JP2993336B2 - Electroless Ni plating solution for AlN substrate - Google Patents
Electroless Ni plating solution for AlN substrateInfo
- Publication number
- JP2993336B2 JP2993336B2 JP5298590A JP29859093A JP2993336B2 JP 2993336 B2 JP2993336 B2 JP 2993336B2 JP 5298590 A JP5298590 A JP 5298590A JP 29859093 A JP29859093 A JP 29859093A JP 2993336 B2 JP2993336 B2 JP 2993336B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- plating solution
- aln substrate
- solution
- electroless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Chemically Coating (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はAlN基板用無電解Ni
系メッキ液に関し、より詳細には、例えばICパッケー
ジ等の製造工程でAlN基板にNiメッキ処理を施す際
等に有用なAlN基板用無電解Ni系メッキ液に関す
る。The present invention relates to an electroless Ni for an AlN substrate.
More particularly, the present invention relates to an electroless Ni-based plating solution for an AlN substrate, which is useful when, for example, performing an Ni plating process on an AlN substrate in a manufacturing process of an IC package or the like.
【0002】[0002]
【従来の技術】外部から電流を流して、溶液中の金属イ
オンを陰極上に還元、析出させる電気メッキに対し、外
部電流を使わずに溶液中の金属イオンを被メッキ体表面
に還元析出させる方法を、一般に化学メッキと呼んでい
る。この化学メッキは、さらにイオン置換に基づく浸漬
メッキと化学還元剤を用いる無電解メッキとに大別され
る。2. Description of the Related Art In contrast to electroplating, in which a current is externally applied to reduce and precipitate metal ions in a solution on a cathode, metal ions in a solution are reduced and deposited on the surface of a body to be plated without using an external current. The method is generally called chemical plating. This chemical plating is further roughly classified into immersion plating based on ion substitution and electroless plating using a chemical reducing agent.
【0003】前記浸漬メッキは、例えばNi等の金属を
金のような貴金属のイオンを含有する溶液中に浸漬し、
いわゆる置換反応によってNi上に金を析出させる方法
であり、一旦Ni表面が金で覆われるとメッキの成長も
止まるため、厚メッキが難しいという問題点がある。In the immersion plating, for example, a metal such as Ni is immersed in a solution containing ions of a noble metal such as gold,
This is a method in which gold is deposited on Ni by a so-called substitution reaction, and once the Ni surface is covered with gold, the growth of plating stops, and there is a problem that thick plating is difficult.
【0004】一方前記無電解メッキは、溶液中に析出さ
せる金属の塩、その金属と錯体を形成させるための錯化
剤、金属錯体を還元して金属単体を還元析出させるため
の還元剤、溶液中のpHの変動を抑制するためのpH緩
衝剤、pHの値を一定値にするためのpH調整剤、及び
溶液を安定化させるための安定化剤等を混合した溶液中
に被メッキ体を浸漬し、前記被メッキ体表面に金属を還
元析出させる方法である。On the other hand, the electroless plating comprises a salt of a metal deposited in a solution, a complexing agent for forming a complex with the metal, a reducing agent for reducing a metal complex to reduce and deposit a simple metal, The object to be plated is placed in a solution in which a pH buffering agent for suppressing fluctuations in pH during the process, a pH adjusting agent for keeping the pH value at a constant value, and a stabilizer for stabilizing the solution are mixed. In this method, the metal is immersed to reduce and deposit a metal on the surface of the object to be plated.
【0005】この方法の問題点としては、電流の代わ
りに還元剤で金属を還元析出させるので、電解メッキに
比べるとコストが高くなること、メッキ速度を速めよ
うとするとメッキ浴中に粉末状態で金属が析出してしま
う虞れがあるためメッキ速度を余り速くすることができ
ないこと等が挙げられる。[0005] The problems of this method are that the metal is reduced and precipitated with a reducing agent instead of an electric current, so that the cost is higher than that of electrolytic plating. For example, there is a possibility that the metal may be deposited, so that the plating rate cannot be too high.
【0006】しかし一方、電源や電極等が不要で、メ
ッキ液中に被メッキ体を浸漬するだけで、密着力、均質
性等に優れた均一厚さの被膜が得られること、メッキ
膜の厚さやその物性等を、メッキ液組成等のメッキ処理
条件を変化させることにより制御し易く、要求特性に合
致する被膜の形成が可能であること、いかなる形状の
ものにも、付き回りよくメッキすることが可能であるこ
と、プラスチック、ガラス、セラミックス等のような
非導電性物質にも直接メッキすることが可能であるこ
と、等の優れた特徴を有するため広く工業的に利用され
ている。On the other hand, a power source, electrodes, etc. are not required, and a coating having a uniform thickness excellent in adhesion, homogeneity, etc. can be obtained only by immersing the object to be plated in a plating solution. It is easy to control the physical properties of pods by changing the plating process conditions such as the plating solution composition, and it is possible to form a film that meets the required characteristics. It is widely used industrially because of its excellent features such as being able to perform plating directly on non-conductive substances such as plastics, glass, and ceramics.
【0007】被メッキ体に前記した無電解メッキ処理を
施した場合に、溶液中でどのような反応が進行し、メッ
キ被膜が形成されるかについて、完全にその機構が解明
されているわけではない。[0007] When the above-mentioned electroless plating treatment is applied to the object to be plated, the mechanism of what kind of reaction proceeds in the solution to form a plating film has not been completely elucidated. Absent.
【0008】しかし、例えば還元剤として次亜りん酸塩
を用い、セラミックス基板等に無電解Niメッキ処理を
施した場合には、溶液中で下記の化1式〜化3式に示す
化学反応が進行するといわれている。However, for example, when hypophosphite is used as a reducing agent and a ceramic substrate or the like is subjected to electroless Ni plating, a chemical reaction represented by the following chemical formulas (1) to (3) occurs in a solution. It is said to progress.
【0009】[0009]
【化1】 Ni2++H2 PO2 -+H2 O → Ni+H2 PO3 -+2H+ Embedded image Ni 2+ + H 2 PO 2 − + H 2 O → Ni + H 2 PO 3 − + 2H +
【0010】[0010]
【化2】H2 PO2 -+H2 O → H2 PO3 -+H2 Embedded image H 2 PO 2 − + H 2 O → H 2 PO 3 − + H 2
【0011】[0011]
【化3】H2 PO2 -+H → P+H2 O+OH- 上記化1式に示したように、次亜りん酸イオン中のリン
の酸化が進行して、Niが還元され、被メッキ体表面に
析出する。このとき、化2式の反応も同時に進行し、水
が還元されて水素が発生する。化1式に示したNiの還
元析出については、実際には水素も関与しており、上記
化2式の反応で一旦還元された水素原子がNiイオンに
電子を受け渡すことによりNiが還元されるといわれて
いる。さらに、次亜りん酸については不均化反応が進行
し、化2式に示したように一部のリンが酸化されると同
時に、化3式に示したように他の一部のリンは還元され
てリンが析出する。すなわち、化2式の反応で一旦還元
された水素原子は、次亜りん酸イオン中のリンに対して
も電子を放出し、これにより次亜りん酸イオン中のリン
も還元される。このため、析出被膜は通常Niとリンと
の合金となる。このNi合金は、Ni単独の被膜と比較
すると、被膜の硬度、基板との密着性等により優れると
いう効果をもたらす。H 2 PO 2 − + H → P + H 2 O + OH - As shown in the above formula 1, the oxidation of phosphorus in hypophosphite ions progresses, Ni is reduced, and Precipitates. At this time, the reaction of Chemical Formula 2 also proceeds simultaneously, and water is reduced to generate hydrogen. Hydrogen is actually involved in the reduction precipitation of Ni shown in the chemical formula (1), and the hydrogen atoms once reduced in the reaction of the chemical formula (2) transfer electrons to the Ni ions to reduce the Ni. It is said that Further, as for hypophosphorous acid, the disproportionation reaction proceeds, and some phosphorus is oxidized as shown in the chemical formula 2, and at the same time, as shown in the chemical formula 3, some other phosphorus is It is reduced to precipitate phosphorus. That is, the hydrogen atom once reduced by the reaction of the chemical formula 2 also emits an electron to phosphorus in hypophosphite ion, whereby phosphorus in hypophosphite ion is also reduced. For this reason, the deposited film is usually an alloy of Ni and phosphorus. This Ni alloy has an effect of being superior in hardness of the coating, adhesion to the substrate, and the like, as compared with the coating of Ni alone.
【0012】無電解Niメッキでは、上述したような反
応によりメッキ被膜の析出反応が進行すると考えられる
が、この析出反応により優れた耐摩耗性や耐熱性を有す
る被膜が形成されるため、工業的に利用されると同時に
古くから研究されてきており、その反応機構も次第に明
らかになりつつある。In the electroless Ni plating, it is considered that the deposition reaction of the plating film proceeds by the above-described reaction. However, since the deposition reaction forms a film having excellent wear resistance and heat resistance, it is industrially necessary. At the same time, it has been studied for a long time, and its reaction mechanism is gradually being clarified.
【0013】[0013]
【発明が解決しようとする課題】このように無電解メッ
キは広く利用されているにもかかわらず、この無電解N
iメッキ処理を施す対象となる被メッキ体は限られてい
た。すなわち、用いられる被メッキ体は、Al2 O3 板
やCu板、Au板のように比較的酸や塩基に対して安定
であり、また高温溶液中に長時間浸漬させた場合でも基
板の腐食が起こりにくいものが殆どである。従って従来
においては、上記した被メッキ体を対象として90〜1
00℃程度の高温域でメッキ処理を施すことが可能であ
った。As described above, although electroless plating is widely used, this electroless N
The plating target to be subjected to the i-plating treatment is limited. That is, the object to be plated is relatively stable to acids and bases, such as Al 2 O 3 plate, Cu plate, and Au plate, and corrosion of the substrate even when immersed in a high-temperature solution for a long time. In most cases, this is unlikely to occur. Therefore, conventionally, 90 to 1
The plating process could be performed in a high temperature range of about 00 ° C.
【0014】なお最近では、プリント配線板等のメッキ
にも用いられるようになってきており、この場合には被
膜を形成する温度は低温であることが望ましいため、3
0〜60℃程度の低温でメッキ処理を施すことができる
低温用のNi系メッキ液も開発されてきている。しか
し、これらNi系メッキ液も比較的耐食性を有する被メ
ッキ体を対象としており、AlN基板のように化学的に
不安定な基板を対象としていない。従来から使用されて
いる高温域でメッキ処理を行うNi系メッキ液の組成を
表1に、また低温域でメッキ処理を行うNi系メッキ液
の組成を下記の表2に示す。In recent years, it has also been used for plating of printed wiring boards and the like. In this case, it is desirable that the temperature for forming a film is low,
Low-temperature Ni-based plating solutions capable of performing plating at a low temperature of about 0 to 60 ° C. have been developed. However, these Ni-based plating liquids are also intended for a plated body having relatively corrosion resistance, and are not intended for a chemically unstable substrate such as an AlN substrate. Table 1 shows the composition of a Ni-based plating solution that is conventionally used for plating in a high temperature range, and Table 2 below shows the composition of a Ni-based plating solution that is used for plating in a low temperature range.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】CuやWペーストを用いて同時焼成するこ
とにより形成された配線、又はスパッタ法等の方法を用
いて形成された配線を表面に有するAlN基板の配線等
に無電解メッキ処理を施そうとする場合、表1及び表2
に示したような従来から用いられているNi系メッキ液
のどれを用いた場合でも、金属配線部分以外の場所にメ
ッキ被膜が形成されるブリード現象が発生したり、Al
N基板自体が溶解したり、又は溶液の自己分解反応が発
生した。An electroless plating process is performed on wiring formed by simultaneous firing using Cu or W paste, or wiring on an AlN substrate having wiring formed on the surface using a method such as sputtering. Table 1 and Table 2
In the case of using any of the Ni-based plating solutions conventionally used as shown in FIG.
The N substrate itself dissolved or a self-decomposition reaction of the solution occurred.
【0018】このようにAlN基板表面の金属配線のみ
にメッキ処理が施されるような条件を見つけることは難
しく、特に着色剤等としてAlN基板中にW等の金属が
含有されている場合には、前記金属が露出している部分
にメッキ被膜が形成され、この部分を起点にしてメッキ
被膜が広がって行くため、前記ブリード現象を防止する
ことが難しかった。AlN基板中に存在するW等の着色
剤は、通常AlN基板中を紫外線等が透過してSi基板
等が劣化するのを防止するために、添加されているもの
である。As described above, it is difficult to find a condition in which only the metal wiring on the surface of the AlN substrate is plated. Particularly, when a metal such as W is contained in the AlN substrate as a coloring agent or the like. Since a plating film is formed on a portion where the metal is exposed, and the plating film spreads from this portion as a starting point, it has been difficult to prevent the bleeding phenomenon. The coloring agent such as W present in the AlN substrate is usually added in order to prevent ultraviolet rays and the like from transmitting through the AlN substrate to deteriorate the Si substrate and the like.
【0019】Ni系メッキ液によるAlN基板の溶解に
ついては、AlN自体が酸又はアルカリに対して安定で
はなく、酸性又はアルカリ性の溶液中では下記の化4式
〜化5式に示したような分解反応が進行するため、Al
N基板が腐食されることになる。Alは両性であるので
酸性においても、アルカリ性においてもイオンとして溶
液中に溶解する。With respect to the dissolution of the AlN substrate by the Ni-based plating solution, AlN itself is not stable to acid or alkali, and in an acidic or alkaline solution, the decomposition as shown in the following formulas (4) to (5) is performed. Since the reaction proceeds, Al
The N substrate will be corroded. Since Al is amphoteric, it dissolves in the solution as ions both in acidic and alkaline conditions.
【0020】[0020]
【化4】AlN+3H+ → Al3++NH3 Embedded image AlN + 3H + → Al 3+ + NH 3
【0021】[0021]
【化5】 AlN+OH- +H2 O → AlO2 -+NH3 pHが中性に近づくとプロトンや水酸基の濃度が低下す
るため、反応は進行しにくいが、わずかにはAlN中に
焼結助剤として添加されたCaOの溶解が認められ、A
lNを含む粒界に存在する物質が溶解するものと考えら
れる。このような反応によりAlイオンが溶液中に存在
するようになると、下記の化6式〜化7式に示した反応
が進行するようになる。AlN + OH − + H 2 O → AlO 2 − + NH 3 When the pH approaches neutrality, the concentration of protons and hydroxyl groups decreases, so that the reaction does not easily proceed, but slightly as a sintering aid in AlN. Dissolution of the added CaO was observed, and A
It is considered that the substance existing at the grain boundary containing 1N is dissolved. When Al ions are present in the solution by such a reaction, the reaction represented by the following formulas (6) to (7) proceeds.
【0022】[0022]
【化6】 3Ni(en)2 2+ +2Al3+ → 2Al(en)3 3+ +3Ni2+ ## STR00006 ## 3Ni (en) 2 2+ + 2Al 3+ → 2Al (en) 3 3+ + 3Ni 2+
【0023】[0023]
【化7】 2Ni(en)3 2+ +2Al3+ → 2Al(en)3 3+ +2Ni2+ すなわり、Ni錯イオンの配位子であるエチレンジアミ
ン(en)はAlイオンの方に配位し易いため、溶液中
にAlN基板より溶解したAlイオンが存在するように
なると、配位子のエチレンジアミンはNiイオンを離れ
てAlイオンの方に配位するようになり、配位子が剥ぎ
取られたNiイオンは不安定となって溶液中で自己分解
反応が進行し、粉末状のNiや箔片状のNiが溶液中に
還元析出するようになる。このため、析出した粉末が基
板上に付着したり、溶液中のNi濃度が変化して被膜形
成のための条件が変化することになる。## STR00008 ## 2Ni (en) 3 2+ + 2Al 3+ → 2Al (en) 3 3+ + 2Ni 2+ ie, skip ethylene diamine is a ligand of the Ni complex ion (en) is coordinated to the people of Al ion When Al ions dissolved from the AlN substrate are present in the solution, the ligand ethylenediamine separates from the Ni ions and coordinates toward the Al ions, and the ligand is peeled off. The obtained Ni ions become unstable and the self-decomposition reaction proceeds in the solution, so that powdered Ni or foil-shaped Ni is reduced and precipitated in the solution. For this reason, the deposited powder adheres to the substrate, or the Ni concentration in the solution changes, so that the conditions for forming the film change.
【0024】上記のような理由から、従来から用いられ
ているNi系メッキ液を用いてAlN基板上に形成され
た配線に無電解メッキ法によりメッキを施そうとした場
合、上記した種々の不都合が生じ、安定してAlN基板
上の配線にメッキ処理を施すのは非常に難しいという課
題があった。For the reasons described above, when the wiring formed on the AlN substrate is to be plated by the electroless plating method using the conventionally used Ni-based plating solution, the above-mentioned various disadvantages occur. Therefore, there is a problem that it is very difficult to stably perform plating on the wiring on the AlN substrate.
【0025】本発明はこのような課題に鑑みなされたも
のであり、AlN基板を腐食することなく、無電解メッ
キ法によりAlN基板に形成された配線のみに、膜密着
性や硬度等の特性に優れたメッキ被膜を選択的、かつ迅
速に形成することができるAlN基板用無電解Ni系メ
ッキ液を提供することを目的としている。The present invention has been made in view of the above-mentioned problems, and it is possible to improve the characteristics such as film adhesion and hardness only on wiring formed on an AlN substrate by electroless plating without corroding the AlN substrate. An object of the present invention is to provide an electroless Ni-based plating solution for an AlN substrate that can form an excellent plating film selectively and quickly.
【0026】[0026]
【課題を解決するための手段】上記目的を達成するため
に本発明に係るAlN 基板用無電解Ni系メッキ液は、Niイ
オン源として硫酸ニッケル、塩化ニッケル又は酢酸ニッ
ケル、錯化剤としてエチレンジアミン、第2錯化剤とし
て乳酸、及び還元剤として次亜りん酸ナトリウムを含ん
でいることを特徴としている。Means for Solving the Problems] for AlN substrate according to the present invention in order to achieve the above object electroless Ni-based plating solution, sulfuric acid nickel as a Ni ion source, salts of nickel or acetic acid nickel, complex lactate, and as a reducing agent is characterized by comprising the following phosphite sodium as agent and to d ethylenediamine, second complexing agent.
【0027】本発明でNiイオン源として使用される硫酸
ニッケル、塩化ニッケル又は酢酸ニッケルの前記Ni系メ
ッキ液中の濃度は、0.01〜0.10モル/リットル程度が好
ましい。ここで、硫酸ニッケル、塩化ニッケル、酢酸ニ
ッケルは結晶水を含むものであっても、無水物であって
もよい。 The concentration of the Ni-based plating solution of the present invention in which Ru sulfate nickel used as a Ni ion source, inorganic nickel or acetic acid nickel, preferably about 0.01 to 0.10 mol / liter. Here, nickel sulfate, nickel chloride,
Kernels contain water of crystallization, but are anhydrous
Is also good.
【0028】前記硫酸ニッケル、塩化ニッケル又は酢酸
ニッケルの前記Ni系メッキ液中の濃度が0.01モル
/リットル未満であると、該Ni系メッキ液中のNiイ
オン濃度が低下するためにNi被膜の形成が難しくな
り、メッキ被膜の形成速度が低下し、他方前記硫酸ニッ
ケル又は塩化ニッケルの前記Ni系メッキ液中の濃度が
0.10モル/リットルを超えると、溶液中で粉末状又
は箔片状のNiが析出し易くなり、却って析出速度が低
下する。If the concentration of the nickel sulfate, nickel chloride or nickel acetate in the Ni-based plating solution is less than 0.01 mol / liter, the Ni ion concentration in the Ni-based plating solution decreases, so that the Ni coating When the concentration of the nickel sulfate or nickel chloride in the Ni-based plating solution exceeds 0.10 mol / L, the formation of powder or foil pieces in the solution becomes difficult. Ni in the form of a crystal is easily precipitated, and the deposition rate is rather lowered.
【0029】錯化剤として使用されるエチレンジアミン
の前記Ni系メッキ液中の濃度は、0.05〜0.20モル/リッ
トル程度が好ましい。ここで、エチレンジアミンは結晶
水を含むものであっても、無水物であってもよい。エチ
レンジアミンのNi系メッキ液中の濃度が0.05モル/リッ
トル未満であると、Ni2+と完全に錯体を形成することが
できず、Niイオンの自己分解が発生し易くなり、他方エ
チレンジアミンのNi系メッキ液中の濃度が0.20モル/リ
ットルを超えると錯化剤の量が多くなり過ぎるため、Ni
の安定な錯体が形成されて、Niが析出しにくくなる。The concentration of ethylenediamine used as a complexing agent in the Ni-based plating solution is preferably about 0.05 to 0.20 mol / liter. Here, ethylenediamine is crystalline
It may contain water or may be anhydrous. If the concentration of ethylenediamine in the Ni-based plating solution is less than 0.05 mol / liter, a complex cannot be completely formed with Ni2 +, and self-decomposition of Ni ions easily occurs. If the concentration in the plating solution exceeds 0.20 mol / l, the amount of complexing agent becomes too large,
Is formed, and Ni is hardly precipitated.
【0030】錯化剤としてエチレンジアミンと共に使用
される第2錯化剤である乳酸の前記Ni系メッキ液中の
濃度は、0.15〜0.30モル/リットル程度が好ま
しい。乳酸の前記Ni系メッキ液中の濃度が0.15モ
ル/リットル未満であると、Niの析出速度は高いが前
記Ni系メッキ液のpHが不安定になり安定な速度でメ
ッキ被膜が形成されなくなり、またブリード現象も発生
し易く、他方乳酸の前記Ni系メッキ液中の濃度が0.
30モル/リットルを超えると、全体として錯化剤の量
が多くなりすぎるためNiの析出量が抑制される。ここ
で、乳酸は、エチレンジアミンと共に錯化剤として作用
するが、エチレンジアミンが主なる錯化剤であるため、
第2錯化剤と称することが通例である。さらにこの乳酸
は、pH調整剤としての役目も果たす。前記乳酸はキラ
ル中心を有するので、2種の光学異性体が存在するが、
本発明ではいずれのものを使用しても良く、また通常使
用されているラセミ体を使用しても良い。The concentration of lactic acid as a second complexing agent used together with ethylenediamine as a complexing agent in the Ni-based plating solution is preferably about 0.15 to 0.30 mol / liter. When the concentration of lactic acid in the Ni-based plating solution is less than 0.15 mol / L, the deposition rate of Ni is high, but the pH of the Ni-based plating solution becomes unstable, and a plating film is formed at a stable rate. And the bleeding phenomenon easily occurs. On the other hand, when the concentration of lactic acid in the Ni-based plating solution is 0.1%.
When the amount exceeds 30 mol / liter, the amount of the complexing agent becomes too large as a whole, so that the amount of Ni precipitated is suppressed. Here, lactic acid acts as a complexing agent together with ethylenediamine, but since ethylenediamine is the main complexing agent,
It is customary to refer to the second complexing agent. The lactic acid also serves as a pH adjuster. Since the lactic acid has a chiral center, there are two types of optical isomers,
In the present invention, any of them may be used, and a commonly used racemic body may be used.
【0031】還元剤として使用される次亜りん酸ナトリ
ウムの前記Ni系メッキ液中の濃度は、0.05〜0.30モル/
リットルが好ましい。ここで、次亜りん酸ナトリウムは
結晶水を含むものであっても、無水物であってもよい。
次亜りん酸ナトリウムの前記Ni系メッキ液中の濃度が0.
05モル/リットル未満であると、還元力が弱く、Niの析
出が起こらず、他方次亜りん酸ナトリウムの前記Ni系メ
ッキ液中の濃度が0.30モル/リットルを超えると、化1
式に示した次亜りん酸イオンの酸化反応が進行し、また
遊離Niイオンの量も増加するため、同様にNiの析出量が
減少する。The concentration of sodium hypophosphite used as a reducing agent in the Ni-based plating solution is 0.05 to 0.30 mol / mol.
Liters are preferred. Where sodium hypophosphite is
It may contain water of crystallization or may be anhydrous.
The concentration of sodium hypophosphite in the Ni-based plating solution is 0.
When the concentration is less than 05 mol / l, the reducing power is weak and Ni does not precipitate. On the other hand, when the concentration of sodium hypophosphite in the Ni-based plating solution exceeds 0.30 mol / l,
Since the oxidation reaction of hypophosphite ions shown in the formula proceeds and the amount of free Ni ions also increases, the amount of precipitated Ni also decreases.
【0032】本発明に係るAlN基板用無電解Ni系メ
ッキ液では、通常前記Niイオン源、前記錯化剤、前記
第2錯化剤、前記還元剤を用いて適当な組み合わせで混
合し、酸を添加してpHを調整することによりメッキ液
として使用することができるが、下地の金属の種類やメ
ッキ層の厚さ等の条件によっては、他の添加剤を添加し
たメッキ液を用いてもよい。ここで、前記したpHの調
整に用いる酸は塩酸が好ましい。硫酸や硝酸を用いた場
合には、硫酸中のSO4 2- イオンや硝酸中のNO3 -イオ
ンが、形成されているNi錯体の安定性に悪影響を与え
るため、好ましくない。特に、NO3 -イオンの場合は、
Ni(NO3 )2 が安定な塩を形成するので好ましくな
い。また前記添加剤としては、pH緩衝剤の役目を果た
す有機酸塩やpH調整剤の役目を果たす有機酸等が挙げ
られる。また具体的には、前記有機酸塩として、例えば
コハク酸ナトリウム、クエン酸ナトリウム、酢酸ナトリ
ウム等が挙げられ、前記有機酸として、例えばリンゴ
酸、マロン酸等が挙げられる。In the electroless Ni-based plating solution for an AlN substrate according to the present invention, the Ni ion source, the complexing agent, the second complexing agent, and the reducing agent are usually mixed in an appropriate combination, and then mixed with an acid. Can be used as a plating solution by adjusting the pH by adding, but depending on conditions such as the type of the underlying metal and the thickness of the plating layer, a plating solution containing other additives may be used. Good. Here, the acid used for adjusting the pH is preferably hydrochloric acid. The use of sulfuric acid or nitric acid is not preferred because SO 4 2- ions in sulfuric acid and NO 3 − ions in nitric acid adversely affect the stability of the formed Ni complex. In particular, in the case of NO 3 - ion,
Ni (NO 3 ) 2 is not preferred because it forms a stable salt. Examples of the additive include an organic acid salt serving as a pH buffer and an organic acid serving as a pH adjuster. More specifically, examples of the organic acid salt include sodium succinate, sodium citrate, sodium acetate, and the like, and examples of the organic acid include malic acid, malonic acid, and the like.
【0033】次に、このAlN基板用無電解Ni系メッ
キ液を用いてAlN基板にメッキ処理を施す方法につい
て説明する。Next, a method of plating a AlN substrate using the electroless Ni-based plating solution for an AlN substrate will be described.
【0034】通常、メッキ処理を施す際の液温は60〜
80℃の範囲が好ましい。優れた特性を有する均質な被
膜を形成するためには、メッキ処理を施す間中、前記N
i系メッキ液の温度を±1℃以内、pHを±0.05以
内に保つのが好ましく、またNi系メッキ液の撹拌やA
lN基板の回転を十分に行って、常にAlN基板に新鮮
な溶液が供給されるようする必要がある。また、窒素又
はアルゴンガスを前記Ni系メッキ液に吹き込むことに
より溶存酸素を除去する必要もある。Usually, the liquid temperature at the time of performing the plating treatment is 60 to
A range of 80 ° C. is preferred. In order to form a uniform film having excellent characteristics, the above N
Preferably, the temperature of the i-based plating solution is kept within ± 1 ° C. and the pH is kept within ± 0.05.
It is necessary to sufficiently rotate the 1N substrate so that a fresh solution is always supplied to the AlN substrate. It is also necessary to remove dissolved oxygen by blowing nitrogen or argon gas into the Ni-based plating solution.
【0035】[0035]
【作用】本発明に係るAlN 基板用無電解Ni系メッキ液に
よれば、Niイオン源として硫酸ニッケル、塩化ニッケル
又は酢酸ニッケル、錯化剤としてエチレンジアミン、第
2錯化剤として乳酸、及び還元剤として次亜りん酸ナト
リウムを含んでおり、低温で、AlN 基板が溶融腐食され
ることなく、AlN 基板上に形成された配線のみに選択的
に、配線との密着性や被膜自身の硬度等の特性に優れた
リン含有Niメッキ被膜が迅速に形成される。According to electroless Ni-based plating solution for AlN substrate according to the present invention, e and sulfate nickel as a Ni ion source, salts of nickel <br/> or acetic acid nickel, a complexing agent ethylenediamine , lactic acid as a second complexing agent, and is a reducing agent include the following phosphite sodium, at low temperatures, without AlN substrate is melted corrosion selectively only to the wiring formed on the AlN substrate In addition, a phosphorus-containing Ni plating film having excellent properties such as adhesion to wiring and hardness of the film itself is quickly formed.
【0036】図7は有機酸の緩衝容量とNiの析出量と
の関係を示したグラフであるが、図7に示すように、N
iの析出量と有機酸の緩衝容量とは大きな相関関係があ
り、緩衝容量が大きくなるほど、Niの析出量が大きく
なる傾向にある。従って、緩衝容量の大きい乳酸を使用
した本発明に係るAlN基板用無電解Niメッキ液はメ
ッキ被膜が迅速に形成される。ただし、この緩衝容量と
Niの析出量とが完全に対応していないのは、その他に
もNiの析出量に関係する因子があるからであると考え
られる。FIG. 7 is a graph showing the relationship between the buffer capacity of the organic acid and the amount of Ni deposited. As shown in FIG.
There is a large correlation between the amount of i deposited and the buffer capacity of the organic acid, and the larger the buffer capacity, the larger the amount of Ni deposited. Therefore, the electroless Ni plating solution for an AlN substrate according to the present invention using lactic acid having a large buffer capacity can quickly form a plating film. However, it is considered that the reason why the buffer capacity does not completely correspond to the amount of Ni deposited is that there are other factors related to the amount of Ni deposited.
【0037】[0037]
【実施例及び比較例】以下、本発明の実施例に係るAl
N基板用無電解Ni系メッキ液を用い、AlN基板にメ
ッキ処理を施した場合について説明する。なお比較例と
して、本発明に係る無電解Ni系メッキ液の組成と異な
る組成の無電解Ni系メッキ液を用いてメッキ被膜を形
成した場合についても説明する。EXAMPLES AND COMPARATIVE EXAMPLES Hereinafter, Al according to examples of the present invention will be described.
A case in which an AlN substrate is plated using an electroless Ni-based plating solution for an N substrate will be described. As a comparative example, a case where a plating film is formed using an electroless Ni-based plating solution having a composition different from the composition of the electroless Ni-based plating solution according to the present invention will be described.
【0038】AlN基板としては、粒界にカルシウムア
ルミニウム酸化物やカルシウムイットリウムアルミニウ
ム酸化物等を有する(株)住友金属セラミックス製のA
lN基板を用いた。そして、このAlN基板に、所定の
配線パターンになるように、スパッタ法により順次T
i、Mo、Cuの被膜をそれぞれ0.05μm、0.5
μm、0.5μmの厚さで形成し、メッキ被膜形成のた
めの下地金属層とした。この配線の最小線幅は50μm
程度である。As the AlN substrate, an AN manufactured by Sumitomo Metal Ceramics Co., Ltd. having calcium aluminum oxide, calcium yttrium aluminum oxide, etc. at the grain boundaries.
An 1N substrate was used. Then, TN is sequentially formed on the AlN substrate by a sputtering method so as to form a predetermined wiring pattern.
i, Mo, and Cu coatings were respectively 0.05 μm and 0.5 μm.
It was formed to a thickness of 0.5 μm or 0.5 μm, and was used as a base metal layer for forming a plating film. The minimum line width of this wiring is 50 μm
It is about.
【0039】この下地金属層の上に表1に示した組成の
無電解Ni系メッキ液を用いてメッキ被膜を形成するわ
けであるが、まず基本的成分(Niイオン源、錯化剤、
還元剤)として、それぞれ塩化ニッケル6水塩(NiC
l2 ・6H2 O)、次亜リン酸ナトリウム1水塩(Na
H2 PO2 ・H2 O)、エチレンジアミン(en)を用
い、表3に示した濃度に調整した。この濃度は、Ni−
ロッシェル塩錯体からNiを化学的に還元させる時に、
皮膜析出量が最大となる値を選択している。A plating film is formed on the base metal layer using an electroless Ni-based plating solution having the composition shown in Table 1. First, basic components (Ni ion source, complexing agent,
Nickel chloride hexahydrate (NiC) as a reducing agent)
l 2 · 6H 2 O), sodium hypophosphite monohydrate (Na
H 2 PO 2 .H 2 O) and ethylenediamine (en) were adjusted to the concentrations shown in Table 3. This concentration is Ni-
When chemically reducing Ni from a Rochelle salt complex,
The value that maximizes the film deposition amount is selected.
【0040】また有機酸と有機酸塩についても表3に示
すものを用い、濃度はEDTA・2Naのみ0.01モ
ル/リットルで、他の有機酸、有機酸塩はすべて0.0
8モル/リットルとした。この濃度に設定した理由は、
同じくNi−ロッシェル塩錯体溶液中のpH緩衝剤、第
2錯化剤の適性濃度がそれぞれ0.075モル/リット
ルであったため、ほぼ同一濃度に調整してその効果の比
較検討するためである。実施例に係るNi系メッキ液調
製の方法としては、500mlビーカーに基本的成分を
それぞれ添加した。添加量は全体で1リットルにした場
合に表1に示した濃度になるような量である。これらの
成分をよく撹拌して混合し、pHが6.4〜6.6の範
囲になるように希塩酸を用いて調整した。その後、表3
に示した有機酸及び有機酸塩を添加し、1リットルのメ
スフラスコにメスアップした後に、後述する所定のpH
に調整した。これは、一度にすべての試薬を調合した後
にメスアップし、pH調整を行うと、溶液に強い緩衝作
用が働き、pH調製が困難になり、これによってメッキ
液の液性が変化するおそれがあるからである。The organic acids and organic acid salts shown in Table 3 were used, and the concentration was 0.01 mol / L for EDTA · 2Na only, and the other organic acids and organic acid salts were 0.0 mol / L.
It was 8 mol / l. The reason for setting this concentration is
Similarly, since the appropriate concentrations of the pH buffering agent and the second complexing agent in the Ni-Rochelle salt solution were 0.075 mol / liter, respectively, the concentrations were adjusted to substantially the same concentration to compare and examine the effects. As a method of preparing a Ni-based plating solution according to the example, basic components were added to a 500 ml beaker. The addition amount is such that the concentration shown in Table 1 is obtained when the total amount is 1 liter. These components were well stirred and mixed, and adjusted with dilute hydrochloric acid so that the pH was in the range of 6.4 to 6.6. Then, Table 3
After adding the organic acid and the organic acid salt shown in the above, and making up a 1-liter volumetric flask, a predetermined pH described later
Was adjusted. This is because if all the reagents are prepared at once and then the volume is adjusted and the pH is adjusted, a strong buffer action acts on the solution, making it difficult to adjust the pH, which may change the liquid property of the plating solution. Because.
【0041】このNi系メッキ液に上記方法により得ら
れた金属薄膜を有するAlN基板を浸漬してメッキ処理
を施した。このとき、前記Ni系メッキ液の温度を60
±1℃以内、pHを6.00±0.01以内に保ち、該
Ni系メッキ液の撹拌や前記AlN基板の回転を十分に
行い、常にAlN基板に新鮮な溶液が供給されるように
した。また、メッキ処理を施している間は、窒素を前記
Ni系メッキ液に吹き込み、溶存酸素を除去した。メッ
キ処理時間は15分である。An AlN substrate having a metal thin film obtained by the above method was immersed in this Ni-based plating solution to perform plating. At this time, the temperature of the Ni-based plating solution was set to 60
The pH was maintained within ± 1 ° C. and the pH was within 6.00 ± 0.01, and the Ni-based plating solution was sufficiently stirred and the AlN substrate was sufficiently rotated so that a fresh solution was always supplied to the AlN substrate. . During the plating process, nitrogen was blown into the Ni-based plating solution to remove dissolved oxygen. The plating time is 15 minutes.
【0042】次に、前記メッキ処理によりメッキ被膜が
形成された前記AlN基板を、混酸溶液で濃硝酸(キシ
ダ化学(株)製の特級試薬)25mlと濃硫酸(キシダ
化学(株)製の特級試薬)25mlとを混合した後に純
水で希釈して100mlとした溶液に浸漬し、メッキ被
膜を溶解させた。そして、このメッキ被膜が溶解した溶
液中の金属イオン濃度をICP(Inductively Coupled
Plasma) 発光分光分析により測定して、溶解したNiイ
オンとPイオンの濃度を求め、Pイオンの含有量を求め
た。Then, 25 ml of concentrated nitric acid (special grade reagent manufactured by Kishida Chemical Co., Ltd.) and concentrated sulfuric acid (special grade manufactured by Kishida Chemical Co., Ltd.) (Reagent) and mixed with 25 ml, and then immersed in a solution diluted to 100 ml with pure water to dissolve the plating film. Then, the metal ion concentration in the solution in which the plating film is dissolved is determined by ICP (Inductively Coupled).
Plasma) was measured by emission spectroscopy to determine the dissolved Ni ion and P ion concentrations, and the P ion content.
【0043】このAlN基板の混酸溶液中への浸漬によ
り、下地金属層のMo、Cu等やAlN基板自体も腐食
溶解したが、NiイオンとPイオンの定量分析には、特
に影響を及ぼさなかった。結果を下記の表3及び表4に
示す。By dipping the AlN substrate in the mixed acid solution, Mo, Cu, etc. of the underlying metal layer and the AlN substrate itself were corroded and dissolved, but did not particularly affect the quantitative analysis of Ni ions and P ions. . The results are shown in Tables 3 and 4 below.
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【表4】 [Table 4]
【0046】上記表3及び表4において、メッキ被膜を
溶解させた溶液中にPイオンが検出されているのは、次
亜リン酸ナトリウムがNiメッキ被膜が形成される際に
同時に析出し、Niとの合金を形成しているためであ
る。In Tables 3 and 4, P ions were detected in the solution in which the plating film was dissolved, because sodium hypophosphite was simultaneously precipitated when the Ni plating film was formed, This is because they form an alloy with
【0047】表3よりわかる通り、乳酸を第2錯化剤と
して使用した場合にNiの析出量が多くなっており、特
に基本的成分に乳酸を単独で加えた場合が最も析出量が
多くなっている。この結果より、実施例に係る3種類の
基本成分に第2錯化剤として乳酸を加えた組成を、基本
的な組成とする無電解Ni系メッキ液が析出量が多くN
i系メッキ液として優れた特性を有することがわかる。
また、この実施例に係るNi系メッキ液を使用した場合
は、ブリードも発生しなかった。As can be seen from Table 3, when lactic acid was used as the second complexing agent, the amount of Ni precipitated was large, especially when lactic acid was added alone to the basic component. ing. From this result, the electroless Ni-based plating solution having the basic composition of the three basic components according to the example and lactic acid added as the second complexing agent has a large amount of N
It can be seen that the i-type plating solution has excellent characteristics.
When the Ni-based plating solution according to this example was used, no bleeding occurred.
【0048】このように上記メッキ液がNi系メッキ液
として良好な特性を有するのは、メッキ液の緩衝容量等
が起因しているものと思われる。The reason why the plating solution has good characteristics as a Ni-based plating solution is considered to be due to the buffer capacity of the plating solution.
【0049】一方、基本成分のみを使用した比較例32
に係るNi系メッキ液の場合には、メッキ被膜の析出量
は最も多かったが、有機酸、有機塩塩等のpH緩衝剤や
pH調製剤を用いていないので、メッキ処理中に45分
程度の長時間のメッキ処理を行うと、pHの変動が激し
く、また前記Ni系メッキ液の自己分解反応のためにブ
リードが発生した。On the other hand, Comparative Example 32 using only basic components
In the case of the Ni-based plating solution according to the above, the deposition amount of the plating film was the largest, but since a pH buffering agent or a pH adjusting agent such as an organic acid or an organic salt was not used, it took about 45 minutes during the plating process. When the plating treatment was performed for a long time, the pH greatly changed, and bleeding occurred due to the self-decomposition reaction of the Ni-based plating solution.
【0050】これにより、基本成分に乳酸を添加した系
がメッキ被膜の形成に優れた効果を有することが分かっ
たので、さらに別の実施例としてこれらの成分の好まし
い範囲について検討を行った。図1〜4は、Niイオン
源として塩化ニッケル6水塩、錯化剤としてエチレンジ
アミン、第2錯化剤として乳酸、還元剤として次亜リン
酸ナトリウムの4つの成分を使用し、3成分の濃度を一
定にして、残りの1成分の濃度を変化させた際に析出す
るNiの重量を示したグラフである。変化させた成分
は、図1では塩化ニッケル6水塩(実施例9〜15)、
図2ではエチレンジアミン(実施例16〜25)、図3
では次亜リン酸ナトリウム1水塩(実施例26〜3
4)、図4ではDL−乳酸(実施例35〜40、比較例
32)である。As a result, it was found that a system in which lactic acid was added to the basic component had an excellent effect on the formation of a plating film. As another example, the preferable ranges of these components were examined. FIGS. 1 to 4 show four concentrations of nickel chloride hexahydrate as a Ni ion source, ethylenediamine as a complexing agent, lactic acid as a second complexing agent, and sodium hypophosphite as a reducing agent. 5 is a graph showing the weight of Ni precipitated when the concentration of the remaining one component was changed while keeping constant. In FIG. 1, the changed components are nickel chloride hexahydrate (Examples 9 to 15),
In FIG. 2, ethylenediamine (Examples 16 to 25), FIG.
Then, sodium hypophosphite monohydrate (Examples 26 to 3)
4) and FIG. 4 shows DL-lactic acid (Examples 35 to 40, Comparative Example 32).
【0051】図1〜4から、実施例に係るNi系メッキ
液中の塩化ニッケル6水塩の濃度については0.01〜
0.10モル/リットル、エチレンジアミンの濃度につ
いては0.05〜0.20モル/リットル、次亜リン酸
ナトリウムの濃度については0.05〜0.30モル/
リットルの範囲でともにNiの析出量が多くなってお
り、各成分の濃度の好ましい範囲であることがわかる。
なお、乳酸の濃度については0.30モル/リットルを
超えるとNiの析出量が増大しているが、それより濃度
が低い範囲ではNiイオンの析出量はほとんど変化して
いない。しかし、0.15モル/リットルより低濃度で
は、析出時にpHの変動が生じ易くなった。From FIG. 1 to FIG. 4, the concentration of nickel chloride hexahydrate in the Ni-based plating solution according to the example was 0.01 to 0.01.
0.10 mol / l, the concentration of ethylenediamine is 0.05 to 0.20 mol / l, and the concentration of sodium hypophosphite is 0.05 to 0.30 mol / l.
It can be seen that the Ni precipitation amount is large in the range of 1 liter, which is a preferable range of the concentration of each component.
When the concentration of lactic acid exceeds 0.30 mol / liter, the amount of Ni precipitation increases, but in the lower concentration range, the amount of Ni ion precipitation hardly changes. However, when the concentration is lower than 0.15 mol / liter, the pH tends to fluctuate during precipitation.
【0052】さらに比較例33として、市販のNi系メ
ッキ液(ワールドメタル(株)製リンデンSA pH
6.8〜7.2)を用い、該Ni系メッキ液の温度を9
0℃、pHを7.0とした他は実施例と同様の条件でメ
ッキ被膜を形成した。Further, as Comparative Example 33, a commercially available Ni-based plating solution (Linden SA pH, manufactured by World Metal Co., Ltd.)
6.8-7.2), and the temperature of the Ni-based plating solution is 9
A plating film was formed under the same conditions as in the example except that the temperature was adjusted to 0 ° C. and the pH was set to 7.0.
【0053】図5は、実施例1に係るAlN基板用無電
解Ni系メッキ液を用いて上記メッキ処理を施したAl
N基板の一部につき、そのメッキ状態を示した拡大平面
図であり、一方図6は比較例33に係るNi系メッキ液
を用いて上記メッキ処理を施したAlN基板の一部につ
き、そのメッキ状態を示した拡大平面図である。FIG. 5 shows Al plated by the above-described plating process using the electroless Ni-based plating solution for an AlN substrate according to the first embodiment.
FIG. 6 is an enlarged plan view showing the plating state of a part of the N substrate, while FIG. 6 is a plan view showing the plating state of a part of the AlN substrate which has been subjected to the above plating treatment using the Ni-based plating solution according to Comparative Example 33. It is the enlarged plan view which showed the state.
【0054】図5及び図6より明らかなように実施例1
に係るAlN基板用無電解Ni系メッキ液を用いてメッ
キ処理を施したものは、AlN基板11に形成された配
線にのみ選択的にNiメッキ被膜10が形成されている
のに対し、比較例33に係るNi系メッキ液を用いてメ
ッキ処理を施したものでは、AlN基板11に形成され
た配線以外の部分にもNiメッキ被膜10が形成されて
おり、前記したブリード現象がはっきりと認められる。Embodiment 1 As is clear from FIGS.
In the case where the plating treatment was performed using the electroless Ni-based plating solution for an AlN substrate according to (1), the Ni plating film 10 was selectively formed only on the wiring formed on the AlN substrate 11, whereas the comparative example In the case where the plating treatment was performed using the Ni-based plating solution according to No. 33, the Ni plating film 10 was also formed on portions other than the wiring formed on the AlN substrate 11, and the bleeding phenomenon described above was clearly recognized. .
【0055】次に、実施例1に係るAlN基板用無電解
Ni系メッキ液を用いることにより、形成されたメッキ
被膜の密着強度を調べた。膜密着強度の測定は、メッキ
被膜に直径1mmのNiリード線をハンダ付けし、毎分
10mmの速度で垂直方向に引っ張ることにより行い、
メッキ被膜が破断した時の強度を膜密着強度とした。そ
の結果、2.48kg/mm2 以上の値が得られ、十分
な膜密着強度を有することが確認された。Next, the adhesion strength of the plating film formed by using the electroless Ni-based plating solution for an AlN substrate according to Example 1 was examined. The measurement of the film adhesion strength was performed by soldering a Ni lead wire having a diameter of 1 mm to the plating film and pulling it vertically at a speed of 10 mm per minute.
The strength when the plating film was broken was defined as the film adhesion strength. As a result, a value of 2.48 kg / mm 2 or more was obtained, and it was confirmed that the film had sufficient film adhesion strength.
【0056】次に、実施例1の場合と同様の組成のNi
系メッキ液を用い、縦横が50mmの下地金属層を有す
るAlN基板にメッキ処理を行った際に、AlN基板が
溶解しているか否かを調べた。このAlN基板の溶解性
の調査は、AlN基板の主成分であるAl3+イオン及び
前記AlN基板の焼成の際に助剤として添加されている
Ca2+、Y3+が、メッキ処理を終えた液中に存在するか
否かをICP発光分光分析で調べることにより行った。
また被膜形成成分であるNi及びPについても同時にそ
の濃度を測定した。メッキ処理は同じNi系メッキ液を
使用して5回連続して行い、各メッキ処理の後にNi系
メッキ液をサンプリングし、前記した各金属の濃度を測
定した。結果を表5に示す。Next, Ni of the same composition as in Example 1 was used.
When plating was performed on an AlN substrate having a base metal layer having a length of 50 mm and a width of 50 mm using a system plating solution, it was examined whether or not the AlN substrate was dissolved. In this investigation of the solubility of the AlN substrate, Al 3+ ions, which are the main components of the AlN substrate, and Ca 2+ and Y 3+ added as auxiliaries at the time of firing the AlN substrate have finished plating. The presence or absence of the solution was examined by ICP emission spectroscopy.
The concentrations of Ni and P, which are film forming components, were also measured at the same time. The plating process was performed 5 times continuously using the same Ni-based plating solution. After each plating process, the Ni-based plating solution was sampled, and the concentration of each metal described above was measured. Table 5 shows the results.
【0057】[0057]
【表5】 [Table 5]
【0058】表5より明らかなように、Al3+、C
a2+、Y3+の各イオンはいずれも0.1ppm以下であ
り、AlN基板からの溶解は認められなかった。一方、
Ni2+イオン及びPは、各測定毎にほぼ一定量づつ低下
しており、再現性よく、一定量のメッキ被膜がAlN基
板の配線上に形成されていることがわかる。As is clear from Table 5, Al 3+ , C
Each ion of a 2+ and Y 3+ was 0.1 ppm or less, and no dissolution from the AlN substrate was observed. on the other hand,
The Ni 2+ ions and P decrease by a substantially constant amount at each measurement, and it can be seen that a fixed amount of plating film is formed on the wiring of the AlN substrate with good reproducibility.
【0059】以上説明してきたように、実施例に係るA
lN基板用無電解Ni系メッキ液を用いてAlN基板に
メッキ処理を施したところ、AlN基板を溶解すること
なく、AlN基板上の配線にのみ選択的に、膜密着強度
等の特性に優れたメッキ被膜を迅速に形成することがで
きた。As described above, A according to the embodiment is
When the AlN substrate was plated using an electroless Ni-based plating solution for an 1N substrate, the AlN substrate was not dissolved, and only the wiring on the AlN substrate was selectively excellent in characteristics such as film adhesion strength. The plating film could be formed quickly.
【0060】[0060]
【発明の効果】以上詳述したように本発明に係るAlN 基
板用無電解Ni系メッキ液にあっては、Niイオン源として
硫酸ニッケル、塩化ニッケル又は酢酸ニッケル、錯化剤
としてエチレンジアミン、第2錯化剤として乳酸、及び
還元剤として次亜りん酸ナトリウムを含んでいるので、
低温で、AlN 基板を溶解腐食させることなく、配線のみ
に選択的に、配線との密着性や被膜自身の硬度等の特性
に優れたリン含有Niメッキ被膜を迅速に形成することが
できる。As described in detail above there for AlN substrate electroless Ni-based plating solution according to the present invention, as a Ni ion source
Sulfate nickel salt nickel or acetic acid nickel, et as a complexing agent <br/> ethylenediamine, lactate as a second complexing agent, and a reducing agent because it contains the following phosphite sodium,
At low temperatures, a phosphorus-containing Ni plating film having excellent properties such as adhesion to the wiring and hardness of the film itself can be quickly formed selectively on the wiring only without dissolving and corroding the AlN substrate.
【図1】本発明の実施例に係るAlN基板用無電解Ni
系メッキ液において、塩化ニッケル6水塩の濃度を変化
させ、他の3成分を一定の濃度に保った際のNi析出量
と塩化ニッケル6水塩の濃度との関係を示したグラフで
ある。FIG. 1 shows an electroless Ni for an AlN substrate according to an embodiment of the present invention.
5 is a graph showing the relationship between the amount of Ni deposited and the concentration of nickel chloride hexahydrate when the concentration of nickel chloride hexahydrate was changed and the other three components were kept at a constant concentration in the system plating solution.
【図2】本発明の実施例に係るAlN基板用無電解Ni
系メッキ液において、エチレンジアミンの濃度を変化さ
せ、他の3成分を一定の濃度に保った際のNi析出量と
エチレンジアミンの濃度との関係を示したグラフであ
る。FIG. 2 shows an electroless Ni for an AlN substrate according to an embodiment of the present invention.
5 is a graph showing the relationship between the amount of Ni deposited and the concentration of ethylenediamine when the concentration of ethylenediamine is changed and the other three components are kept at a constant concentration in the system plating solution.
【図3】本発明の実施例に係るAlN基板用無電解Ni
系メッキ液において、次亜リン酸ナトリウム1水塩の濃
度を変化させ、他の3成分を一定の濃度に保った際のN
i析出量と次亜リン酸ナトリウムの濃度との関係を示し
たグラフである。FIG. 3 shows an electroless Ni for an AlN substrate according to an embodiment of the present invention.
In the base plating solution, the concentration of sodium hypophosphite monohydrate was changed to maintain the other three components at a constant concentration.
3 is a graph showing the relationship between the amount of i precipitation and the concentration of sodium hypophosphite.
【図4】本発明の実施例に係るAlN基板用無電解Ni
系メッキ液において、DL−乳酸の濃度を変化させ、他
の3成分を一定の濃度に保った際のNi析出量とDL−
乳酸の濃度との関係を示したグラフである。FIG. 4 shows an electroless Ni for an AlN substrate according to an embodiment of the present invention.
In the system plating solution, the concentration of DL-lactic acid was changed, and the amount of Ni deposition and DL-lactic acid when the other three components were kept at a constant concentration.
It is the graph which showed the relationship with the concentration of lactic acid.
【図5】本発明の実施例1に係るAlN基板用無電解N
i系メッキ液を用いてメッキ処理を施したAlN基板の
一部について、そのメッキ状態を示した拡大平面図であ
る。FIG. 5 is an electroless N for an AlN substrate according to the first embodiment of the present invention.
FIG. 3 is an enlarged plan view showing a plating state of a part of an AlN substrate that has been subjected to a plating process using an i-based plating solution.
【図6】比較例33に係るAlN基板用無電解Ni系メ
ッキ液を用いてメッキ処理を施したAlN基板の一部に
ついて、そのメッキ状態を示した拡大平面図である。FIG. 6 is an enlarged plan view showing a plating state of a part of an AlN substrate plated with an electroless Ni-based plating solution for an AlN substrate according to Comparative Example 33.
【図7】Ni系メッキ液に添加する有機酸の緩衝容量と
Ni析出量との関係を示したグラフである。FIG. 7 is a graph showing the relationship between the buffer capacity of an organic acid added to a Ni-based plating solution and the amount of Ni deposited.
11 AlN基板 10 Niメッキ被膜 11 AlN substrate 10 Ni plating film
Claims (1)
ッケル又は酢酸ニッケル、錯化剤としてエチレンジアミ
ン、第2錯化剤として乳酸、及び還元剤として次亜りん
酸ナトリウムを含んでいることを特徴とするAlN 基板用
無電解Ni系メッキ液。1. It is characterized in that it contains nickel sulfate, nickel chloride or nickel acetate as a Ni ion source, ethylenediamine as a complexing agent, lactic acid as a second complexing agent, and sodium hypophosphite as a reducing agent. Electroless Ni-based plating solution for AlN substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5298590A JP2993336B2 (en) | 1993-11-29 | 1993-11-29 | Electroless Ni plating solution for AlN substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5298590A JP2993336B2 (en) | 1993-11-29 | 1993-11-29 | Electroless Ni plating solution for AlN substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07150363A JPH07150363A (en) | 1995-06-13 |
JP2993336B2 true JP2993336B2 (en) | 1999-12-20 |
Family
ID=17861713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5298590A Expired - Lifetime JP2993336B2 (en) | 1993-11-29 | 1993-11-29 | Electroless Ni plating solution for AlN substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2993336B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079577A (en) * | 1996-09-03 | 1998-03-24 | Ngk Spark Plug Co Ltd | Printed circuit board and manufacturing method of printed circuit board |
JP5344416B2 (en) * | 2006-03-09 | 2013-11-20 | 奥野製薬工業株式会社 | Bending resistance improver for self-catalyzed electroless nickel plating solution and self-catalyzed electroless nickel plating solution |
JP2013028866A (en) * | 2006-03-09 | 2013-02-07 | Okuno Chemical Industries Co Ltd | Electroless nickel plating liquid |
CN116160002B (en) * | 2023-02-16 | 2024-07-26 | 昆明理工大学 | Nickel coating method of ceramic powder |
-
1993
- 1993-11-29 JP JP5298590A patent/JP2993336B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07150363A (en) | 1995-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6591444B2 (en) | Norcyan electrolytic gold plating solution and gold plating method | |
US8801844B2 (en) | Autocatalytic plating bath composition for deposition of tin and tin alloys | |
US6743346B2 (en) | Electrolytic solution for electrochemical deposit of palladium or its alloys | |
US4780342A (en) | Electroless nickel plating composition and method for its preparation and use | |
JP3482402B2 (en) | Replacement gold plating solution | |
JP2993336B2 (en) | Electroless Ni plating solution for AlN substrate | |
WO2020239908A1 (en) | Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate | |
EP0180265B1 (en) | Method of autocatalytically tin-plating articles of copper or a copper alloy | |
JP3831842B2 (en) | Electroless gold plating solution | |
JPH08176837A (en) | Electroless nickel-phosphorus plating solution | |
JP4230813B2 (en) | Gold plating solution | |
JPH083753A (en) | Electroless ni plating solution for aln substrate | |
JP2910618B2 (en) | Electroless Ni-B plating solution | |
JP2002146585A (en) | Electroplating solution | |
JPH08291389A (en) | Gold plating liquid not substituted with cyanide and gold plating method using this liquid | |
JPH0776782A (en) | Ni electroless plating solution for aln substrate | |
JP7316250B2 (en) | Electroless gold plating bath and electroless gold plating method | |
JP4051513B2 (en) | Replacement type electroless gold plating solution | |
WO2024156770A1 (en) | Plating bath composition for plating of precious metal and a method for depositing a precious metal layer | |
KR101092666B1 (en) | An AuSn alloy plating solution without cyanogen | |
JP3426817B2 (en) | Electroless gold plating solution | |
SU1507864A1 (en) | Solution for chemical deposition of nickel-base alloy | |
JPH0610147A (en) | Palladium activating solution | |
EP3770298A1 (en) | Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate | |
JPH06264281A (en) | Palladium plating solution and palladium plating method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990921 |