JP2994027B2 - Manufacturing method of fiber mixed nonwoven fabric - Google Patents

Manufacturing method of fiber mixed nonwoven fabric

Info

Publication number
JP2994027B2
JP2994027B2 JP31343090A JP31343090A JP2994027B2 JP 2994027 B2 JP2994027 B2 JP 2994027B2 JP 31343090 A JP31343090 A JP 31343090A JP 31343090 A JP31343090 A JP 31343090A JP 2994027 B2 JP2994027 B2 JP 2994027B2
Authority
JP
Japan
Prior art keywords
fiber
component
nonwoven fabric
shrinkage
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31343090A
Other languages
Japanese (ja)
Other versions
JPH04185753A (en
Inventor
伸洋 松永
勝良 新倉
英男 布村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP31343090A priority Critical patent/JP2994027B2/en
Publication of JPH04185753A publication Critical patent/JPH04185753A/en
Application granted granted Critical
Publication of JP2994027B2 publication Critical patent/JP2994027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,合成皮革や人工皮革の用途に適した繊維混
合不織布に関し,さらに詳しくは,熱処理により収縮し
て緻密かつ柔軟な風合を発現し,しかも高強力を有し,
合成皮革や人工皮革の基布として好適に使用することが
できる繊維混合不織布を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a fiber-mixed nonwoven fabric suitable for use in synthetic leather and artificial leather, and more specifically, shrinks by heat treatment to exhibit a dense and soft feeling. And have high strength,
The present invention relates to a method for producing a fiber-mixed nonwoven fabric that can be suitably used as a base fabric of synthetic leather or artificial leather.

(従来の技術) 従来から,天然皮革に類似した合成繊維からなる不織
布を製造する試みが多くなされている。この不織布に
は,通常,緻密さと柔軟さが要求される。このため,不
織布を製造するに際しては,溶解特性を異にする2種の
重合体成分からなる極細繊維発生型複合繊維のシートに
ポリウレタンを付与した後,一方の重合体成分を除去す
る方法(特公昭48−19922号公報),高収縮性繊維と易
分割性複合繊維とからなるウエブに交絡・収縮処理及び
易分割性複合繊維の分割処理を施す方法(特開昭53−12
2875号公報)等により,不織布を構成する繊維を細デニ
ール化することが図られている。
(Prior Art) Conventionally, many attempts have been made to produce nonwoven fabrics made of synthetic fibers similar to natural leather. This nonwoven fabric is usually required to be dense and flexible. For this reason, when producing a nonwoven fabric, polyurethane is applied to a sheet of ultrafine fiber-generating conjugate fiber composed of two types of polymer components having different dissolution characteristics, and then one of the polymer components is removed. JP-A-48-19922), a method of subjecting a web composed of highly shrinkable fibers and easily splittable conjugate fibers to entanglement / shrinkage treatment and splitting of easily splittable conjugate fibers (Japanese Unexamined Patent Publication No. 53-12)
No. 2875) has attempted to make the fibers constituting the nonwoven fabric finer.

しかしながら,前記溶解特性を異にする2種の重合体
成分からなる極細繊維発生型複合繊維を使用する方法で
は,極細繊維を容易に得ることができるという点では有
利であるが,溶剤処理を行うためコストが上昇し,しか
も得られる不織布は緻密さに欠けるという問題があっ
た。また,高収縮性繊維と易分割性複合繊維とを使用す
る方法では,緻密な不織布を得ることはできるが,複合
繊維を使用するためコストが上昇し,得られる不織布は
収縮性能の経時安定性に欠け,不織布の強力が不十分
で,しかも最終製品を引張ったときの寸法安定性に劣る
という問題があった。
However, the method using the ultrafine fiber-generating conjugate fiber composed of two kinds of polymer components having different dissolution characteristics is advantageous in that the ultrafine fiber can be easily obtained. Therefore, there has been a problem that the cost is increased and the obtained nonwoven fabric is lacking in density. In addition, a method using high-shrinkable fiber and easily splittable conjugate fiber can obtain a dense nonwoven fabric, but the cost increases because the conjugate fiber is used, and the obtained nonwoven fabric has a long-term stability of shrinkage performance. However, there is a problem that the strength of the nonwoven fabric is insufficient and the dimensional stability when the final product is pulled is poor.

(発明が解決しようとする課題) 本発明は,前記問題を解決し,合成皮革のみならず,
合成皮革より一層機能・触感の点で天然皮革,特にスエ
ードに近い人工皮革の用途に適した,緻密かつ柔軟な風
合を発現し,しかも高強力を有し,合成皮革や人工皮革
の基布として好適に使用することができる繊維混合不織
布を製造する方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems and provides not only synthetic leather but also
A base cloth of synthetic leather and artificial leather that expresses a dense and flexible feel suitable for uses of natural leather, especially artificial leather that is close to suede, in terms of function and feel compared to synthetic leather, and has high strength. An object of the present invention is to provide a method for producing a fiber-mixed nonwoven fabric that can be suitably used as a nonwoven fabric.

(課題を解決するための手段) 本発明者らは,前記問題を解決すべく鋭意検討の結
果,本発明に到達した。すなわち,本発明は,下記及
び式で示される収縮率を有し、テレフタル酸/テレフ
タル酸以外のジカルボン酸のモル比が96/4〜88/12の酸
成分とエチレングリコール成分とからなる高収縮性共重
合ポリエステル系繊維Aあるいはエチレングリコール/
エチレングリコール以外のジオールのモル比が96/4〜88
/12のジオール成分とテレフタル酸成分とからなる高収
縮性共重合ポリエステル系繊維Aと、単糸繊度が2デニ
ール以下のポリアミド系繊維Bと,高融点ポリアミド系
重合体を芯成分とし、前記繊維A及びBを構成する各重
合体の融点より低融点の低融点ポリアミド系重合体を鞘
成分(接着成分)とする芯鞘型複合繊維Cとが混合され
た繊維混合ウエブに加熱収縮処理を施すことを特徴とす
る繊維混合不織布の製造方法, 25≦S0(%)≦70 …… ΔS (%)≦5 …… 〔S0(%)は製造直後の繊維を温度170℃で15分間乾熱
処理したときの収縮率であり,ΔS(%)は製造直後の
繊維を温度40℃で5週間放置後,温度170℃で15分間乾
熱処理したときの収縮率と前記収縮率S0(%)との差で
ある。〕 を要旨とするものである。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention provides a high shrinkage comprising an acid component having a contraction ratio represented by the following formula and a molar ratio of terephthalic acid / dicarboxylic acid other than terephthalic acid of 96/4 to 88/12 and an ethylene glycol component. Copolymeric polyester fiber A or ethylene glycol /
The molar ratio of diols other than ethylene glycol is 96/4 to 88
A high-shrinkage copolyester fiber A comprising a diol component and a terephthalic acid component, a polyamide fiber B having a single-fiber fineness of 2 denier or less, and a high-melting polyamide polymer as a core component; A heat shrink treatment is applied to a fiber-mixed web in which a core-in-sheath composite fiber C having a low melting point polyamide polymer having a lower melting point than the melting points of the polymers constituting A and B as a sheath component (adhesive component) is mixed. A method for producing a fiber-mixed nonwoven fabric, characterized by: 25 ≦ S 0 (%) ≦ 70 ΔS (%) ≦ 5 [S 0 (%) is a method of drying the fiber immediately after production at a temperature of 170 ° C. for 15 minutes. ΔS (%) is the shrinkage ratio when heat-treated, and ΔS (%) is the shrinkage ratio when the fiber immediately after production is left at 40 ° C. for 5 weeks and then dry-heat-treated at 170 ° C. for 15 minutes and the shrinkage ratio S 0 (%). And the difference. ].

次に,本発明を詳細に説明する。 Next, the present invention will be described in detail.

本発明の不織布の製造方法の第1の特徴は,高収縮性
共重合ポリエステル系繊維Aを不織布の第1の成分とし
て使用する点にある。この高収縮性共重合ポリエステル
系繊維Aとは,フタル酸,イソフタル酸,プロパンジカ
ルボン酸等のジカルボン酸を共重合成分とし,かつテレ
フタル酸/テレフタル酸以外のジカルボン酸のモル比が
96/4〜88/12の酸成分とエチレングリコール成分とから
なる共重合ポリエステル,あるいはジエチレングリコー
ル,1,2−プロパンジオール,ネオペンチルグリコール等
のジオールを共重合成分とし,かつエチレングリコール
/エチレングリコール以外のジオールのモル比が96/4〜
88/12のジオール成分とテレフタル酸成分とからなる共
重合ポリエステルからなるものであり、一層緻密かつ柔
軟な風合いの不織布を得ることができる。
A first feature of the method for producing a nonwoven fabric of the present invention resides in that the highly shrinkable copolyester fiber A is used as a first component of the nonwoven fabric. The high-shrinkable copolyester fiber A is a copolymer of dicarboxylic acids such as phthalic acid, isophthalic acid, and propanedicarboxylic acid, and has a molar ratio of terephthalic acid / dicarboxylic acid other than terephthalic acid.
Copolymerized polyester composed of an acid component of 96/4 to 88/12 and ethylene glycol component, or a diol such as diethylene glycol, 1,2-propanediol, neopentyl glycol, etc., and other than ethylene glycol / ethylene glycol The molar ratio of the diol is 96/4 ~
It is composed of a copolymer polyester composed of a diol component and a terephthalic acid component of 88/12, and a more dense and soft nonwoven fabric can be obtained.

本発明でいう高収縮性共重合ポリエステル系繊維A
は,製造直後の繊維を温度170℃で15分間乾熱処理した
ときの収縮率Soが前記式を,かつ製造直後の繊維を温
度40℃で5週間放置後,温度170℃で15分間乾熱処理し
たときの収縮率と前記収縮率Soとの差ΔSが前記式を
それぞれ満足するものである。この高収縮性共重合ポリ
エステル系繊維Aにおいては,前記収縮率Soが25%より
低くなると,加熱収縮処理を施すとき不織布としての締
まりに劣り,緻密な不織布を得ることができず好ましく
ない。一方,前記収縮率Soが70%より高くなると,不織
布が緻密になり過ぎて不織布の触感が硬くなるので好ま
しくない。また,この高収縮性共重合ポリエステル系繊
維Aにおいては,前記収縮率差ΔSが5%を超えると,
不織布製造ロット間に不織布の緻密さや柔軟さのバラツ
キが生じ,品質的に不安定となるので好ましくない。
High shrinkage copolyester fiber A according to the present invention
Means that the shrinkage ratio So when the fiber immediately after production is dry-heat treated at 170 ° C for 15 minutes is the above formula, and the fiber immediately after production is left at 40 ° C for 5 weeks and then dry-heat treated at 170 ° C for 15 minutes. The difference ΔS between the shrinkage rate at that time and the shrinkage rate So satisfies the above-mentioned equations. In the case of the high-shrinkable copolyester-based fiber A, if the shrinkage ratio So is lower than 25%, the tightness of the nonwoven fabric during heat shrinkage treatment is poor, and a dense nonwoven fabric cannot be obtained. On the other hand, if the shrinkage factor So is higher than 70%, the nonwoven fabric becomes too dense and the feel of the nonwoven fabric becomes hard, which is not preferable. In the high-shrinkable copolyester fiber A, when the difference in shrinkage ΔS exceeds 5%,
It is not preferable because the density and softness of the nonwoven fabric vary between nonwoven fabric production lots and the quality becomes unstable.

本発明の不織布の製造方法の第2の特徴は,単糸繊度
が2デニール以下のポリアミド系繊維Bを第2の成分と
して使用する点にある。一般に,ポリアミド系繊維は,
本発明でいう前記ポリエステル系繊維Aよりも熱収縮率
が低い。したがって,ポリアミド系繊維をポリエステル
系繊維と混合したとき,ポリエステル系繊維との収縮率
差により柔軟さに優れたポリアミド系繊維が不織布の表
面部分に現出し,柔軟な風合の不織布を得ることができ
る。
A second feature of the method for producing a nonwoven fabric according to the present invention resides in that a polyamide fiber B having a single yarn fineness of 2 denier or less is used as a second component. Generally, polyamide fibers are
The heat shrinkage is lower than that of the polyester fiber A in the present invention. Therefore, when the polyamide fiber is mixed with the polyester fiber, the polyamide fiber having excellent flexibility appears on the surface portion of the nonwoven fabric due to the difference in shrinkage from the polyester fiber, and a soft nonwoven fabric can be obtained. it can.

本発明でいうポリアミド系繊維Bにおいては,単糸繊
度が2デニール以下,好ましくは0.8デニール以下であ
ることが必要で,この単糸繊度が小さいほどスエード調
の人工皮革に近い触感を得ることができる。前記単糸繊
度が2デニールを超えると,不織布の柔軟さが低下する
ので好ましくない。
In the polyamide fiber B according to the present invention, the single yarn fineness needs to be 2 deniers or less, preferably 0.8 deniers or less. The smaller the single yarn fineness is, the more the feeling of suede-like artificial leather can be obtained. it can. If the single-fiber fineness exceeds 2 denier, the softness of the nonwoven fabric decreases, which is not preferable.

本発明の不織布の製造方法の第3の特徴は,高融点ポ
リアミド系重合体を芯成分とし、前記繊維A及びBを構
成する各重合体の融点より低融点の低融点ポリアミド系
重合体を鞘成分(接着成分)とする芯鞘型複合繊維Cを
第3の成分として使用する点にある。芯鞘型複合繊維と
しては,ポリヘキサメチレンアジパミドを芯成分とし,
ポリヘキサメチレンアジパミドより低融点のポリカプラ
ミドや共重合ポリアミドを鞘成分とする芯鞘型複合繊維
が好ましく,例えば,ポリヘキサメチレンアジパミド
(融点255℃)を芯成分,ポリカプラミド(融点220℃)
を鞘成分とする複合繊維としてユニメルトUH−60(ユニ
チカ株式会社製,商標)やヘテロフイル(ICI社製,商
標)が,また,ポリヘキサメチレンアジパミドを芯成
分,共重合ポリアミドを鞘成分とする複合繊維としてユ
ニメルトUM−60(鞘部重合体の融点160℃,ユニチカ株
式会社製,商標)やユニメルトUL−60(鞘部重合体の融
点140℃,ユニチカ株式会社製,商標)が挙げられる。
なお,本発明でいう芯鞘型複合繊維Cを構成する重合体
の種類は,前記ポリアミド系繊維Bを構成する重合体の
種類により適宜選択する。例えば,前記ポリアミド系繊
維Bがポリヘキサメチレンアジパミドである場合には,
芯鞘型複合繊維Cとして前記で例示したいずれの複合繊
維をも使用することができる。一方,前記ポリアミド系
繊維Bがポリカプラミド(融点220℃)である場合に
は,前記ユニメルトUM−60やユニメルトUL−60のような
融点が215℃以下の重合体からなる繊維を使用する。こ
の芯鞘型複合繊維Cにより,不織布の柔軟さを保持した
まま,不織布の強力を向上させることができ,したがっ
て不織布を合成皮革や人工皮革の基布として使用するに
際し,最終製品を引張ったときの寸法安定性が向上す
る。
A third feature of the method for producing a nonwoven fabric of the present invention is that a high-melting polyamide polymer is used as a core component, and a low-melting polyamide polymer having a melting point lower than the melting point of each polymer constituting the fibers A and B is sheathed. The core-sheath type composite fiber C as a component (adhesive component) is used as the third component. As the core-sheath composite fiber, polyhexamethylene adipamide is used as the core component.
A core-sheath type composite fiber having a sheath component of polycapramide or copolymerized polyamide having a lower melting point than polyhexamethylene adipamide is preferred. )
UH-60 (manufactured by Unitika Ltd., trademark) and heterofil (manufactured by ICI, Inc.) as a composite fiber having a sheath component, and polyhexamethylene adipamide as a core component and copolyamide as a sheath component. Unimelt UM-60 (melting point of sheath polymer: 160 ° C., manufactured by Unitika Ltd., trademark) and Unimelt UL-60 (melting point of sheath polymer: 140 ° C., manufactured by Unitika Ltd., trademark) can be cited as the conjugated fiber. .
The type of the polymer constituting the core-sheath type composite fiber C in the present invention is appropriately selected depending on the type of the polymer constituting the polyamide fiber B. For example, when the polyamide fiber B is polyhexamethylene adipamide,
As the core-sheath type composite fiber C, any of the composite fibers exemplified above can be used. On the other hand, when the polyamide fiber B is polycapramide (melting point 220 ° C.), a fiber made of a polymer having a melting point of 215 ° C. or less, such as Unimelt UM-60 or Unimelt UL-60, is used. With the core-sheath type composite fiber C, the strength of the non-woven fabric can be improved while maintaining the flexibility of the non-woven fabric. Dimensional stability is improved.

本発明の不織布の製造方法は,前記及び式で示さ
れる収縮率を有する高収縮性共重合ポリエステル繊維A
と,単糸繊度が2デニール以下のポリアミド系繊維B
と,高融点ポリアミド系重合体を芯成分とし、前記繊維
A及びBを構成する各重合体の融点より低融点の低融点
ポリアミド系重合体を鞘成分(接着成分)とする芯鞘型
複合繊維Cとを混合して繊維混合ウエブとし,次いで前
記ウエブに加熱収縮処理を施すことからなるものであ
る。繊維混合ウエブに加熱収縮処理を施すに先立ち,交
絡処理を施してもよい。この交絡処理を施すに際して
は,ニードルパンチ法,ウオーターニードル(スパンレ
ース)法,エアーニードル法等,公知の方法を用いるこ
とができる。加熱収縮処理を施すに際しては,熱風循環
ドライヤ,熱風貫流ドライヤ,サクシヨンドラムドライ
ヤ等のドライヤ,低線圧のフラツトカレンダーロール,
エンボスロール等のヒートロール等の熱処理装置を用
い,目標収縮率に応じた処理温度,高くとも共重合ポリ
エステル系繊維A又はポリアミド系繊維B等,ウエブを
構成する繊維の内,低融点の方の繊維の融点以下,芯鞘
型複合繊維Cの鞘成分である低融点ポリアミド系重合体
の融点以上の温度で処理を行えばよい。
The method for producing a nonwoven fabric according to the present invention comprises a highly shrinkable copolyester fiber A having a shrinkage ratio represented by the above formula and the formula.
And a polyamide fiber B having a single yarn fineness of 2 denier or less
And a core-sheath composite fiber having a high-melting polyamide polymer as a core component and a low-melting polyamide polymer having a melting point lower than the melting point of each polymer constituting the fibers A and B as a sheath component (adhesive component). C. to form a fiber-mixed web, and then heat-shrink the web. Prior to subjecting the fiber-mixed web to the heat shrinking treatment, a confounding treatment may be applied. In performing the confounding treatment, known methods such as a needle punch method, a water needle (span lace) method, and an air needle method can be used. When performing the heat shrinkage treatment, a dryer such as a hot air circulation dryer, a hot air once-through dryer, a suction drum dryer, a low linear pressure flat calender roll,
Using a heat treatment device such as a heat roll such as an embossing roll, a processing temperature corresponding to a target shrinkage rate, and a fiber having a lower melting point among fibers constituting the web such as a polyester fiber A or a polyamide fiber B at the highest. The treatment may be performed at a temperature equal to or lower than the melting point of the fiber and equal to or higher than the melting point of the low-melting polyamide polymer which is the sheath component of the core-sheath type composite fiber C.

本発明の不織布の製造方法において,使用するポリエ
ステル系重合体には,本発明の効果を損なわない範囲で
前記した以外の他の成分を共重合してもよく,また,艶
消剤,安定剤,着色剤等の添加剤を添加してもよい。
In the method for producing a nonwoven fabric according to the present invention, the polyester polymer used may be copolymerized with other components other than those described above as long as the effects of the present invention are not impaired. An additive such as a colorant may be added.

本発明の不織布の製造方法において,使用する高収縮
性共重合ポリエステル系繊維Aは,常法にしたがって,
エステル化又はエステル交換反応の後,重縮合反応を行
って得た共重合ポリエステル系重合体を溶融紡糸し,得
られた未延伸繊維糸状を通常より低い温度の延伸ローラ
を使用して延伸することにより製造することができる。
このとき,延伸後の熱セツトは行わないか,または,熱
セツトを行うとしても低温で行う。
In the method for producing a nonwoven fabric according to the present invention, the high-shrinkable copolyester fiber A used is prepared according to a conventional method.
After the esterification or transesterification reaction, the copolyester polymer obtained by performing the polycondensation reaction is melt-spun, and the obtained undrawn fiber yarn is drawn using a drawing roller at a temperature lower than usual. Can be manufactured.
At this time, the heat setting after the stretching is not performed, or at a low temperature even if the heat setting is performed.

本発明の不織布の製造方法において,使用する高収縮
性共重合ポリエステル系繊維Aとポリアミド系繊維Bと
の混合比(重量比)(A/B)は,80/20〜20/80程度とする
のが適当である。また,芯鞘型複合繊維Cの混合比は,
前記繊維A及びBの総和に対する混合比(重量比)(A
+B/C)として95/5〜70/30程度とするのが適当である。
これらの繊維を混合するに際しては,一般的なカード
法,エアーレイ法を用いるが,目的によっては湿式抄紙
法を用いてもよい。
In the method for producing a nonwoven fabric of the present invention, the mixing ratio (weight ratio) (A / B) of the high-shrinkable copolyester fiber A and the polyamide fiber B used is about 80/20 to 20/80. Is appropriate. The mixing ratio of the core-sheath type composite fiber C is
Mixing ratio (weight ratio) to the sum of the fibers A and B (A
+ B / C) is suitably about 95/5 to 70/30.
When these fibers are mixed, a general card method or an air lay method is used, but a wet papermaking method may be used depending on the purpose.

(作用) 本発明の製造方法で得られる不織布は,緻密で柔軟な
風合と高強力を有するものである。これは,高収縮性共
重合ポリエステル系繊維Aが,加熱収縮処理時に収縮し
て緻密さを発現し,共重合ポリエステル系繊維Aとの収
縮率差により柔軟さに優れたポリアミド系繊維Bが不織
布の表面部分に現出し,かつ柔軟さに優れた芯鞘型複合
繊維Cが不織布の構成繊維間を接着して高強力を発現す
るためである。
(Function) The nonwoven fabric obtained by the production method of the present invention has a dense and soft feel and high strength. This is because the highly shrinkable copolyester fiber A shrinks during the heat shrink treatment to express denseness, and the polyamide fiber B, which has excellent flexibility due to the difference in shrinkage from the copolyester fiber A, forms a nonwoven fabric. This is because the core-in-sheath type composite fiber C which appears on the surface portion of the nonwoven fabric and has excellent flexibility adheres between the constituent fibers of the nonwoven fabric to exhibit high strength.

(実施例) 次に,実施例に基づいて本発明を具体的に説明する。
なお,実施例における各種特性は次の方法により測定し
た。
(Example) Next, the present invention will be specifically described based on examples.
Various characteristics in the examples were measured by the following methods.

相対粘度:フエノールと四塩化エタンの等重量混合溶
液を溶媒とし,試料濃度0.5g/dl,温度20℃で測定した。
Relative viscosity: The relative viscosity was measured at a sample concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal weight mixed solution of phenol and ethane tetrachloride as a solvent.

強力:不織布を幅25mmに裁断し,定速伸長型引張試験
機を使用して試料長100mm,引張速度100mm/分で測定し
た。
Strength: The nonwoven fabric was cut to a width of 25 mm, and measured at a sample length of 100 mm and a tensile speed of 100 mm / min using a constant-speed extension type tensile tester.

剛軟度:JIS L 1096 45度カンチレバ法により測定し
た。
Bending resistance: Measured by the JIS L 1096 45 degree cantilever method.

風合:10人のパネラによる官能試験により,次の5段
階で評価した。
Hand: A sensory test with 10 panelists evaluated the following five levels.

1:柔らかい,2:やや柔らかい,3:普通,4:やや硬い,5:硬
い 乾熱収縮率So:製造直後から1日以内経過の長さLoの
繊維を温度170℃で15分間乾燥機を用いて熱処理した
後,室温まで冷却した。冷却後の試料の長さL1を測定
し,次の式にしたがって収縮率Soを求めた。
1: Soft, 2: Slightly soft, 3: Normal, 4: Slightly hard, 5: Hard Dry heat shrinkage ratio So: Dry the fiber of length Lo within 1 day immediately after production at 170 ° C for 15 minutes. And then cooled to room temperature. The length L 1 of the sample after cooling was measured to determine shrinkage So according to the following equation.

乾熱収縮率差ΔS:製造直後から温度40℃で5週間放置
後の長さL0′の繊維を温度170℃で15分間乾燥機を用い
て熱処理した後,室温まで冷却した。冷却後の試料の長
さL1′を測定し,次の式にしたがって収縮率S0′を求
め,式にしたがって収縮率差ΔSを求めた。
Dry heat shrinkage difference ΔS: Immediately after the production, the fiber having a length of L 0 ′ after standing at a temperature of 40 ° C. for 5 weeks was heated at 170 ° C. for 15 minutes using a dryer, and then cooled to room temperature. The length L 1 ′ of the cooled sample was measured, the shrinkage ratio S 0 ′ was obtained according to the following equation, and the difference in shrinkage ΔS was obtained according to the equation.

面積収縮率SA:不織布の加熱収縮処理前の面積Aoと
処理後の面積A1を測定し,次の式にしたがって収縮率
SAを求めた。
Areal shrinkage SA: the area A 1 of the post-treatment with heat shrinking treatment before the area Ao of the nonwoven fabric was measured to determine shrinkage SA according to the following equation.

実施例1 モル比が92/8のテレフタル酸/イソフタル酸とエチレ
ングリコールとからなる相対粘度が1.45の共重合ポリエ
ステル重合体を常法により製造し,溶融紡出した後,温
度65℃の第1延伸ローラと温度75℃の第2延伸ローラ間
で延伸倍率を3.0として延伸し,延伸繊維を熱セツトす
ることなく切断して単糸繊度1.3デニール,切断伸度49
%,繊維長51mmの共重合ポリエステル短繊維Aを製造し
た。この短繊維の収縮率Soは62.5%,収縮率差ΔSは2.
1%であった。
Example 1 A copolymerized polyester polymer comprising terephthalic acid / isophthalic acid and ethylene glycol at a molar ratio of 92/8 and having a relative viscosity of 1.45 was produced by a conventional method, melt-spun, and then subjected to a first heating at 65 ° C. The stretched fiber is stretched between the stretching roller and the second stretching roller at a temperature of 75 ° C. at a stretching ratio of 3.0, and the stretched fiber is cut without heat setting to obtain a single yarn fineness of 1.3 denier and a cut elongation of 49.
%, A short polyester fiber A having a fiber length of 51 mm. The shrinkage ratio So of this short fiber is 62.5%, and the difference ΔS in shrinkage ratio is 2.
1%.

一方,常法にしたがい,単糸繊度0.8デニール,繊維
長38mmのポリカプラミド短繊維Bを製造した。
On the other hand, according to a conventional method, polycapamide short fiber B having a single yarn fineness of 0.8 denier and a fiber length of 38 mm was produced.

次いで,これらの共重合ポリエステル短繊維A,ポリカ
プラミド短繊維B,ポリヘキサメチレンアジパミドを芯成
分,共重合ポリアミドを鞘成分とするポリアミド系複合
短繊維ユニメルトUL−60(鞘部重合体の融点140℃,単
糸繊度2デニール,繊維長51mm,ユニチカ株式会社製,
商標)Cを混合比(重量比)(A/B/C)30/60/10で混綿
し,カードに通して目付け175g/m2のウエブとした後,
ニードルパンチを施し,温度160℃のサクシヨンドラム
式熱処理機で2分間熱処理して不織布を得た。得られた
不織布の特性を第1表に示す。
Next, a polyamide-based composite short fiber Unimelt UL-60 (having a melting point of the sheath polymer) having the core component of the copolyester staple fiber A, the polycapramide staple fiber B, and the polyhexamethylene adipamide as the core component and the copolyamide as the sheath component. 140 ° C, single fiber fineness 2 denier, fiber length 51mm, manufactured by Unitika Ltd.
And cotton mixing trademark) C mixing ratio (weight ratio) with (A / B / C) 30/60/10 , after a having a basis weight of 175 g / m 2 web through the card,
Needle punching was performed, and heat treatment was performed for 2 minutes with a suction drum type heat treatment machine at a temperature of 160 ° C. to obtain a nonwoven fabric. Table 1 shows the properties of the obtained nonwoven fabric.

この不織布は,緻密な構造と柔軟な触感を有し,かつ
強力が高いものであった。
This nonwoven fabric had a dense structure, a soft touch, and a high strength.

実施例2〜4 テレフタル酸/イソフタル酸のモル比を96/4,93/7及
び88/12とした以外は実施例1と同様にして不織布を得
た。得られた不織布の特性を第1表に示す。
Examples 2 to 4 Nonwoven fabrics were obtained in the same manner as in Example 1 except that the molar ratio of terephthalic acid / isophthalic acid was changed to 96/4, 93/7 and 88/12. Table 1 shows the properties of the obtained nonwoven fabric.

比較実施例1及び2 テレフタル酸/イソフタル酸のモル比を97/3及び85/1
5とした以外は実施例1と同様にして不織布を得た。得
られた不織布の特性を第1表に示す。
Comparative Examples 1 and 2 The molar ratio of terephthalic acid / isophthalic acid was 97/3 and 85/1
A nonwoven fabric was obtained in the same manner as in Example 1 except that the sample was set to 5. Table 1 shows the properties of the obtained nonwoven fabric.

比較実施例1では,共重合ポリエステル短繊維Aの収
縮率Soが低く,得られた不織布は緻密さに欠けるもので
あった。しかも,前記繊維の収縮率差ΔSが高く,不織
布製造ロツト間に不織布の緻密さや柔軟さのバラツキが
生じ,品質的に不安定であった。
In Comparative Example 1, the copolyester staple fiber A had a low shrinkage So, and the obtained nonwoven fabric lacked denseness. In addition, the difference ΔS in the shrinkage of the fibers is high, and the density and flexibility of the nonwoven fabric are varied between the lots for manufacturing the nonwoven fabric, resulting in unstable quality.

比較実施例2では,共重合ポリエステル短繊維Aの収
縮率Soが高いため,得られた不織布は緻密になり過ぎて
剛軟度が高く,しかもウエブの加熱収縮処理時に共重合
ポリエステル短繊維Aに部分的な融着が生じ,硬い触感
を有するものであった。
In Comparative Example 2, since the shrinkage rate So of the copolyester short fiber A was high, the obtained nonwoven fabric was too dense and had high rigidity and softness. Partial fusion occurred and had a hard touch.

実施例5〜7 ポリカプラミド短繊維Bの単糸繊度を0.5,1.2及び2.0
デニールとした以外は実施例1と同様にして不織布を得
た。得られた不織布の特性を第1表に示す。
Examples 5 to 7 The single fiber fineness of the polycapramid short fibers B was 0.5, 1.2 and 2.0.
A nonwoven fabric was obtained in the same manner as in Example 1 except that denier was used. Table 1 shows the properties of the obtained nonwoven fabric.

比較実施例3 ポリカプラミド短繊維Bの単糸繊度を3.0デニールと
した以外は実施例1と同様にして不織布を得た。得られ
た不織布の特性を第1表に示す。
Comparative Example 3 A nonwoven fabric was obtained in the same manner as in Example 1 except that the single fiber fineness of the polycapramide short fiber B was changed to 3.0 denier. Table 1 shows the properties of the obtained nonwoven fabric.

ポリカプラミド短繊維Bの単糸繊度が2.0デニールを
超えると,得られた不織布は面積収縮率が低く,緻密さ
に欠け,しかも剛軟度が高く,硬い触感を有するもので
あった。
When the single fiber fineness of the polycapramid short fiber B exceeded 2.0 denier, the obtained nonwoven fabric had a low area shrinkage, lacked denseness, had high rigidity and softness, and had a hard touch.

実施例8〜10及び比較実施例4 共重合ポリエステル短繊維A,ポリカプラミド短繊維B
及びポリアミド系複合短繊維ユニメルトUL−60,Cの混合
比(重量比)(A/B/C)を第2表に示したように変更し
た以外は実施例1と同様にして不織布を得た。得られた
不織布の特性を第2表に示す。
Examples 8 to 10 and Comparative Example 4 Copolyester staple fiber A, polycapramide staple fiber B
A nonwoven fabric was obtained in the same manner as in Example 1 except that the mixing ratio (weight ratio) (A / B / C) of the polyamide-based composite short fiber Unimelt UL-60, C was changed as shown in Table 2. . Table 2 shows the properties of the obtained nonwoven fabric.

比較実施例4では,ポリアミド系複合短繊維Cが混合
されていないため,得られた不織布は強力が低く,不織
布を合成皮革や人工皮革の基布として使用するに際し,
最終製品を引張ったときの寸法安定性が不十分なもので
あった。
In Comparative Example 4, since the polyamide-based composite short fiber C was not mixed, the obtained nonwoven fabric had low strength, and when the nonwoven fabric was used as a base fabric of synthetic leather or artificial leather,
The dimensional stability when the final product was pulled was insufficient.

(発明の効果) 本発明の不織布の製造方法によれば,合成皮革や人工
皮革の基布として使用したとき,緻密かつ柔軟な風合と
高強力を発現し,しかも最終製品を引張ったときの寸法
安定性に優れ,前記用途に好適に使用することができる
繊維混合不織布を容易に製造することができる。
(Effect of the Invention) According to the method for producing a nonwoven fabric of the present invention, when used as a base fabric of synthetic leather or artificial leather, a dense and soft feeling and high strength are exhibited, and when the final product is pulled, A fiber-mixed nonwoven fabric which has excellent dimensional stability and can be suitably used for the above-mentioned applications can be easily produced.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記及び式で示される収縮率を有し、
テレフタル酸/テレフタル酸以外のジカルボン酸のモル
比が96/4〜88/12の酸成分とエチレングリコール成分と
からなる高収縮性共重合ポリエステル系繊維Aと、単糸
繊度が2デニール以下のポリアミド系繊維Bと、高融点
ポリアミド系重合体を芯成分とし、前記繊維A及びBを
構成する各重合体の融点より低融点の低融点ポリアミド
系重合体を鞘成分(接着成分)とする芯鞘型複合繊維C
とが混合された繊維混合ウエブに加熱収縮処理を施すこ
とを特徴とする繊維混合不織布の製造方法。 25≦S0(%)≦70 …… ΔS(%)≦5 …… [S0(%)は製造直後の繊維を温度170℃で15分間乾熱
処理したときの収縮率であり、ΔS(%)は製造直後の
繊維を温度40℃で5週間放置後、温度170℃で15分間乾
熱処理したときの収縮率と前記収縮率S0(%)との差で
ある。]
(1) having a shrinkage ratio represented by the following and formula,
Highly shrinkable copolyester fiber A comprising an acid component having a molar ratio of terephthalic acid / dicarboxylic acid other than terephthalic acid of 96/4 to 88/12 and an ethylene glycol component, and a polyamide having a single yarn fineness of 2 denier or less Core-sheath comprising a base fiber B and a high-melting polyamide polymer as a core component, and a low-melting polyamide polymer having a melting point lower than the melting point of each polymer constituting the fibers A and B as a sheath component (adhesive component). Type composite fiber C
A heat-shrinkage treatment on the fiber-mixed web mixed with the non-woven fabric. 25 ≦ S 0 (%) ≦ 70 ΔS (%) ≦ 5 [S 0 (%) is the shrinkage when the fiber immediately after production is subjected to dry heat treatment at 170 ° C. for 15 minutes, and ΔS (% ) Is the difference between the shrinkage ratio and the shrinkage ratio S 0 (%) when the fiber immediately after production is left at a temperature of 40 ° C. for 5 weeks and then subjected to a dry heat treatment at a temperature of 170 ° C. for 15 minutes. ]
【請求項2】下記及び式で示される収縮率を有し、
エチレングリコール/エチレングリコール以外のジオー
ルのモル比が96/4〜88/12のジオール成分とテレフタル
酸成分とからなる高収縮性共重合ポリエステル系繊維A
と、単糸繊度が2デニール以下のポリアミド系繊維B
と、高融点ポリアミド系重合体を芯成分とし、前記繊維
A及びBを構成する各重合体の融点より低融点の低融点
ポリアミド系重合体を鞘成分(接着成分)とする芯鞘型
複合繊維Cとが混合された繊維混合ウエブに加熱収縮処
理を施すことを特徴とする繊維混合不織布の製造方法。 25≦S0(%)≦70 …… ΔS(%)≦5 …… [S0(%)は製造直後の繊維を温度170℃で15分間乾熱
処理したときの収縮率であり、ΔS(%)は製造直後の
繊維を温度40℃で5週間放置後、温度170℃で15分間乾
熱処理したときの収縮率と前記収縮率S0(%)との差で
ある。]
2. It has a shrinkage ratio represented by the following and formula,
Highly shrinkable copolyester fiber A comprising a diol component having a molar ratio of ethylene glycol / diol other than ethylene glycol of 96/4 to 88/12 and a terephthalic acid component
And a polyamide fiber B having a single yarn fineness of 2 denier or less.
And a core-sheath type conjugate fiber having a high-melting polyamide polymer as a core component and a low-melting polyamide polymer having a lower melting point than the melting point of each of the polymers constituting the fibers A and B as a sheath component (adhesive component). A method for producing a fiber-mixed nonwoven fabric, comprising subjecting a fiber-mixed web mixed with C to a heat shrink treatment. 25 ≦ S 0 (%) ≦ 70 ΔS (%) ≦ 5 [S 0 (%) is the shrinkage when the fiber immediately after production is subjected to dry heat treatment at 170 ° C. for 15 minutes, and ΔS (% ) Is the difference between the shrinkage ratio and the shrinkage ratio S 0 (%) when the fiber immediately after production is left at a temperature of 40 ° C. for 5 weeks and then subjected to a dry heat treatment at a temperature of 170 ° C. for 15 minutes. ]
JP31343090A 1990-11-19 1990-11-19 Manufacturing method of fiber mixed nonwoven fabric Expired - Lifetime JP2994027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31343090A JP2994027B2 (en) 1990-11-19 1990-11-19 Manufacturing method of fiber mixed nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31343090A JP2994027B2 (en) 1990-11-19 1990-11-19 Manufacturing method of fiber mixed nonwoven fabric

Publications (2)

Publication Number Publication Date
JPH04185753A JPH04185753A (en) 1992-07-02
JP2994027B2 true JP2994027B2 (en) 1999-12-27

Family

ID=18041205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31343090A Expired - Lifetime JP2994027B2 (en) 1990-11-19 1990-11-19 Manufacturing method of fiber mixed nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2994027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625292D0 (en) * 1996-12-05 1997-01-22 British United Shoe Machinery A repair fabric
GB2333783A (en) * 1996-12-05 1999-08-04 Texon Uk Ltd A repair fabric

Also Published As

Publication number Publication date
JPH04185753A (en) 1992-07-02

Similar Documents

Publication Publication Date Title
JP3927769B2 (en) Nonwoven fabric and method for producing sheet-like material using the same
JPH0762302B2 (en) Fiber entangled body and its manufacturing method
US6716776B2 (en) Nonwoven fabric made from filaments and artificial leather containing it
EP1054096B1 (en) Nonwoven fabric made from filaments and artificial leather containing it
TWI821370B (en) Artificial leather base material, manufacturing method thereof and velvety artificial leather
JP2994027B2 (en) Manufacturing method of fiber mixed nonwoven fabric
CN113474500A (en) Polyester fiber having crimp, method for producing same, pile fabric comprising same, and method for producing pile fabric
JP2641947B2 (en) Manufacturing method of fiber mixed nonwoven fabric
JP3142099B2 (en) Method for producing smooth leather-like sheet
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JPH10331075A (en) Artificial leather
JPS64518B2 (en)
JPH0316427B2 (en)
JP2872336B2 (en) Manufacturing method of fiber mixed nonwoven fabric
JP2804784B2 (en) Manufacturing method of breathable waterproof cloth
JPH11335954A (en) Polyester staple fiber nonwoven fabric for artificial leather and its production
JP2003138489A (en) Artificial leather having excellent stretchability and method for producing the same
JP3446875B2 (en) Composite polyester fiber
JP3657423B2 (en) Fiber mixed nonwoven fabric and method for producing the same
JP3345122B2 (en) Fiber aggregate
JP3430852B2 (en) Method of manufacturing nap sheet
JPH06240584A (en) Artificial leather having grain surface and composed of base material containing polyester fiber and production of the leather
JP2022143330A (en) Composite fiber with latent crimping ability and nonwoven fabric made from the same
JP2813378B2 (en) High shrinkage polyester fiber
JP3301534B2 (en) Mixed fiber yarn with excellent elastic recovery