramine used in the present invention has the formula (5)

【0043】[0043]

【化20】 Embedded image

【0044】(式中、Wは前記に同じ)において、Wは
少なくとも4個の炭素原子を有する4価の基を表し、
(a)と(b)の結合、及び(c)と(d)の結合は互
いに隣接した炭素原子に結合していることが必要であ
る。もし隣接していないと、立体構造的にラダー構造が
生成しないため、本発明のポリイミド樹脂が持つ効果を
得ることができない。
Wherein W is the same as defined above, W represents a tetravalent group having at least 4 carbon atoms,
The bond between (a) and (b) and the bond between (c) and (d) need to be bonded to adjacent carbon atoms. If they are not adjacent to each other, a ladder structure is not formed in a three-dimensional structure, so that the effects of the polyimide resin of the present invention cannot be obtained.

【0045】テトラカルボン酸二無水物の量はジアミン
とテトラミンの合計1モル当たり0.9〜0.99モル
比であり、好ましくは0.91〜0.988モル比、よ
り好ましくは0.915〜0.985モル比、最も好ま
しくは0.92〜0.98モル比の範囲である。0.9
モル比未満では単独では十分な強度が得られず、0.9
9モル比を越えると溶融時の粘度が非常に高く、成形が
困難になる。
The amount of the tetracarboxylic dianhydride is 0.9 to 0.99 mole ratio, preferably 0.91 to 0.988 mole ratio, more preferably 0.915 mole ratio per mole of the total of diamine and tetramine. 0.90.985 mole ratio, most preferably 0.92 to 0.98 mole ratio. 0.9
At less than the molar ratio, sufficient strength alone cannot be obtained,
If the molar ratio exceeds 9 mol, the viscosity at the time of melting is extremely high, and molding becomes difficult.

【0046】テトラミンの量はジアミン1モル当たり
0.001〜0.3モル比であり、好ましくは0.00
2〜0.2モル比、より好ましくは0.005〜0.1
モル比、更に好ましくは0.008〜0.08モル比、
最も好ましくは0.01〜0.05モル比の範囲であ
る。0.001モル比未満ではラダー構造の効果が現わ
れず、0.3モル比を越えると合成時ゲル化をおこした
り、溶融時の粘度が非常に高く、成形が困難になる。
The amount of tetramine is 0.001 to 0.3 mole ratio per mole of diamine, preferably 0.001 to 0.3.
2 to 0.2 molar ratio, more preferably 0.005 to 0.1
Molar ratio, more preferably 0.008 to 0.08 molar ratio,
Most preferably, the molar ratio is in the range of 0.01 to 0.05. If the molar ratio is less than 0.001, the effect of the ladder structure does not appear. If the molar ratio exceeds 0.3, gelation occurs during synthesis, and the viscosity at the time of melting is extremely high, making molding difficult.

【0047】更に、末端封止に用いるジカルボン酸無水
物の量はジアミンとテトラミンの合計量1モルに対し、
テトラカルボン酸二無水物とジカルボン酸無水物の合計
量が当量比で1.0〜2.0となるように調整する必要
がある。1.0モル比未満では十分な末端停止の効果が
現われず、2.0モル比を越えると効果はあまり変わら
ず、経済的に不利となる。
Further, the amount of dicarboxylic anhydride used for terminal blocking is 1 mole per total amount of diamine and tetramine.
It is necessary to adjust the total amount of tetracarboxylic dianhydride and dicarboxylic anhydride to be 1.0 to 2.0 in equivalent ratio. If the molar ratio is less than 1.0, the effect of terminating the terminal is not sufficiently exhibited. If the molar ratio is more than 2.0, the effect does not change so much, which is economically disadvantageous.

【0048】重合に用いる溶媒としては、例えばN,N
−ジメチルホルムアミド、N,N−ジメチルアセトアミ
ド、N,N−ジエチルアセトアミド、N,N−ジメチル
メトキシアセトアミド、N−メチル−2−ピロリドン、
1,3−ジメチル−2−イミダゾリジノン、N−メチル
カプロラクタム、1,2−ジメトキシエタン、ビス(2
−メトキシエチル)エーテル、1,2−ビス(2−メト
キシエトキシ)エタン、ビス〔2−(2−メトキシエト
キシ)エチル〕エーテル、テトラヒドロフラン、1,3
−ジオキサン、1,4−ジオキサン、ピリジン、ピコリ
ン、ジメチルスルホキシド、ジメチルスルホン、テトラ
メチル尿素、ヘキサメチルホスホルアミド、フェノー
ル、m−クレゾール、p−クレゾール、p−クロロフェ
ノール、アニソールなどが挙げられる。これらは混合し
て用いてもよい。これらの中でもm−クレゾール、p−
クレゾールは特に好ましい。
As the solvent used for the polymerization, for example, N, N
-Dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone,
1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane, bis (2
-Methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] ether, tetrahydrofuran, 1,3
-Dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethyl urea, hexamethyl phosphoramide, phenol, m-cresol, p-cresol, p-chlorophenol, anisole and the like. These may be used as a mixture. Among these, m-cresol, p-
Cresol is particularly preferred.

【0049】反応温度は、通常0℃〜250℃の範囲で
ある。好ましくは60℃〜240℃、より好ましくは1
00℃〜220℃、更に好ましくは140℃〜210
℃、最も好ましくは180℃〜200℃の温度範囲で反
応を行えばよい。反応圧力は、特に限定されず、減圧、
常圧、加圧のいずれの条件下で行なっても何等差支えが
ない。
The reaction temperature is usually in the range of 0 ° C. to 250 ° C. Preferably 60 ° C to 240 ° C, more preferably 1 ° C to 240 ° C.
00 ° C to 220 ° C, more preferably 140 ° C to 210
The reaction may be carried out at a temperature in the range of 180C to 200C. The reaction pressure is not particularly limited,
It does not matter at all whether it is carried out under normal pressure or under pressure.

【0050】反応時間はその反応温度によって異なる
が、一般的に1時間以上であり、特に2時間から6時間
の範囲が好ましい。1時間よりも短い反応時間では、生
成ポリマーの分子量が十分に上がらない。また、6時間
よりも長く反応時間をとっても生成ポリマーの物性に大
差はない。
The reaction time varies depending on the reaction temperature, but is generally 1 hour or more, and particularly preferably in the range of 2 hours to 6 hours. If the reaction time is shorter than 1 hour, the molecular weight of the produced polymer will not be sufficiently increased. Even if the reaction time is longer than 6 hours, there is no great difference in the physical properties of the produced polymer.

【0051】本発明のポリイミドを溶融成形に供する場
合、本発明の目的を損なわない範囲で他の熱可塑性樹
脂、例えば、ポリエチレン、ポリプロピレン、ポリカー
ボネート、ポリアリレート、ポリアミド、ポリスルホ
ン、ポリエーテルスルホン、ポリエーテルケトン、ポリ
エーテルエーテルケトン、ポリフェニレンスルフィド、
ポリアミドイミド、ポリエーテルイミド、変性ポリフェ
ニレンオキシドなどを目的に応じて適当量を配合するこ
とも可能である。
When the polyimide of the present invention is subjected to melt molding, other thermoplastic resins such as polyethylene, polypropylene, polycarbonate, polyarylate, polyamide, polysulfone, polyethersulfone, and polyether may be used as long as the object of the present invention is not impaired. Ketone, polyetheretherketone, polyphenylene sulfide,
An appropriate amount of polyamide imide, polyether imide, modified polyphenylene oxide or the like can be blended according to the purpose.

【0052】また、さらに通常の樹脂組成物に使用する
次のような充填剤などを発明の目的を損なわない程度で
用いてもよい。すなわち、グラファイト、カーボランダ
ム、ケイ石粉、二硫化モリブデン、フッ素樹脂などの耐
摩耗性向上材、ガラス繊維、カーボン繊維、ボロン繊
維、炭化ケイ素繊維、カーボンウィスカー、アスベス
ト、金属繊維、セラミック繊維などの補強材、三酸化ア
ンチモン、炭酸マグネシウム、炭酸カルシウムなどの難
燃性向上材、クレー、マイカなどの電気的特性向上材、
アスベスト、シリカ、グラファイトなどの耐トラッキン
グ向上材、硫酸バリウム、シリカ、メタケイ酸カルシウ
ムなどの耐酸性向上材、鉄粉、亜鉛粉、アルミニウム
粉、銅粉などの熱伝導度向上材、その他ガラスビーズ、
ガラス球タルク、ケイ藻土、アルミナ、シラスバルン、
水和アルミナ、金属酸化物、着色料などである。
Further, the following fillers and the like used in ordinary resin compositions may be used to such an extent that the object of the invention is not impaired. That is, reinforcement of abrasion resistance materials such as graphite, carborundum, silica stone powder, molybdenum disulfide, fluororesin, glass fiber, carbon fiber, boron fiber, silicon carbide fiber, carbon whisker, asbestos, metal fiber, ceramic fiber, etc. Materials, flame retardant materials such as antimony trioxide, magnesium carbonate, calcium carbonate, etc., electric property improving materials such as clay and mica,
Tracking resistance improving materials such as asbestos, silica and graphite, acid resistance improving materials such as barium sulfate, silica and calcium metasilicate, heat conductivity improving materials such as iron powder, zinc powder, aluminum powder and copper powder, and other glass beads,
Glass sphere talc, diatomaceous earth, alumina, Silasbarn,
Hydrated alumina, metal oxides, coloring agents and the like.

【0053】[0053]

【実施例】以下、本発明を実施例および比較例により具
体的に説明するが、本発明はこれら実施例に何等限定さ
れるものではない。 実施例1 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4’−ビス(3−アミノフェノキシ)ビフ
ェニル359.2g(0.975モル)、無水ピロメリ
ット酸206.1g(0.945モル)、3,3´−ジ
アミノベンジジン5.35g(0.025モル)、無水
フタル酸16.3g(0.11モル)およびm−クレゾ
ール2,200gを装入し、攪拌下200℃まで加熱
し、200℃にて6時間保温した(ジアミンとテトラミ
ンの合計量1モルに対し、テトラカルボン酸二無水物の
モル比0.945)。次いで反応溶液にトルエンを装入
し、析出物を濾別し、さらにトルエンにて洗浄を数回行
なった後、窒素雰囲気下250℃で6時間乾燥を行な
い、505gのポリイミド粉を得た。このポリイミド粉
のガラス転移温度Tgは255℃、融点Tmは391℃
(DSCによる。以下同じ)であった。また、このポリ
イミド粉の対数粘度は、0.46dl/gであった。こ
こに対数粘度はパラクロロフェノール:フェノール(重
量比90:10)の混合溶媒を用い、濃度0.5g/1
00ml溶媒で、35℃で測定した値である。本実施例
で得られたポリイミド粉末を用い、高化式フローテスタ
ー(島津製作所製、CFT−500)で直径0.1c
m、長さ1cmのオリフィスを用いて、溶融粘度の経時
変化を測定した。420℃の温度に5分間保った後、1
00kg/cm2 の圧力で一部押し出し、その粘度を測
定した。残りをさらに100kg/cm2 の圧力で一部
押し出し、その粘度を測定した。420℃保持時間と溶
融粘度の関係を第1表(表1)に示す。保持時間が延び
ても、溶融粘度の変化はほとんどなく、熱安定性の良好
なことがわかる。さらに、得られたポリイミド粉を窒素
気流下に200℃で20時間乾燥し、水分を十分に除去
した後、25mmベント式押出機に供給し、400℃で
直径3mmのダイスより溶融押出し、冷却固化しペレタ
イザーにより切断し、直径約2mm、長さ約3mmのポ
リイミドペレットを得た。得られたポリイミドペレット
を通常の射出成形機にかけて成形温度400℃、金型温
度150℃で射出成形し、成形物の熱変形温度(HD
T)を測定した。HDTの試験法は、ASTM D−6
48による。結果は235℃であり、後述する比較例1
に比べ、上昇していることがわかる。物性値は第1表
(表1)にまとめた。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 359.2 g (0.975 mol) of 4,4'-bis (3-aminophenoxy) biphenyl and 206.1 g of pyromellitic anhydride were placed in a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube. (0.945 mol), 5.35 g (0.025 mol) of 3,3'-diaminobenzidine, 16.3 g (0.11 mol) of phthalic anhydride and 2,200 g of m-cresol were charged and stirred. The mixture was heated to 200 ° C. and kept at 200 ° C. for 6 hours (molar ratio of tetracarboxylic dianhydride to 0.9 mol of the total amount of diamine and tetramine was 0.945). Next, toluene was added to the reaction solution, the precipitate was separated by filtration, and the precipitate was washed several times with toluene, and dried at 250 ° C. for 6 hours under a nitrogen atmosphere to obtain 505 g of a polyimide powder. The glass transition temperature Tg of this polyimide powder is 255 ° C., and the melting point Tm is 391 ° C.
(According to DSC; the same applies hereinafter). The logarithmic viscosity of this polyimide powder was 0.46 dl / g. Here, the logarithmic viscosity was determined using a mixed solvent of parachlorophenol and phenol (weight ratio 90:10) at a concentration of 0.5 g / 1.
It is a value measured at 35 ° C. in a 00 ml solvent. Using the polyimide powder obtained in this example, with a Koka type flow tester (CFT-500, manufactured by Shimadzu Corporation), the diameter is 0.1 c.
The change in melt viscosity with time was measured using an orifice having a length of 1 cm and a length of 1 cm. After maintaining the temperature at 420 ° C for 5 minutes,
It was partially extruded at a pressure of 00 kg / cm 2 and its viscosity was measured. The remainder was partially extruded at a pressure of 100 kg / cm 2 and its viscosity was measured. The relationship between the 420 ° C. holding time and the melt viscosity is shown in Table 1 (Table 1). Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. Furthermore, the obtained polyimide powder was dried at 200 ° C. for 20 hours under a nitrogen stream to sufficiently remove water, then supplied to a 25 mm vent type extruder, melt-extruded from a 3 mm diameter die at 400 ° C., and cooled and solidified. The resultant was cut with a pelletizer to obtain a polyimide pellet having a diameter of about 2 mm and a length of about 3 mm. The obtained polyimide pellets are injection-molded at a molding temperature of 400 ° C. and a mold temperature of 150 ° C. using a usual injection molding machine, and the heat distortion temperature (HD)
T) was measured. The HDT test method is ASTM D-6.
According to 48. The result was 235 ° C, and Comparative Example 1 described later was used.
It can be seen that it is rising compared to. Physical properties are summarized in Table 1 (Table 1).

【0054】実施例2 テトラミンに3,3´−ジアミノベンジジンのかわりに
1,2,4,5−テトラアミノベンゼン3.45g
(0.025モル)を用いた以外は実施例1と同様に実
験を行ない、501.2gのポリイミド粉を得た(ジア
ミンとテトラミンの合計量1モルに対し、テトラカルボ
ン酸二無水物のモル比0.945)。このポリイミド粉
のガラス転移温度Tgは254℃、融点Tmは389℃
であった。また、このポリイミド粉の対数粘度は、0.
46dl/gであった。本実施例で得られたポリイミド
粉の420℃での溶融粘度の経時変化を測定した。保持
時間が延びても、溶融粘度の変化はほとんどなく、熱安
定性の良好なことがわかる。得られたポリイミド粉は実
施例1と同様にペレット化、さらに射出成形により成形
物を得、熱変形温度(HDT)を測定した。結果は23
4℃であり、後述する比較例1に比べ、上昇しているこ
とがわかる。物性値は第1表(表1)にまとめた。
Example 2 Instead of 3,3'-diaminobenzidine for tetramine, 3.45 g of 1,2,4,5-tetraaminobenzene
An experiment was performed in the same manner as in Example 1 except that (0.025 mol) was used, to obtain 501.2 g of a polyimide powder (total of 1 mol of diamine and tetramine, mol of tetracarboxylic dianhydride. Ratio 0.945). This polyimide powder has a glass transition temperature Tg of 254 ° C. and a melting point Tm of 389 ° C.
Met. The logarithmic viscosity of this polyimide powder is 0.1.
It was 46 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result is 23
4C, which is higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0055】実施例3 テトラミンに3,3´−ジアミノベンジジンのかわりに
3,3´,4,4´−テトラアミノフェニルエーテル
5.75g(0.025モル)を用いた以外は実施例1
と同様に実験を行ない、500.2gのポリイミド粉を
得た(ジアミンとテトラミンの合計量1モルに対し、テ
トラカルボン酸二無水物のモル比0.945)。このポ
リイミド粉のガラス転移温度Tgは256℃、融点Tm
は391℃であった。また、このポリイミド粉の対数粘
度は、0.46dl/gであった。本実施例で得られた
ポリイミド粉の420℃での溶融粘度の経時変化を測定
した。保持時間が延びても、溶融粘度の変化はほとんど
なく、熱安定性の良好なことがわかる。得られたポリイ
ミド粉は実施例1と同様にペレット化、さらに射出成形
により成形物を得、熱変形温度(HDT)を測定した。
結果は237℃であり、後述する比較例1に比べ、上昇
していることがわかる。物性値は第1表(表1)にまと
めた。
Example 3 Example 1 was repeated except that 5.75 g (0.025 mol) of 3,3 ', 4,4'-tetraaminophenyl ether was used instead of 3,3'-diaminobenzidine for tetramine.
An experiment was carried out in the same manner as described above to obtain 500.2 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.9 mol of the total amount of diamine and tetramine was 0.945). The glass transition temperature Tg of this polyimide powder is 256 ° C. and the melting point Tm
Was 391 ° C. The logarithmic viscosity of this polyimide powder was 0.46 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured.
The result was 237 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0056】実施例4 テトラミンに3,3´−ジアミノベンジジンのかわりに
3,3´,4,4´−テトラアミノフェニルスルホン
6.95g(0.025モル)を用いた以外は実施例1
と同様に実験を行ない、502.3gのポリイミド粉を
得た(ジアミンとテトラミンの合計量1モルに対し、テ
トラカルボン酸二無水物のモル比0.945)。このポ
リイミド粉のガラス転移温度Tgは255℃、融点Tm
は390℃であった。また、このポリイミド粉の対数粘
度は、0.47dl/gであった。本実施例で得られた
ポリイミド粉の420℃での溶融粘度の経時変化を測定
した。保持時間が延びても、溶融粘度の変化はほとんど
なく、熱安定性の良好なことがわかる。得られたポリイ
ミド粉は実施例1と同様にペレット化、さらに射出成形
により成形物を得、熱変形温度(HDT)を測定した。
結果は235℃であり、後述する比較例1に比べ、上昇
していることがわかる。物性値は第1表(表1)にまと
めた。
Example 4 Example 1 was repeated except that 6.95 g (0.025 mol) of 3,3 ', 4,4'-tetraaminophenylsulfone was used instead of 3,3'-diaminobenzidine for tetramine.
An experiment was carried out in the same manner as described above to obtain 502.3 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.9 mol of the total amount of diamine and tetramine was 0.945). The glass transition temperature Tg of this polyimide powder is 255 ° C. and the melting point Tm
Was 390 ° C. The logarithmic viscosity of this polyimide powder was 0.47 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured.
The result was 235 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0057】実施例5 テトラミンに3,3´−ジアミノベンジジンのかわりに
3,3´,4,4´−テトラアミノフェニルケトン6.
05g(0.025モル)を用いた以外は実施例1と同
様に実験を行ない、501.8gのポリイミド粉を得た
(ジアミンとテトラミンの合計量1モルに対し、テトラ
カルボン酸二無水物のモル比0.945)。このポリイ
ミド粉のガラス転移温度Tgは257℃、融点Tmは3
91℃であった。また、このポリイミド粉の対数粘度
は、0.47dl/gであった。本実施例で得られたポ
リイミド粉の420℃での溶融粘度の経時変化を測定し
た。保持時間が延びても、溶融粘度の変化はほとんどな
く、熱安定性の良好なことがわかる。得られたポリイミ
ド粉は実施例1と同様にペレット化、さらに射出成形に
より成形物を得、熱変形温度(HDT)を測定した。結
果は237℃であり、後述する比較例1に比べ、上昇し
ていることがわかる。物性値は第1表(表1)にまとめ
た。
Example 5 3,3 ', 4,4'-tetraaminophenyl ketone instead of 3,3'-diaminobenzidine for tetramine
An experiment was performed in the same manner as in Example 1 except that 05 g (0.025 mol) was used, to obtain 501.8 g of a polyimide powder (total amount of diamine and tetramine was 1 mol, and tetracarboxylic dianhydride was used. Molar ratio 0.945). The glass transition temperature Tg of this polyimide powder is 257 ° C., and the melting point Tm is 3
91 ° C. The logarithmic viscosity of this polyimide powder was 0.47 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result was 237 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0058】実施例6 テトラミンに3,3´−ジアミノベンジジン3.21g
(0.015モル)、1,2,4,5−テトラアミノベ
ンゼン1.38g(0.010モル)を用いた以外は実
施例1と同様に実験を行ない、503.0gのポリイミ
ド粉を得た(ジアミンとテトラミンの合計量1モルに対
し、テトラカルボン酸二無水物のモル比0.945)。
このポリイミド粉のガラス転移温度Tgは255℃、融
点Tmは390℃であった。また、このポリイミド粉の
対数粘度は、0.46dl/gであった。本実施例で得
られたポリイミド粉の420℃での溶融粘度の経時変化
を測定した。保持時間が延びても、溶融粘度の変化はほ
とんどなく、熱安定性の良好なことがわかる。得られた
ポリイミド粉は実施例1と同様にペレット化、さらに射
出成形により成形物を得、熱変形温度(HDT)を測定
した。結果は235℃であり、後述する比較例1に比
べ、上昇していることがわかる。物性値は第1表(表
1)にまとめた。
Example 6 3.21 g of 3,3'-diaminobenzidine was added to tetramine.
(0.015 mol), and experiment was conducted in the same manner as in Example 1 except that 1.38 g (0.010 mol) of 1,2,4,5-tetraaminobenzene was used to obtain 503.0 g of a polyimide powder. (The molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine).
The glass transition temperature Tg of this polyimide powder was 255 ° C., and the melting point Tm was 390 ° C. The logarithmic viscosity of this polyimide powder was 0.46 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result was 235 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0059】実施例7 ジアミンにビス〔4−(3−アミノフェノキシ)フェニ
ル〕ケトン386.1g(0.975モル)を用いた以
外は実施例1と同様に実験を行ない、517.5gのポ
リイミド粉を得た(ジアミンとテトラミンの合計量1モ
ルに対し、テトラカルボン酸二無水物のモル比0.94
5)。このポリイミド粉のガラス転移温度Tgは258
℃、融点Tmは394℃であった。また、このポリイミ
ド粉の対数粘度は、0.49dl/gであった。本実施
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。得
られたポリイミド粉は実施例1と同様にペレット化、さ
らに射出成形により成形物を得、熱変形温度(HDT)
を測定した。結果は239℃であった。後述する比較例
2に比べ、上昇していることがわかる。物性値は第1表
(表1)にまとめた。
Example 7 An experiment was carried out in the same manner as in Example 1 except that 386.1 g (0.975 mol) of bis [4- (3-aminophenoxy) phenyl] ketone was used as the diamine, and 517.5 g of polyimide was used. A powder was obtained (molar ratio of tetracarboxylic dianhydride to 0.94 with respect to 1 mol of total amount of diamine and tetramine).
5). The glass transition temperature Tg of this polyimide powder is 258
° C and melting point Tm were 394 ° C. The logarithmic viscosity of this polyimide powder was 0.49 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. The heat distortion temperature (HDT)
Was measured. The result was 239 ° C. It can be seen that it is higher than that of Comparative Example 2 described later. Physical properties are summarized in Table 1 (Table 1).

【0060】実施例8 テトラカルボン酸二無水物に3,3´,4,4´−ベン
ゾフェノンテトラカルボン酸二無水物304.49g
(0.945モル)を用いた以外は実施例1と同様に実
験を行ない、592.3gのポリイミド粉を得た(ジア
ミンとテトラミンの合計量1モルに対し、テトラカルボ
ン酸二無水物のモル比0.945)。このポリイミド粉
のガラス転移温度Tgは257℃、融点Tmは393℃
であった。また、このポリイミド粉の対数粘度は、0.
49dl/gであった。本実施例で得られたポリイミド
粉の420℃での溶融粘度の経時変化を測定した。保持
時間が延びても、溶融粘度の変化はほとんどなく、熱安
定性の良好なことがわかる。得られたポリイミド粉は実
施例1と同様にペレット化、さらに射出成形により成形
物を得、熱変形温度(HDT)を測定した。結果は23
7℃であった。後述する比較例3に比べ、上昇している
ことがわかる。物性値は第1表(表1)にまとめた。
Example 8 To a tetracarboxylic dianhydride, 304.49 g of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride was added.
(0.945 mol) was conducted in the same manner as in Example 1 to obtain 592.3 g of a polyimide powder (the total amount of the diamine and tetramine was 1 mol, and the mol of the tetracarboxylic dianhydride was 1 mol.) Ratio 0.945). The glass transition temperature Tg of this polyimide powder is 257 ° C., and the melting point Tm is 393 ° C.
Met. The logarithmic viscosity of this polyimide powder is 0.1.
It was 49 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result is 23
7 ° C. It can be seen that it is higher than that of Comparative Example 3 described later. Physical properties are summarized in Table 1 (Table 1).

【0061】実施例9 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン64.2g(0.3モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
268.0g(1.23モル)、ジカルボン酸無水物に
無水フタル酸22.2g(0.15モル)を用いた以外
は実施例1と同様に実験を行ない、606.2gのポリ
イミド粉を得た(ジアミンとテトラミンの合計量1モル
に対し、テトラカルボン酸二無水物のモル比0.94
5)。このポリイミド粉のガラス転移温度Tgは260
℃、融点Tmは395℃であった。また、このポリイミ
ド粉の対数粘度は、0.47dl/gであった。本実施
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びると溶融粘度は増加
し、熱安定性はやや悪いが、射出成形による成形物は得
ることは可能であった。得られたポリイミド粉は実施例
1と同様にペレット化、さらに射出成形により成形物を
得、熱変形温度(HDT)を測定した。結果は246℃
であり、後述する比較例1に比べ、上昇していることが
わかる。物性値は第1表(表1)にまとめた。
Example 9 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, 64.2 g (0.3 mol) of 3,3'-diaminobenzidine was used as the tetramine. An experiment was performed in the same manner as in Example 1 except that 268.0 g (1.23 mol) of pyromellitic anhydride was used for tetracarboxylic dianhydride and 22.2 g (0.15 mol) of phthalic anhydride was used for dicarboxylic anhydride. Was carried out to obtain 606.2 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.94 with respect to 1 mol of the total amount of diamine and tetramine).
5). The glass transition temperature Tg of this polyimide powder is 260
° C and melting point Tm were 395 ° C. The logarithmic viscosity of this polyimide powder was 0.47 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was somewhat poor, but it was possible to obtain a molded product by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. Result is 246 ° C
It can be seen that it is higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0062】実施例10 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.214g(0.00
1モル)、テトラカルボン酸二無水物に無水ピロメリッ
ト酸206.1g(0.945モル)、ジカルボン酸無
水物に無水フタル酸17.8g(0.12モル)を用い
た以外は実施例1と同様に実験を行ない、507.2g
のポリイミド粉を得た(ジアミンとテトラミンの合計量
1モルに対し、テトラカルボン酸二無水物のモル比0.
945)。このポリイミド粉のガラス転移温度Tgは2
54℃、融点Tmは389℃であった。また、このポリ
イミド粉の対数粘度は、0.47dl/gであった。本
実施例で得られたポリイミド粉の420℃での溶融粘度
の経時変化を測定した。保持時間が延びても、溶融粘度
の変化はほとんどなく、熱安定性の良好なことがわか
る。得られたポリイミド粉は実施例1と同様にペレット
化、さらに射出成形により成形物を得、熱変形温度(H
DT)を測定した。結果は233℃であり、後述する比
較例1に比べ、上昇していることがわかる。物性値は第
1表(表1)にまとめた。
EXAMPLE 10 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, and 0.214 g (0.00 mol) of 3,3'-diaminobenzidine was used as the tetramine.
Example 1 except that 206.1 g (0.945 mol) of pyromellitic anhydride was used as the tetracarboxylic dianhydride and 17.8 g (0.12 mol) of phthalic anhydride was used as the dicarboxylic anhydride. Perform the same experiment as in
Was obtained (a molar ratio of tetracarboxylic dianhydride to 0.1 mole per 1 mole of the total amount of diamine and tetramine).
945). The glass transition temperature Tg of this polyimide powder is 2
The melting point Tm was 389 ° C. The logarithmic viscosity of this polyimide powder was 0.47 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding.
DT) was measured. The result was 233 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0063】実施例11 ジカルボン酸無水物に無水フタル酸312.5g(2.
11モル)を用いた以外は実施例1と同様に実験を行な
い、504.2gのポリイミド粉を得た(ジアミンとテ
トラミンの合計量1モルに対し、テトラカルボン酸二無
水物のモル比0.945)。このポリイミド粉のガラス
転移温度Tgは255℃、融点Tmは391℃であっ
た。また、このポリイミド粉の対数粘度は、0.46d
l/gであった。本実施例で得られたポリイミド粉の4
20℃での溶融粘度の経時変化を測定した。保持時間が
延びても、溶融粘度の変化はほとんどなく、熱安定性の
良好なことがわかる。得られたポリイミド粉は実施例1
と同様にペレット化、さらに射出成形により成形物を
得、熱変形温度(HDT)を測定した。結果は235℃
であり、後述する比較例1に比べ、上昇していることが
わかる。物性値は第1表(表1)にまとめた。
Example 11 312.5 g of phthalic anhydride (2.
An experiment was performed in the same manner as in Example 1 except that 11 mol) was used, to obtain 504.2 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.1 mol per 1 mol of the total amount of diamine and tetramine). 945). The glass transition temperature Tg of this polyimide powder was 255 ° C., and the melting point Tm was 391 ° C. The logarithmic viscosity of this polyimide powder is 0.46 d
1 / g. 4 of the polyimide powder obtained in this example
The change with time of the melt viscosity at 20 ° C. was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was obtained in Example 1.
A molded product was obtained by pelletization and injection molding in the same manner as described above, and the heat distortion temperature (HDT) was measured. Result is 235 ° C
It can be seen that it is higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0064】実施例12 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン64.2g(0.3モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
255.2g(1.17モル)、ジカルボン酸無水物に
無水フタル酸38.5g(0.26モル)を用いた以外
は実施例1と同様に実験を行ない、614.2gのポリ
イミド粉を得た(ジアミンとテトラミンの合計量1モル
に対し、テトラカルボン酸二無水物のモル比0.9)。
このポリイミド粉のガラス転移温度Tgは253℃、融
点Tmは387℃であった。また、このポリイミド粉の
対数粘度は、0.38dl/gであった。本実施例で得
られたポリイミド粉の420℃での溶融粘度の経時変化
を測定した。保持時間が延びると溶融粘度は増加し、熱
安定性はやや悪いが、射出成形による成形物を得ること
は可能であった。得られたポリイミド粉は実施例1と同
様にペレット化、さらに射出成形により成形物を得、熱
変形温度(HDT)を測定した。結果は234℃であ
り、後述する比較例1に比べ、上昇していることがわか
る。物性値は第1表(表1)にまとめた。
Example 12 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, 64.2 g (0.3 mol) of 3,3'-diaminobenzidine was used as the tetramine. An experiment was performed in the same manner as in Example 1 except that 255.2 g (1.17 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 38.5 g (0.26 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was carried out to obtain 614.2 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine).
The glass transition temperature Tg of this polyimide powder was 253 ° C., and the melting point Tm was 387 ° C. The logarithmic viscosity of this polyimide powder was 0.38 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was somewhat poor, but it was possible to obtain a molded product by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result was 234 ° C., which indicates that the temperature was higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0065】実施例13 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン64.2g(0.3モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
279.2g(1.28モル)、ジカルボン酸無水物に
無水フタル酸3.85g(0.026モル)を用いた以
外は実施例1と同様に実験を行ない、603.2gのポ
リイミド粉を得た(ジアミンとテトラミンの合計量1モ
ルに対し、テトラカルボン酸二無水物のモル比0.9
9)。このポリイミド粉のガラス転移温度Tgは270
℃、融点Tmは402℃であった。また、このポリイミ
ド粉の対数粘度は、0.76dl/gであった。本実施
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びると溶融粘度は増加
し、熱安定性はやや悪いが、射出成形による成形物は得
ることが可能であった。得られたポリイミド粉は実施例
1と同様にペレット化、さらに射出成形により成形物を
得、熱変形温度(HDT)を測定した。結果は260℃
であり、後述する比較例1に比べ、上昇していることが
わかる。物性値は第1表(表1)にまとめた。
Example 13 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, 64.2 g (0.3 mol) of 3,3'-diaminobenzidine was used as the tetramine. An experiment was carried out in the same manner as in Example 1 except that 279.2 g (1.28 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 3.85 g (0.026 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was carried out to obtain 603.2 g of a polyimide powder (a molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine).
9). The glass transition temperature Tg of this polyimide powder is 270
° C and melting point Tm were 402 ° C. The logarithmic viscosity of this polyimide powder was 0.76 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was somewhat poor, but it was possible to obtain a molded product by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. Result is 260 ° C
It can be seen that it is higher than that of Comparative Example 1 described later. Physical properties are summarized in Table 1 (Table 1).

【0066】実施例14 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.214g(0.00
1モル)、テトラカルボン酸二無水物に無水ピロメリッ
ト酸198.5g(0.91モル)、ジカルボン酸無水
物に無水フタル酸31.1g(0.21モル)を用いた
以外は実施例1と同様に実験を行ない、508.2gの
ポリイミド粉を得た(ジアミンとテトラミンの合計量1
モルに対し、テトラカルボン酸二無水物のモル比0.
9)。このポリイミド粉のガラス転移温度Tgは252
℃、融点Tmは385℃であった。また、このポリイミ
ド粉の対数粘度は、0.38dl/gであった。本実施
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。得
られたポリイミド粉は実施例1と同様にペレット化、さ
らに射出成形により成形物を得、熱変形温度(HDT)
を測定した。結果は246℃であり、後述する比較例2
に比べ、上昇していることがわかる。った。物性値は第
1表(表1)にまとめた。
Example 14 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, and 0.214 g (0.00 mol) of 3,3'-diaminobenzidine was used as a tetramine.
Example 1 except that 198.5 g (0.91 mol) of pyromellitic anhydride was used as the tetracarboxylic dianhydride and 31.1 g (0.21 mol) of phthalic anhydride was used as the dicarboxylic anhydride. An experiment was carried out in the same manner as described above to obtain 508.2 g of a polyimide powder (total amount of diamine and tetramine was 1).
The molar ratio of tetracarboxylic dianhydride to mol is 0.1.
9). The glass transition temperature Tg of this polyimide powder is 252.
° C and melting point Tm were 385 ° C. The logarithmic viscosity of this polyimide powder was 0.38 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. The heat distortion temperature (HDT)
Was measured. The result was 246 ° C., and Comparative Example 2 described later was used.
It can be seen that it is rising compared to. Was. Physical properties are summarized in Table 1 (Table 1).

【0067】実施例15 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.214g(0.00
1モル)、テトラカルボン酸二無水物に無水ピロメリッ
ト酸215.9g(0.99モル)、ジカルボン酸無水
物に無水フタル酸3.11g(0.021モル)を用い
た以外は実施例1と同様に実験を行ない、501.9g
のポリイミド粉を得た(ジアミンとテトラミンの合計量
1モルに対し、テトラカルボン酸二無水物のモル比0.
99)。このポリイミド粉のガラス転移温度Tgは26
4℃、融点Tmは395℃であった。また、このポリイ
ミド粉の対数粘度は、0.72dl/gであった。本実
施例で得られたポリイミド粉の420℃での溶融粘度の
経時変化を測定した。保持時間が延びると溶融粘度は増
加し、熱安定性はやや悪いが、射出成形による成形物は
得ることが可能であった。得られたポリイミド粉は実施
例1と同様にペレット化、さらに射出成形により成形物
を得、熱変形温度(HDT)を測定した。結果は264
℃であり、後述する比較例3に比べ、上昇していること
がわかる。物性値は第1表(表1)にまとめた。
Example 15 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, and 0.214 g (0.00 mol) of 3,3'-diaminobenzidine was used as a tetramine.
Example 1 except that 215.9 g (0.99 mol) of pyromellitic anhydride was used for tetracarboxylic dianhydride and 3.11 g (0.021 mol) of phthalic anhydride was used for dicarboxylic anhydride. Perform the same experiment as in
Was obtained (a molar ratio of tetracarboxylic dianhydride to 0.1 mole per 1 mole of the total amount of diamine and tetramine).
99). The glass transition temperature Tg of this polyimide powder is 26
4 ° C., melting point Tm was 395 ° C. The logarithmic viscosity of this polyimide powder was 0.72 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was somewhat poor, but it was possible to obtain a molded product by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. Result is 264
° C, which is higher than that of Comparative Example 3 described later. Physical properties are summarized in Table 1 (Table 1).

【0068】[0068]

【表1】 注:溶融粘度は420℃で測定した値で、単位はセンチ
ポイズである。Tg、Tm、HDTの単位は℃である。
増粘倍率とは、420℃/30分の値を420℃/5分
の値で割った値である。
[Table 1] Note: The melt viscosity is a value measured at 420 ° C., and the unit is centipoise. The unit of Tg, Tm, and HDT is ° C.
The thickening ratio is a value obtained by dividing a value at 420 ° C./30 minutes by a value at 420 ° C./5 minutes.

【0069】比較例1 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)を用い、テトラミ
ンの3,3´−ジアミノベンジジンを用いない以外は実
施例1と同様に実験を行ない、501.0gのポリイミ
ド粉を得た(ジアミンとテトラミンの合計量1モルに対
し、テトラカルボン酸二無水物のモル比0.945)。
このポリイミド粉のガラス転移温度Tgは250℃、融
点Tmは385℃であった。また、このポリイミド粉の
対数粘度は、0.46dl/gであった。本比較例で得
られたポリイミド粉の420℃での溶融粘度の経時変化
を測定した。保持時間が延びても、溶融粘度の変化はほ
とんどなく、熱安定性の良好なことがわかる。しかしな
がら得られたポリイミド粉は実施例1と同様にペレット
化、さらに射出成形により成形物を得、熱変形温度(H
DT)を測定した結果は230℃であり、対数粘度、溶
融粘度がほとんど同じであるにもかかわらず、実施例
1、実施例2に比べ、熱的性質が劣っていることがわか
る。物性値は第2表(表2)にまとめた。
Comparative Example 1 Example 1 was repeated except that 368.4 g (1.0 mol) of 4,4′-bis (3-aminophenoxy) biphenyl was used as a diamine and 3,3′-diaminobenzidine of tetramine was not used. An experiment was carried out in the same manner as in (1) to obtain 501.0 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to the total amount of 1 mol of diamine and tetramine was 0.945).
The glass transition temperature Tg of this polyimide powder was 250 ° C., and the melting point Tm was 385 ° C. The logarithmic viscosity of this polyimide powder was 0.46 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, the obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding.
The measurement result of DT) is 230 ° C., which indicates that the thermal properties are inferior to those of Examples 1 and 2 even though the logarithmic viscosity and the melt viscosity are almost the same. Physical properties are summarized in Table 2 (Table 2).

【0070】比較例2 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラカルボン
酸二無水物に無水ピロメリット酸196.1g(0.9
モル)、ジカルボン酸無水物に無水フタル酸29.7g
(0.2モル)を用い、テトラミンに3,3´−ジアミ
ノベンジジンを用いなかった以外は実施例1と同様に実
験を行ない、500.1gのポリイミド粉を得た(ジア
ミンとテトラミンの合計量1モルに対し、テトラカルボ
ン酸二無水物のモル比0.945)。このポリイミド粉
のガラス転移温度Tgは247℃、融点Tmは383℃
であった。また、このポリイミド粉の対数粘度は、0.
37dl/gであった。本比較例で得られたポリイミド
粉の420℃での溶融粘度の経時変化を測定した。保持
時間が延びても、溶融粘度の変化はほとんどなく、熱安
定性の良好なことがわかる。得られたポリイミド粉は実
施例1と同様にペレット化、さらに射出成形により成形
物を得、熱変形温度(HDT)を測定した。結果は22
9℃であり、実施例14で得られたものに比べて低下し
ていた。これはテトラミンの量が少なく、ポリマー中に
ラダー構造が十分に生成せず、発明の効果が十分に現れ
なかったためと考えられる。物性値は第2表(表2)に
まとめた。
Comparative Example 2 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, and 196.1 g (0.9 mol) of pyromellitic anhydride was used as a tetracarboxylic dianhydride.
Mol), 29.7 g of phthalic anhydride in dicarboxylic anhydride
(0.2 mol), and the experiment was carried out in the same manner as in Example 1 except that 3,3′-diaminobenzidine was not used as the tetramine to obtain 500.1 g of a polyimide powder (total amount of diamine and tetramine). The molar ratio of tetracarboxylic dianhydride to 1 mol is 0.945). The glass transition temperature Tg of this polyimide powder is 247 ° C., and the melting point Tm is 383 ° C.
Met. The logarithmic viscosity of this polyimide powder is 0.1.
It was 37 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result is 22
9 ° C., which was lower than that obtained in Example 14. This is probably because the amount of tetramine was small, the ladder structure was not sufficiently formed in the polymer, and the effect of the invention was not sufficiently exhibited. Physical properties are summarized in Table 2 (Table 2).

【0071】比較例3 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラカルボン
酸二無水物に無水ピロメリット酸215.9g(0.9
9モル)、ジカルボン酸無水物に無水フタル酸2.97
g(0.02モル)を用い、テトラミンに3,3´−ジ
アミノベンジジンを用いなかった以外は実施例1と同様
に実験を行ない、497.9gのポリイミド粉を得た
(ジアミンとテトラミンの合計量1モルに対し、テトラ
カルボン酸二無水物のモル比0.945)。このポリイ
ミド粉のガラス転移温度Tgは262℃、融点Tmは3
93℃であった。また、このポリイミド粉の対数粘度
は、0.71dl/gであった。本比較例で得られたポ
リイミド粉の420℃での溶融粘度の経時変化を測定し
た。保持時間が延びると溶融粘度は増加し、熱安定性が
やや劣るが、射出成形により成形物を得ることはでき
た。得られたポリイミド粉は実施例1と同様にペレット
化、さらに射出成形により成形物を得、熱変形温度(H
DT)を測定した。結果は249℃であり、実施例15
で得られたものに比べて低下していた。これはテトラミ
ンの量が少なく、ポリマー中にラダー構造が十分に生成
せず、発明の効果が十分に現れなかったためと考えられ
る。物性値は第2表(表2)にまとめた。
Comparative Example 3 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, and 215.9 g (0.9 mol) of pyromellitic anhydride was used as the tetracarboxylic dianhydride.
9 mol), and 2.97 phthalic anhydride in dicarboxylic anhydride.
g (0.02 mol), and experiment was conducted in the same manner as in Example 1 except that 3,3′-diaminobenzidine was not used as tetramine, to obtain 497.9 g of polyimide powder (total of diamine and tetramine). The molar ratio of tetracarboxylic dianhydride to the mole of 1 mole is 0.945). The glass transition temperature Tg of this polyimide powder is 262 ° C., and the melting point Tm is 3
93 ° C. The logarithmic viscosity of this polyimide powder was 0.71 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was slightly inferior, but a molded product could be obtained by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding.
DT) was measured. The result was 249 ° C.
It was lower than that obtained in. This is probably because the amount of tetramine was small, the ladder structure was not sufficiently formed in the polymer, and the effect of the invention was not sufficiently exhibited. Physical properties are summarized in Table 2 (Table 2).

【0072】比較例4 ジアミンにビス〔4−(3−アミノフェノキシ)フェニ
ル〕ケトン396.4g(1.0モル)を用い、テトラ
ミンの3,3´−ジアミノベンジジンを用いない以外は
実施例1と同様に実験を行ない、530.0gのポリイ
ミド粉を得た(ジアミンとテトラミンの合計量1モルに
対し、テトラカルボン酸二無水物のモル比0.94
5)。このポリイミド粉のガラス転移温度Tgは253
℃、融点Tmは388℃であった。また、このポリイミ
ド粉の対数粘度は、0.48dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。し
かしながら得られたポリイミド粉は実施例1と同様にペ
レット化、さらに射出成形により成形物を得、熱変形温
度(HDT)を測定した結果は233℃であり、対数粘
度、溶融粘度がほとんど同じであるにもかかわらず、実
施例7に比べ、熱的性質が劣っていることがわかる。物
性値は第2表(表2)にまとめた。
Comparative Example 4 Example 1 was repeated except that 396.4 g (1.0 mol) of bis [4- (3-aminophenoxy) phenyl] ketone was used as the diamine and 3,3′-diaminobenzidine of tetramine was not used. An experiment was carried out in the same manner as described above to obtain 530.0 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.94 with respect to 1 mol of the total amount of diamine and tetramine).
5). The glass transition temperature Tg of this polyimide powder is 253.
° C and melting point Tm were 388 ° C. The logarithmic viscosity of this polyimide powder was 0.48 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, the obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. The result of measurement of the heat distortion temperature (HDT) was 233 ° C., and the logarithmic viscosity and melt viscosity were almost the same. Nevertheless, it can be seen that the thermal properties are inferior to Example 7 in spite of the existence. Physical properties are summarized in Table 2 (Table 2).

【0073】比較例5 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラカルボン
酸二無水物に3,3´,4,4´−ベンゾフェノンテト
ラカルボン酸二無水物304.49g(0.945モ
ル)を用い、テトラミンの3,3´−ジアミノベンジジ
ンを用いない以外は実施例1と同様に実験を行ない、5
90.2gのポリイミド粉を得た(ジアミンとテトラミ
ンの合計量1モルに対し、テトラカルボン酸二無水物の
モル比0.945)。このポリイミド粉のガラス転移温
度Tgは252℃、融点Tmは387℃であった。ま
た、このポリイミド粉の対数粘度は、0.48dl/g
であった。本比較例で得られたポリイミド粉の420℃
での溶融粘度の経時変化を測定した。保持時間が延びて
も、溶融粘度の変化はほとんどなく、熱安定性の良好な
ことがわかる。しかしながら得られたポリイミド粉は実
施例1と同様にペレット化、さらに射出成形により成形
物を得、熱変形温度(HDT)を測定した結果は232
℃であり、対数粘度、溶融粘度がほとんど同じであるに
もかかわらず、実施例8に比べ、熱的性質が劣っている
ことがわかる。物性値は第2表(表2)にまとめた。
COMPARATIVE EXAMPLE 5 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, and 3,3 ', 4,4'-benzophenonetetraphenyl was used as a tetracarboxylic dianhydride. The experiment was carried out in the same manner as in Example 1 except that 304.49 g (0.945 mol) of carboxylic dianhydride was used and 3,3′-diaminobenzidine of tetramine was not used.
90.2 g of polyimide powder was obtained (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine). The glass transition temperature Tg of this polyimide powder was 252 ° C., and the melting point Tm was 387 ° C. The logarithmic viscosity of this polyimide powder is 0.48 dl / g.
Met. 420 ° C. of the polyimide powder obtained in this comparative example
The change with time of the melt viscosity was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. However, the obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. The result of measurement of the heat distortion temperature (HDT) was 232.
It is understood that the thermal properties are inferior to Example 8 in spite of the fact that the temperature is ° C and the logarithmic viscosity and the melt viscosity are almost the same. Physical properties are summarized in Table 2 (Table 2).

【0074】比較例6 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン85.6g(0.4モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
287.9g(1.32モル)、ジカルボン酸無水物に
無水フタル酸23.7g(0.16モル)を用いた以外
は実施例1と同様に実験を行ない、641.4gのポリ
イミド粉を得た(ジアミンとテトラミンの合計量1モル
に対し、テトラカルボン酸二無水物のモル比0.94
5)。このポリイミド粉のガラス転移温度Tgは261
℃、融点Tmは397℃であった。また、このポリイミ
ド粉の対数粘度は、0.48dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びると溶融粘度は増加
し、熱安定性が悪く、ペレット化、射出成形による成形
物を得ることができなかった。これは、ポリマー中に剛
直なラダー構造が多くなったため、熱可塑性の性質が失
われたためと考えられる。物性値は第2表(表2)にま
とめた。
Comparative Example 6 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used for the diamine, 85.6 g (0.4 mol) of 3,3'-diaminobenzidine was used for the tetramine, An experiment was performed in the same manner as in Example 1 except that 287.9 g (1.32 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 23.7 g (0.16 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was performed to obtain 641.4 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.94 with respect to 1 mol of the total amount of diamine and tetramine).
5). The glass transition temperature Tg of this polyimide powder is 261
° C and melting point Tm were 397 ° C. The logarithmic viscosity of this polyimide powder was 0.48 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. When the holding time was prolonged, the melt viscosity increased, the thermal stability was poor, and it was not possible to obtain a molded product by pelletization and injection molding. This is probably because the rigid ladder structure was increased in the polymer, and the thermoplastic property was lost. Physical properties are summarized in Table 2 (Table 2).

【0075】比較例7 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.171g(0.00
08モル)、テトラカルボン酸二無水物に無水ピロメリ
ット酸206.1g(0.945モル)、ジカルボン酸
無水物に無水フタル酸16.3g(0.11モル)を用
いた以外は実施例1と同様に実験を行ない、500.1
gのポリイミド粉を得た(ジアミンとテトラミンの合計
量1モルに対し、テトラカルボン酸二無水物のモル比
0.945)。このポリイミド粉のガラス転移温度Tg
は252℃、融点Tmは386℃であった。また、この
ポリイミド粉の対数粘度は、0.46dl/gであっ
た。本比較例で得られたポリイミド粉の420℃での溶
融粘度の経時変化を測定した。保持時間が延びても、溶
融粘度の変化はほとんどなく、熱安定性の良好なことが
わかる。得られたポリイミド粉は実施例1と同様にペレ
ット化、さらに射出成形により成形物を得、熱変形温度
(HDT)を測定した。しかしながら結果は231℃で
あり、実施例1で得られたものに比べても大差が無かっ
た。これはテトラミンの量が少なく、ポリマー中にラダ
ー構造が十分に生成せず、発明の効果が十分に現れなか
ったためと考えられる。物性値は第2表(表2)にまと
めた。
Comparative Example 7 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, and 0.171 g (0.00 mol) of 3,3'-diaminobenzidine was used as the tetramine.
Example 1 except that 206.1 g (0.945 mol) of pyromellitic anhydride was used as the tetracarboxylic dianhydride and 16.3 g (0.11 mol) of phthalic anhydride was used as the dicarboxylic anhydride. An experiment was performed in the same manner as in
g of polyimide powder was obtained (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine). Glass transition temperature Tg of this polyimide powder
Was 252 ° C. and the melting point Tm was 386 ° C. The logarithmic viscosity of this polyimide powder was 0.46 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. However, the result was 231 ° C., which was not much different from that obtained in Example 1. This is probably because the amount of tetramine was small, the ladder structure was not sufficiently formed in the polymer, and the effect of the invention was not sufficiently exhibited. Physical properties are summarized in Table 2 (Table 2).

【0076】比較例8 ジカルボン酸無水物に無水フタル酸14.8g(0.1
モル)を用いた以外は実施例1と同様に実験を行ない、
498.1gのポリイミド粉を得た(ジアミンとテトラ
ミンの合計量1モルに対し、テトラカルボン酸二無水物
のモル比0.945)。このポリイミド粉のガラス転移
温度Tgは255℃、融点Tmは392℃であった。ま
た、このポリイミド粉の対数粘度は、0.46dl/g
であった。本比較例で得られたポリイミド粉の420℃
での溶融粘度の経時変化を測定した。保持時間が延びる
と、溶融粘度が増加し、熱安定性が劣ることがわかる。
これはジカルボン酸無水物が当量に達していないので、
末端停止の効果が十分に現れていないためと考えられ
る。しかしながら得られたポリイミド粉は実施例1と同
様にペレット化、さらに射出成形により成形物を得るこ
とが可能であった。熱変形温度(HDT)を測定したと
ころ、結果は236℃であり、比較例1で得られたもの
に比べると耐熱性が上昇していた。物性値は第2表(表
2)にまとめた。
Comparative Example 8 14.8 g (0.1%) of phthalic anhydride was added to dicarboxylic anhydride.
(Mol), the same experiment as in Example 1 was carried out,
498.1 g of polyimide powder was obtained (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine). The glass transition temperature Tg of this polyimide powder was 255 ° C., and the melting point Tm was 392 ° C. The logarithmic viscosity of this polyimide powder is 0.46 dl / g.
Met. 420 ° C. of the polyimide powder obtained in this comparative example
The change with time of the melt viscosity was measured. It can be seen that when the holding time is extended, the melt viscosity increases and the thermal stability is poor.
This is because the dicarboxylic anhydride has not reached the equivalent weight,
It is considered that the effect of terminal termination was not sufficiently exhibited. However, the obtained polyimide powder could be pelletized in the same manner as in Example 1, and a molded product could be obtained by injection molding. When the heat distortion temperature (HDT) was measured, the result was 236 ° C., and the heat resistance was higher than that obtained in Comparative Example 1. Physical properties are summarized in Table 2 (Table 2).

【0077】比較例9 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン66.2g(0.3モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
253.0g(1.16モル)、ジカルボン酸無水物に
無水フタル酸43.0g(0.29モル)を用いた以外
は実施例1と同様に実験を行ない、615.5gのポリ
イミド粉を得た(ジアミンとテトラミンの合計量1モル
に対し、テトラカルボン酸二無水物のモル比0.8
9)。このポリイミド粉のガラス転移温度Tgは245
℃、融点Tmは381℃であった。また、このポリイミ
ド粉の対数粘度は、0.35dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。得
られたポリイミド粉は実施例1と同様にペレット化、さ
らに射出成形により成形物を得たが、非常に脆く、熱変
形温度(HDT)を測定するには不適当であった。これ
はモル比が低すぎるため、分子量が大きくならず、十分
な強度が得られなかったためと考えられる。物性値は第
2表(表2)にまとめた。
Comparative Example 9 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, 66.2 g (0.3 mol) of 3,3'-diaminobenzidine was used as the tetramine. An experiment was performed in the same manner as in Example 1 except that 253.0 g (1.16 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 43.0 g (0.29 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was carried out to obtain 615.5 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.8 mol per 1 mol of the total amount of diamine and tetramine).
9). The glass transition temperature Tg of this polyimide powder is 245
° C and melting point Tm were 381 ° C. The logarithmic viscosity of this polyimide powder was 0.35 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. However, it was very brittle and was unsuitable for measuring the heat distortion temperature (HDT). This is probably because the molar ratio was too low, the molecular weight did not increase, and sufficient strength was not obtained. Physical properties are summarized in Table 2 (Table 2).

【0078】比較例10 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.214g(0.00
1モル)、テトラカルボン酸二無水物に無水ピロメリッ
ト酸196.3g(0.9モル)、ジカルボン酸無水物
に無水フタル酸31.1g(0.21モル)を用いた以
外は実施例1と同様に実験を行ない、504.1gのポ
リイミド粉を得た(ジアミンとテトラミンの合計量1モ
ルに対し、テトラカルボン酸二無水物のモル比0.8
9)。このポリイミド粉のガラス転移温度Tgは244
℃、融点Tmは379℃であった。また、このポリイミ
ド粉の対数粘度は、0.34dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びても、溶融粘度の変
化はほとんどなく、熱安定性の良好なことがわかる。得
られたポリイミド粉は実施例1と同様にペレット化、さ
らに射出成形により成形物を得たが、非常に脆く、熱変
形温度(HDT)を測定するには不適当であった。これ
はモル比が低すぎるため、分子量が大きくならず、十分
な強度が得られなかったためと考えられる。物性値は第
2表(表2)にまとめた。
COMPARATIVE EXAMPLE 10 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, and 0.214 g (0.00 mol) of 3,3'-diaminobenzidine was used as a tetramine.
Example 1 except that 196.3 g (0.9 mol) of pyromellitic anhydride was used for tetracarboxylic dianhydride and 31.1 g (0.21 mol) of phthalic anhydride for dicarboxylic anhydride. An experiment was carried out in the same manner as described above to obtain 504.1 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.8 mol per 1 mol of the total amount of diamine and tetramine).
9). The glass transition temperature Tg of this polyimide powder is 244
° C and melting point Tm were 379 ° C. The logarithmic viscosity of this polyimide powder was 0.34 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding. However, it was very brittle and was unsuitable for measuring the heat distortion temperature (HDT). This is probably because the molar ratio was too low, the molecular weight did not increase, and sufficient strength was not obtained. Physical properties are summarized in Table 2 (Table 2).

【0079】比較例11 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.171g(0.00
08モル)、テトラカルボン酸二無水物に無水ピロメリ
ット酸216.2g(0.991モル)、ジカルボン酸
無水物に無水フタル酸4.5g(0.03モル)を用い
た以外は実施例1と同様に実験を行ない、498.9g
のポリイミド粉を得た(ジアミンとテトラミンの合計量
1モルに対し、テトラカルボン酸二無水物のモル比0.
99)。このポリイミド粉のガラス転移温度Tgは26
2℃、融点Tmは393℃であった。また、このポリイ
ミド粉の対数粘度は、0.71dl/gであった。本実
施例で得られたポリイミド粉の420℃での溶融粘度の
経時変化を測定した。保持時間が延びると、溶融粘度が
増加し、熱安定性は劣るが射出成形により成形物を得る
ことはできた。得られたポリイミド粉は実施例1と同様
にペレット化、さらに射出成形により成形物を得、熱変
形温度(HDT)を測定した。結果は249℃であり、
比較例3で得られたものと大差がなかった。これはテト
ラミンの量が少なく、ポリマー中にラダー構造が十分に
生成しなかったため、発明の効果が十分に現れなかった
ためと考えられる。物性値は第2表(表2)にまとめ
た。
Comparative Example 11 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used for the diamine, and 0.171 g (0.00 mol) of 3,3'-diaminobenzidine was used for the tetramine.
08 mol), 216.2 g (0.991 mol) of pyromellitic anhydride as the tetracarboxylic dianhydride and 4.5 g (0.03 mol) of phthalic anhydride as the dicarboxylic anhydride. Perform the same experiment as in
Was obtained (a molar ratio of tetracarboxylic dianhydride to 0.1 mole per 1 mole of the total amount of diamine and tetramine).
99). The glass transition temperature Tg of this polyimide powder is 26
2 ° C., melting point Tm was 393 ° C. The logarithmic viscosity of this polyimide powder was 0.71 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this example was measured. When the holding time was prolonged, the melt viscosity increased and the thermal stability was poor, but a molded product could be obtained by injection molding. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result is 249 ° C.
There was no great difference from that obtained in Comparative Example 3. This is presumably because the amount of tetramine was small and the ladder structure was not sufficiently formed in the polymer, so that the effects of the invention were not sufficiently exhibited. Physical properties are summarized in Table 2 (Table 2).

【0080】比較例12 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.171g(0.00
08モル)、テトラカルボン酸二無水物に無水ピロメリ
ット酸196.5g(0.901モル)、ジカルボン酸
無水物に無水フタル酸31.1g(0.21モル)を用
いた以外は実施例1と同様に実験を行ない、504.1
gのポリイミド粉を得た(ジアミンとテトラミンの合計
量1モルに対し、テトラカルボン酸二無水物のモル比
0.9)。このポリイミド粉のガラス転移温度Tgは2
47℃、融点Tmは383℃であった。また、このポリ
イミド粉の対数粘度は、0.37dl/gであった。本
比較例で得られたポリイミド粉の420℃での溶融粘度
の経時変化を測定した。保持時間が延びても、溶融粘度
の変化はほとんどなく、熱安定性の良好なことがわか
る。得られたポリイミド粉は実施例1と同様にペレット
化、さらに射出成形により成形物を得、熱変形温度(H
DT)を測定した。結果は229℃であり、比較例1で
得られたものと大差がなかった。これはテトラミンの量
が少なく、ポリマー中にラダー構造が十分に生成しなか
ったため、発明の効果が十分に現れなかったためと考え
られる。物性値は第2表(表2)にまとめた。
Comparative Example 12 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used for the diamine, and 0.171 g (0.00 mol) of 3,3'-diaminobenzidine was used for the tetramine.
08 mol), 196.5 g (0.901 mol) of pyromellitic anhydride as the tetracarboxylic dianhydride and 31.1 g (0.21 mol) of phthalic anhydride as the dicarboxylic anhydride. An experiment was performed in the same manner as in
g of polyimide powder was obtained (the molar ratio of tetracarboxylic dianhydride to 0.9 mole per 1 mole of the total amount of diamine and tetramine). The glass transition temperature Tg of this polyimide powder is 2
The melting point Tm was 383 ° C. The logarithmic viscosity of this polyimide powder was 0.37 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. Even if the holding time is prolonged, there is almost no change in the melt viscosity, indicating that the thermal stability is good. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding.
DT) was measured. The result was 229 ° C., which was not much different from that obtained in Comparative Example 1. This is presumably because the amount of tetramine was small and the ladder structure was not sufficiently formed in the polymer, so that the effects of the invention were not sufficiently exhibited. Physical properties are summarized in Table 2 (Table 2).

【0081】比較例13 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン66.2g(0.3モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
281.4g(1.29モル)、ジカルボン酸無水物に
無水フタル酸4.5g(0.03モル)を用いた以外は
実施例1と同様に実験を行ない、606.5gのポリイ
ミド粉を得た(ジアミンとテトラミンの合計量1モルに
対し、テトラカルボン酸二無水物のモル比0.99
1)。このポリイミド粉のガラス転移温度Tgは272
℃、融点Tmは403℃であった。また、このポリイミ
ド粉の対数粘度は、0.77dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びると溶融粘度の増加
が大きく、熱安定性が劣ることがわかる。得られたポリ
イミド粉は実施例1と同様にペレット化を試みたが溶融
粘度が高く、成形物を得ることができなかった。これ
は、モル比が高すぎて分子量が上がり、熱可塑性の性質
が失われたためと考えられる。
Comparative Example 13 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, 66.2 g (0.3 mol) of 3,3'-diaminobenzidine was used as a tetramine. An experiment was performed in the same manner as in Example 1, except that 281.4 g (1.29 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 4.5 g (0.03 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was performed to obtain 606.5 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.99 with respect to 1 mol of the total amount of diamine and tetramine).
1). The glass transition temperature Tg of this polyimide powder is 272.
° C and melting point Tm were 403 ° C. The logarithmic viscosity of this polyimide powder was 0.77 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. It can be seen that when the holding time is prolonged, the melt viscosity increases greatly and the thermal stability is poor. Pelletization of the obtained polyimide powder was attempted in the same manner as in Example 1, but the melt viscosity was high and a molded product could not be obtained. This is probably because the molar ratio was too high, the molecular weight increased, and the thermoplastic property was lost.

【0082】比較例14 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン0.214g(0.00
1モル)、テトラカルボン酸二無水物に無水ピロメリッ
ト酸216.2g(0.991モル)、ジカルボン酸無
水物に無水フタル酸3.0g(0.02モル)を用いた
以外は実施例1と同様に実験を行ない、496.6gの
ポリイミド粉を得た(ジアミンとテトラミンの合計量1
モルに対し、テトラカルボン酸二無水物のモル比0.9
91)。このポリイミド粉のガラス転移温度Tgは26
5℃、融点Tmは396℃であった。また、このポリイ
ミド粉の対数粘度は、0.73dl/gであった。本比
較例で得られたポリイミド粉の420℃での溶融粘度の
経時変化を測定した。保持時間が延びると溶融粘度の増
加が大きく、熱安定性が劣ることがわかる。 得られた
ポリイミド粉は実施例1と同様にペレット化を試みたが
溶融粘度が高く、成形物を得ることができなかった。こ
れは、モル比が高すぎて分子量が上がり、熱可塑性の性
質が失われたためと考えられる。
Comparative Example 14 36,4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as the diamine, and 0.214 g (0.00 mol) of 3,3'-diaminobenzidine was used as the tetramine.
Example 1 except that 216.2 g (0.991 mol) of pyromellitic anhydride was used as the tetracarboxylic dianhydride and 3.0 g (0.02 mol) of phthalic anhydride was used as the dicarboxylic anhydride. An experiment was performed in the same manner as described above to obtain 496.6 g of a polyimide powder (total amount of diamine and tetramine was 1).
The molar ratio of tetracarboxylic dianhydride to mole is 0.9
91). The glass transition temperature Tg of this polyimide powder is 26
The melting point Tm was 396 ° C at 5 ° C. The logarithmic viscosity of this polyimide powder was 0.73 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. It can be seen that when the holding time is prolonged, the melt viscosity increases greatly and the thermal stability is poor. Pelletization of the obtained polyimide powder was attempted in the same manner as in Example 1, but the melt viscosity was high and a molded product could not be obtained. This is probably because the molar ratio was too high, the molecular weight increased, and the thermoplastic property was lost.

【0083】比較例15 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン85.6g(0.4モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
301.0g(1.38モル)、ジカルボン酸無水物に
無水フタル酸11.85g(0.08モル)を用いた以
外は実施例1と同様に実験を行ない、609.6gのポ
リイミド粉を得た(ジアミンとテトラミンの合計量1モ
ルに対し、テトラカルボン酸二無水物のモル比0.9
9)。このポリイミド粉のガラス転移温度Tgは274
℃、融点Tmは405℃であった。また、このポリイミ
ド粉の対数粘度は、0.80dl/gであった。本比較
例で得られたポリイミド粉の420℃での溶融粘度の経
時変化を測定した。保持時間が延びると溶融粘度の増加
が大きく、熱安定性が劣ることがわかる。得られたポリ
イミド粉は実施例1と同様にペレット化を試みたが溶融
粘度が高く、成形物を得ることができなかった。これ
は、ポリマー中に剛直なラダー構造が多くなったため、
熱可塑性の性質が失われたためと考えられる。物性値は
第2表(表2)にまとめた。
Comparative Example 15 368.4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used as a diamine, 85.6 g (0.4 mol) of 3,3'-diaminobenzidine was used as a tetramine, An experiment was conducted in the same manner as in Example 1 except that 301.0 g (1.38 mol) of pyromellitic anhydride was used for tetracarboxylic dianhydride and 11.85 g (0.08 mol) of phthalic anhydride was used for dicarboxylic anhydride. Was carried out to obtain 609.6 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine).
9). The glass transition temperature Tg of this polyimide powder is 274
° C and melting point Tm were 405 ° C. The logarithmic viscosity of this polyimide powder was 0.80 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. It can be seen that when the holding time is prolonged, the melt viscosity increases greatly and the thermal stability is poor. Pelletization of the obtained polyimide powder was attempted in the same manner as in Example 1, but the melt viscosity was high and a molded product could not be obtained. This is because the rigid ladder structure increased in the polymer,
This is probably due to the loss of thermoplastic properties. Physical properties are summarized in Table 2 (Table 2).

【0084】比較例16 ジアミンに4,4’−ビス(3−アミノフェノキシ)ビ
フェニル368.4g(1.0モル)、テトラミンに
3,3´−ジアミノベンジジン85.6g(0.4モ
ル)、テトラカルボン酸二無水物に無水ピロメリット酸
274.8g(1.26モル)、ジカルボン酸無水物に
無水フタル酸44.4g(0.3モル)を用いた以外は
実施例1と同様に実験を行ない、650.4gのポリイ
ミド粉を得た(ジアミンとテトラミンの合計量1モルに
対し、テトラカルボン酸二無水物のモル比0.90)。
このポリイミド粉のガラス転移温度Tgは253℃、融
点Tmは387℃であった。また、このポリイミド粉の
対数粘度は、0.40dl/gであった。本比較例で得
られたポリイミド粉の420℃での溶融粘度の経時変化
を測定した。保持時間が延びると溶融粘度の増加が大き
く、熱安定性に劣るが、射出成形による成形物は得るこ
とができた。得られたポリイミド粉は実施例1と同様に
ペレット化、さらに射出成形により成形物を得、熱変形
温度(HDT)を測定した。結果は235℃であった。
これは、ポリマー中に剛直なラダー構造が多くなったた
め、熱可塑性の性質が失われたためと考えられる。物性
値は第2表(表2)にまとめた。
Comparative Example 16 36,4 g (1.0 mol) of 4,4'-bis (3-aminophenoxy) biphenyl was used for the diamine, 85.6 g (0.4 mol) of 3,3'-diaminobenzidine was used for the tetramine, An experiment was performed in the same manner as in Example 1 except that 274.8 g (1.26 mol) of pyromellitic anhydride was used as tetracarboxylic dianhydride and 44.4 g (0.3 mol) of phthalic anhydride was used as dicarboxylic anhydride. Was performed to obtain 650.4 g of a polyimide powder (the molar ratio of tetracarboxylic dianhydride to 0.9 mol per 1 mol of the total amount of diamine and tetramine).
The glass transition temperature Tg of this polyimide powder was 253 ° C., and the melting point Tm was 387 ° C. The logarithmic viscosity of this polyimide powder was 0.40 dl / g. The change over time of the melt viscosity at 420 ° C. of the polyimide powder obtained in this comparative example was measured. When the holding time was prolonged, the melt viscosity was greatly increased and the thermal stability was poor, but a molded product by injection molding could be obtained. The obtained polyimide powder was pelletized in the same manner as in Example 1, and a molded product was obtained by injection molding, and the heat distortion temperature (HDT) was measured. The result was 235 ° C.
This is probably because the rigid ladder structure was increased in the polymer, and the thermoplastic property was lost. Physical properties are summarized in Table 2 (Table 2).

【0085】[0085]

【表2】 注:溶融粘度は420℃で測定した値で、単位はセンチ
ポイズである。Tg、Tm、HDTの単位は℃である。
増粘倍率とは、420℃/30分の値を420℃/5分
の値で割った値である。比較例6、13、14、15は
成形物が得られず、比較例9、10は強度が低すぎたた
めHDTは測定できなかった。
[Table 2] Note: The melt viscosity is a value measured at 420 ° C., and the unit is centipoise. The unit of Tg, Tm, and HDT is ° C.
The thickening ratio is a value obtained by dividing a value at 420 ° C./30 minutes by a value at 420 ° C./5 minutes. In Comparative Examples 6, 13, 14, and 15, no molded product was obtained, and in Comparative Examples 9, 10, HDT could not be measured because the strength was too low.

【0086】[0086]

【発明の効果】本発明の方法により、加工時の熱安定性
に優れており、溶融成形が可能であるにもかかわらず、
さらに耐熱性が増したポリイミド樹脂を提供することが
できる。工業的にも安価で簡単な方法であり、本発明の
意義は大きい。
According to the method of the present invention, heat stability during processing is excellent, and although melt molding is possible,
Further, a polyimide resin having increased heat resistance can be provided. It is an inexpensive and simple method industrially, and the present invention is significant.

フロントページの続き (56)参考文献 特開 平1−165623(JP,A) 特開 昭62−212435(JP,A) 特開 昭60−181128(JP,A) 特開 昭60−137963(JP,A) 特開 昭58−149916(JP,A) 特開 昭47−42996(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 73/00 - 73/26 C08L 79/00 - 79/08 Continuation of front page (56) References JP-A-1-165623 (JP, A) JP-A-62-212435 (JP, A) JP-A-60-181128 (JP, A) JP-A-60-137963 (JP, A) JP-A-58-149916 (JP, A) JP-A-47-42996 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 73/00-73/26 C08L 79/00-79/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記式(1) 【化1】 (式中、Xは直結、炭素数1〜10の2価の炭化水素
基、六弗素化されたイソプロピリデン基、カルボニル
基、チオ基、スルフィニル基、スルホニル基またはオキ
シドからなる群より選ばれた基を示し、Y1 、Y2 、Y
3 、Y4 はそれぞれ独立に水素、低級アルキル基、低級
アルコキシ基、塩素または臭素からなる群より選ばれた
基を示し、同じであっても異なっていてもよい。Rは炭
素数2以上の脂肪族基、環式脂肪族基、単環式芳香族
基、縮合多環式芳香族基、芳香族基が直接または架橋員
により相互に連結された非縮合環式芳香族基からなる群
より選ばれた4価の基を示し、Wは少なくとも4個の炭
素原子を有する4価の基を示し、(a)と(b)の結
合、及び(c)と(d)の結合は互いに隣接した炭素原
子に結合している)の繰り返し単位で示されるポリイミ
ド樹脂。
[Claim 1] The following formula (1) (Wherein X is selected from the group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group and an oxide. Y 1 , Y 2 , Y
3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine, and may be the same or different. R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, a non-condensed cyclic group in which aromatic groups are connected to each other directly or by a bridge member. A tetravalent group selected from the group consisting of aromatic groups; W represents a tetravalent group having at least 4 carbon atoms; a bond between (a) and (b), and (c) and ( The bond d) is bonded to carbon atoms adjacent to each other)).
【請求項2】 Wが下記式(2) 【化2】 から選ばれる1種または2種以上の混合物である請求項
1記載のポリイミド樹脂。
2. W is the following formula (2): The polyimide resin according to claim 1, which is one or a mixture of two or more kinds selected from the group consisting of:
【請求項3】 請求項1記載のポリイミド樹脂の製造方
法に於いて、ジアミンが下記式(3) 【化3】 (式中、Xは直結、炭素数1〜10の2価の炭化水素
基、六弗素化されたイソプロピリデン基、カルボニル
基、チオ基、スルフィニル基、スルホニル基またはオキ
シドからなる群より選ばれた基を表し、Y1 、Y2 、Y
3 、Y4 はそれぞれ独立に水素、低級アルキル基、低級
アルコキシ基、塩素または臭素からなる群より選ばれた
基を示す。)で表されるジアミン化合物であり、テトラ
カルボン酸二無水物が下記式(4) 【化4】 (式中、Rは炭素数2以上の脂肪族基、環式脂肪族基、
単環式芳香族基、縮合多環式芳香族基、芳香族基が直接
または架橋員により相互に連結された非縮合環式芳香族
基からなる群より選ばれた4価の基を示す。)で表され
るテトラカルボン酸二無水物であり、さらに下記式
(5) 【化5】 (式中、Wは少なくとも4個の炭素原子を有する4価の
基を表し、(a)と(b)の結合、及び(c)と(d)
の結合は互いに隣接した炭素原子に結合している)で表
されるテトラミンの存在のもとで行なわれ、さらに反応
式が下記式(6) 【化6】 (式中、Zは単環式芳香族基、縮合多環式芳香族基、芳
香族基が直接または架橋員により相互に連結された非縮
合多環式芳香族基から成る群より選ばれた2価の基を表
す。)で表されるジカルボン酸無水物の存在のもとに行
なわれ、テトラカルボン酸二無水物の量がジアミンとテ
トラミンの合計1モル当たり0.90〜0.99モル比
であり、かつジアミン1モルに対しテトラミンの量が
0.001〜0.3モル比であり、かつジアミンとテト
ラミンの合計量1モルに対し、テトラカルボン酸二無水
物とジカルボン酸無水物の合計量が当量比で1.0〜
2.0である式(1) 【化7】 (式中、X、Y1 〜Y4 、WおよびRは前記に同じ)で
表される繰り返し単位を基本骨格として有するポリイミ
ド樹脂の製造方法。
3. The method for producing a polyimide resin according to claim 1, wherein the diamine is represented by the following formula (3). (Wherein X is selected from the group consisting of a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group, a carbonyl group, a thio group, a sulfinyl group, a sulfonyl group and an oxide. Y 1 , Y 2 , Y
3 and Y 4 each independently represent a group selected from the group consisting of hydrogen, lower alkyl group, lower alkoxy group, chlorine and bromine. Wherein the tetracarboxylic dianhydride is represented by the following formula (4): (Wherein, R represents an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group,
And a tetravalent group selected from the group consisting of a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed cyclic aromatic group in which the aromatic groups are connected to each other directly or by a crosslinking member. Is a tetracarboxylic dianhydride represented by the following formula (5): (Wherein W represents a tetravalent group having at least 4 carbon atoms, a bond between (a) and (b), and (c) and (d)
Are bonded to carbon atoms adjacent to each other), and the reaction formula is represented by the following formula (6). Wherein Z is selected from the group consisting of a monocyclic aromatic group, a fused polycyclic aromatic group, and a non-fused polycyclic aromatic group in which the aromatic groups are interconnected directly or by a bridging member. The reaction is carried out in the presence of a dicarboxylic anhydride represented by the following formula: wherein the amount of the tetracarboxylic dianhydride is 0.90 to 0.99 mol per 1 mol of the total of diamine and tetramine And the amount of tetramine is 0.001 to 0.3 mole ratio per mole of diamine, and the total amount of diamine and tetramine is 1 mole, and the amount of tetracarboxylic dianhydride and dicarboxylic anhydride is 1 mole. Total amount is 1.0 to equivalent ratio
Formula (1) which is 2.0 (Wherein, X, Y 1 to Y 4 , W and R are the same as above) as a basic skeleton.
【請求項4】 テトラミンが3,3´−ジアミノベンジ
ジン、1,2,4,5−テトラアミノベンゼン、3,3
´,4,4´−テトラアミノフェニルエーテル、3,3
´,4,4´−テトラアミノフェニルスルホン、3,3
´,4,4´−テトラアミノフェニルケトンから選ばれ
る1種または2種以上の混合物である請求項3記載の製
造方法。
4. The method according to claim 1, wherein the tetramine is 3,3′-diaminobenzidine, 1,2,4,5-tetraaminobenzene,
', 4,4'-tetraaminophenyl ether, 3,3
', 4,4'-tetraaminophenylsulfone, 3,3
The production method according to claim 3, wherein the production method is one or a mixture of two or more selected from ', 4,4'-tetraaminophenyl ketone.
JP6919894A 1994-04-07 1994-04-07 Heat-resistant polyimide and method for producing the same Expired - Fee Related JP2999114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6919894A JP2999114B2 (en) 1994-04-07 1994-04-07 Heat-resistant polyimide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6919894A JP2999114B2 (en) 1994-04-07 1994-04-07 Heat-resistant polyimide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07278299A JPH07278299A (en) 1995-10-24
JP2999114B2 true JP2999114B2 (en) 2000-01-17

Family

ID=13395800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6919894A Expired - Fee Related JP2999114B2 (en) 1994-04-07 1994-04-07 Heat-resistant polyimide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2999114B2 (en)

Also Published As

Publication number Publication date
JPH07278299A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
KR920010150B1 (en) Process for preparing polyimide having excellent high temperature stability
JP2596565B2 (en) Polyimide having good thermal stability and method for producing the same
JP2999116B2 (en) Branched polyimide and method for producing the same
KR930002437B1 (en) Polyimides and process for the preparation thereof
EP0459801B1 (en) Readily processable polyimide and preparation process of same
JP3238258B2 (en) Polyimide having good processability and method for producing the same
JP2999114B2 (en) Heat-resistant polyimide and method for producing the same
JP2599171B2 (en) Method for producing polyimide having good thermal stability
JP3638398B2 (en) Heat-resistant resin composition with excellent processability and adhesiveness
JPH0218419A (en) Production of polyimide excellent in thermal stability
JP2606914B2 (en) Method for producing polyimide having good thermal stability
JP2748992B2 (en) Crystalline polyimide and method for producing the same
JP2606912B2 (en) Method for producing polyimide having good thermal stability
JP2606913B2 (en) Method for producing polyimide having good thermal stability
JP2748995B2 (en) Polyimide for melt molding, method for producing the same, and resin composition thereof
JP2825510B2 (en) Method for producing polyimide having good thermal stability
JPH0551617B2 (en)
JP3688097B2 (en) Crystalline resin composition
JP3327920B2 (en) Method for producing polyimide having good moldability
JP3083215B2 (en) Method for producing polyimide having good melt fluidity
JP2769497B2 (en) Method for producing polyimide for melt molding
JPH0551616B2 (en)
JP3327919B2 (en) Method for producing polyimide having good moldability
JP2748989B2 (en) Polyimide copolymer for melt molding and method for producing the same
JPH01149830A (en) Thermoplastic aromatic polyimide polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees