JP2991586B2 - Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof - Google Patents

Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof

Info

Publication number
JP2991586B2
JP2991586B2 JP5062232A JP6223293A JP2991586B2 JP 2991586 B2 JP2991586 B2 JP 2991586B2 JP 5062232 A JP5062232 A JP 5062232A JP 6223293 A JP6223293 A JP 6223293A JP 2991586 B2 JP2991586 B2 JP 2991586B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
fatigue
propagation resistance
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5062232A
Other languages
Japanese (ja)
Other versions
JPH06271985A (en
Inventor
昭 伊藤
忠 石川
博 竹澤
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5062232A priority Critical patent/JP2991586B2/en
Publication of JPH06271985A publication Critical patent/JPH06271985A/en
Application granted granted Critical
Publication of JP2991586B2 publication Critical patent/JP2991586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、構造物に発生する変動
荷重により生じる疲労亀裂による破壊が発生し得る、船
舶、橋梁、海洋構造物等の大型構造物に使用する厚鋼板
に適した、耐疲労亀裂伝播特性の優れた鋼板およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for thick steel plates used for large structures such as ships, bridges, marine structures, etc., which can be broken by fatigue cracks caused by fluctuating loads generated in the structures. The present invention relates to a steel sheet excellent in fatigue crack propagation resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】鋼板に連続的に変動荷重が与えられる
と、疲労亀裂が発生する場合がある。特に溶接部では、
溶接金属と鋼板との不連続部が存在するため応力が集中
しやすく、疲労亀裂の発生起点となりやすい。また通
常、発生した疲労亀裂は伝播を続け、最悪の場合には構
造物自体の破壊に結びつく。構造物が船舶、橋梁、海洋
構造物等であれば破壊した場合の社会的影響は大きく、
多くの場合は人命の危険を伴うことが予測される。
2. Description of the Related Art When a fluctuating load is continuously applied to a steel sheet, a fatigue crack may occur. Especially in welds,
Since there is a discontinuous portion between the weld metal and the steel sheet, stress tends to concentrate, and it is likely to be a starting point of fatigue cracking. Usually, the fatigue cracks that have occurred continue to propagate, and in the worst case, lead to the destruction of the structure itself. If the structure is a ship, bridge, marine structure, etc., the social impact of destroying it is large,
In many cases, it is expected that there is a danger of human life.

【0003】これらの構造物では、溶接部で疲労破壊が
発生しにくいように、構造的に応力集中が起こらないよ
うな設計を行ったり、溶接金属と鋼板との境界で特に入
念に形状のきれいな溶接を行って、応力集中を避けてい
るのが現状である。従ってこれらの方法では、設計に大
きな制約がつくため効率的な設計ができず、また溶接の
仕上げに時間がかかり、非効率的であると同時に高コス
ト化の原因となっている。
[0003] In these structures, a design is made so that stress concentration does not occur structurally so that fatigue fracture does not easily occur at a welded portion, or a shape with a particularly careful shape is formed at a boundary between a weld metal and a steel plate. At present, welding is performed to avoid stress concentration. Therefore, in these methods, efficient design cannot be performed due to great restrictions on the design, and it takes a long time to finish the welding, which is inefficient and at the same time causes high cost.

【0004】[0004]

【発明が解決しようとする課題】船舶、橋梁、海洋構造
物等では、通常、板厚6mm以上の厚鋼板が用いられ、溶
融溶接により接合され組み立てられる。前記のように、
溶接部では応力集中が起こりやすいため疲労亀裂の発生
を避けることは非常に難しい。しかし疲労亀裂が発生し
ても、鋼板の疲労伝播速度が遅ければ、構造物の破壊を
引き起こす前に定期点検等で亀裂を発見し、補修するこ
とが可能となる。従って、鋼板に耐疲労伝播抑制特性を
持たすことができれば、上記の課題を解決することがで
きる。
In ships, bridges, offshore structures and the like, thick steel plates having a thickness of 6 mm or more are usually used, and are assembled by fusion welding. As mentioned above,
It is very difficult to avoid the generation of fatigue cracks because stress concentration is likely to occur in a weld. However, even if a fatigue crack occurs, if the fatigue propagation speed of the steel sheet is low, the crack can be found and repaired by periodic inspections or the like before the structure is destroyed. Therefore, if the steel sheet can be provided with fatigue propagation suppression characteristics, the above-mentioned problem can be solved.

【0005】鋼板の耐疲労亀裂伝播特性を向上させるこ
とに注目した方法として、特開平3−291355号公
報に開示された方法がある。特開平3−291355号
公報では、板厚方向に単調かつ連続的な強度勾配をつけ
ることを提案している。そこで本発明の課題は、特開平
3−291355号公報と異なった方法で、鋼板自体に
耐疲労伝播抑制特性を持たすことにある。
As a method focused on improving the fatigue crack propagation resistance of a steel sheet, there is a method disclosed in Japanese Patent Application Laid-Open No. 3-291355. Japanese Patent Application Laid-Open No. Hei 3-291355 proposes that a monotonous and continuous strength gradient be provided in the thickness direction. Therefore, an object of the present invention is to provide a steel sheet itself with fatigue propagation suppression characteristics by a method different from that of Japanese Patent Application Laid-Open No. 3-291355.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために種々の検討を行った。その結果、組織
がフェライト、パーライト、ベイナイトの1種または2
種以上で主に構成され、さらに平均存在間隔20μm以
下でかつ平均偏平比5以上の形状をした島状マルテンサ
イトが、積率で0.5〜5%の割合で存在する鋼板
は、疲労の伝播速度が遅いことを知見した。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems. As a result, the structure is one or two of ferrite, pearlite, and bainite.
Mainly consists of a species or more, the steel sheet further average presence spacing 20μm or less island martensite and has a mean flatness ratio 5 or more shapes is present in a proportion of 0.5% to 5% in terms factor fatigue Was found to be slow.

【0007】本発明鋼板の要旨は以下の構成からなる。 (1) 重量%で、 C :0.03〜0.20%、 Si:≦0.50%、 Mn:0.4〜1.6%、 P :≦0.020%、 S :≦0.010%、 Al:≦0.10%、 N :≦0.006%、 残部は鉄または不可避的不純物からなる鋼で、しかも組
織がフェライト、パーライト、ベイナイトの1種または
2種以上で主に構成され、さらに平均存在間隔20μm
以下でかつ平均偏平比5以上の形状をした島状マルテン
サイトが、面積率で0.5〜5%の割合で存在すること
を特徴とする耐疲労伝播特性の優れた鋼板。 (2)上記鋼はさらに重量%で、 Cu:≦1.0%、 Ni:≦1.5%、 Nb:≦0.1%、 V :≦0.1%、 Cr:≦1.0%、 Ti:0.005〜0.02%、 B :0.0005〜0.0020% のうち1種または2種以上を含有することを特徴とする
前記(1)記載の耐疲労伝播特性の優れた鋼板。
The gist of the steel sheet of the present invention has the following constitution. (1) By weight%, C: 0.03 to 0.20%, Si: ≤ 0.50%, Mn: 0.4 to 1.6%, P: ≤ 0.020%, S: ≤ 0,0%. 010%, Al: ≦ 0.10% , N: ≦ 0.006%, the balance of steel consisting of iron or unavoidable impurities, yet set
Weave is one of ferrite, pearlite, bainite or
It is mainly composed of two or more kinds, and the average existence interval is 20 μm
Island-shaped marten with a shape of less than or equal to 5 and an average aspect ratio of 5 or more
Sites are present at a rate of 0.5-5% in area ratio
Steel sheet with excellent fatigue propagation resistance characterized by (2) The above steel is further expressed in weight% : Cu: ≦ 1.0%, Ni: ≦ 1.5%, Nb: ≦ 0.1%, V: ≦ 0.1%, Cr: ≦ 1.0% , Ti: 0.005 to 0.02%, B: 0.0005 to 0.0020%, characterized by containing one or more of them.
The steel sheet excellent in fatigue propagation resistance according to the above (1).

【0008】また、本発明鋼板の製造方法の要旨は以下
の構成からなる。 (3)重量%で、 C :0.03〜0.20%、 Si:≦0.50%、 Mn:0.4〜1.6%、 P :≦0.020%、 S :≦0.010%、 Al:≦0.10%、 N :≦0.006%、 残部は鉄または不可避的不純物からなる鋼を連続鋳造ま
たは造塊によりスラブとし、直送圧延または再加熱後圧
延を行い、仕上圧延においてAr3 点+10℃〜Ar3
点−50℃の範囲で圧延を終了し、その後Ar3 点−5
0℃以下の温度から鋼板の表裏面同時に水冷を開始し、
600℃以下の温度で水冷を停止した後空冷し、しかも
組織がフェライト、パーライト、ベイナイトの1種また
は2種以上で主に構成され、さらに平均存在間隔20μ
m以下でかつ平均偏平比5以上の形状をした島状マルテ
ンサイトが、面積率で0.5〜5%の割合で存在するこ
とを特徴とする耐疲労伝播特性の優れた鋼板の製造方
法。 (4)上記スラブはさらに重量%で、 Cu:≦1.0%、 Ni:≦1.5%、 Nb:≦0.1%、 V :≦0.1%、 Cr:≦1.0%、 Ti:0.005〜0.02%、 B :0.0005〜0.0020% のうち1種または2種以上を含有することを特徴とする
前記(3)記載の耐疲労伝播特性の優れた鋼板の製造方
法。
The gist of the method for producing the steel sheet of the present invention is as follows.
It consists of. (3) By weight%, C: 0.03 to 0.20%, Si: ≤ 0.50%, Mn: 0.4 to 1.6%, P: ≤ 0.020%, S: ≤ 0. 010%, Al: ≤ 0.10%, N: ≤ 0.006%, balance: iron or steel consisting of unavoidable impurities, made into a slab by continuous casting or ingot casting, rolled directly or rolled after reheating and finished Ar 3 points in rolling + 10 ° C. to Ar 3
Rolling is completed within the range of the point -50 ° C, and then Ar 3 point -5
Starting water cooling from the temperature of 0 ° C or less at the same time on both sides of the steel sheet,
Air cooling after stopping water cooling at 600 ° C. below the temperature, yet
The structure is one of ferrite, pearlite, bainite or
Is mainly composed of two or more kinds,
m or less and an average aspect ratio of 5 or more
Site is present at a rate of 0.5 to 5% in area ratio.
For producing steel sheets with excellent fatigue propagation resistance characterized by
Law. (4) The above slab is further expressed by weight% : Cu: ≤ 1.0%, Ni: ≤ 1.5%, Nb: ≤ 0.1%, V: ≤ 0.1%, Cr: ≤ 1.0% , Ti: 0.005 to 0.02%, B: 0.0005 to 0.0020%, characterized by containing one or more of them.
Method for producing a steel sheet having excellent fatigue propagation resistance according to (3) above
Law.

【0009】ここで以下に、各成分の限定理由を述べ
る。各成分の限定理由は、一般的な構造用鋼における成
分の限定理由と同様である。Cは、強度の増加および島
状マルテンサイトの生成に必要であるが、少なすぎると
効果がなく、多すぎると溶接性の低下や母材および溶接
部の靭性低下を起こすため、下限を0.03%とし上限
を0.20%とした。
The reasons for limiting each component are described below. The reasons for limiting the components are the same as the reasons for limiting the components in general structural steel. C is necessary for increasing strength and for producing island-like martensite. However, if it is too small, it has no effect, and if it is too large, it causes a decrease in weldability and a decrease in toughness of a base material and a welded portion. 03% and the upper limit was 0.20%.

【0010】Siは、溶鋼の脱酸に有効であるが、多す
ぎると溶接性の低下や母材および溶接部の靭性低下を起
こすため、0.5%を上限とした。MnもCと同様に強
度の増加および島状マルテンサイトの生成に必要である
が、少なすぎると効果がなく、多すぎると溶接性の低下
や母材および溶接部の靭性低下を起こすため、下限を
0.4%、上限を1.6%とした。Pは母材特性の向上
のためには低い方が望ましいが、Pを下げることにより
コストの増加を引き起こす。そこで経済性の点から上限
を0.02%とした。Sは、Pと同様に母材特性の向上
のためには低い方が望ましいが、Sを下げることにより
コストの増加を引き起こす。そこで経済性の点から上限
を0.01%とした。
[0010] Si is effective for deoxidizing molten steel, but too much Si causes a decrease in weldability and a decrease in toughness of the base metal and the welded portion. Mn, like C, is necessary for increasing strength and forming island-like martensite. However, if it is too small, it has no effect, and if it is too large, it causes a decrease in weldability and a decrease in toughness of a base material and a weld. Was 0.4% and the upper limit was 1.6%. It is desirable that P is low for improving the properties of the base material, but lowering P causes an increase in cost. Therefore, the upper limit is set to 0.02% in terms of economy. S, like P, is desirably low to improve the properties of the base material, but lowering S causes an increase in cost. Therefore, the upper limit is set to 0.01% from the viewpoint of economy.

【0011】Alは、脱酸のために必須であるが、多す
ぎると介在物が増加し、鋼板の超音波探傷での欠陥とし
て検出されたり、母材の靭性低下を引き起こすため、上
限を0.1%とした。Nは、固溶量が多くなると溶接熱
影響部の靭性を著しく低下させることから、上限を0.
006%とした。Cuは、母材の靭性を損なわずに強度
を増加させることができるが、多すぎると溶接部の靭性
を低下させるため、1.0%を上限とした。
[0011] Al is essential for deoxidation, but if it is too much, inclusions increase, which is detected as a defect in ultrasonic flaw detection of the steel sheet or causes a decrease in the toughness of the base material. 0.1%. N has an upper limit of 0. 0 if the amount of solid solution increases, the toughness of the heat affected zone significantly decreases.
006%. Cu can increase the strength without deteriorating the toughness of the base material, but if too much, the toughness of the welded portion is reduced. Therefore, the upper limit was set to 1.0%.

【0012】Niは、母材の靭性を損なわずに強度を増
加させることができるが、多すぎると溶接部の靭性を低
下させるため、1.0%を上限とした。
[0012] Ni can increase the strength without impairing the toughness of the base material, but if too much, Ni reduces the toughness of the welded portion.

【0013】Nbは、母材の靭性を向上させると同時に
強度を増加させることができるが、多すぎると溶接部の
靭性を低下させるため、0.1%を上限とした。Vは、
母材の靭性を損なわずに強度を増加させることができる
が、多すぎると溶接部の靭性を低下させるため、0.1
%を上限とする。Crは、母材の靭性を損なわずに強度
を増加させることができるが、多すぎると母材および溶
接部の靭性を低下させるため、1.0%を上限とした。
[0013] Nb can improve the toughness of the base material and at the same time increase the strength, but if too much, Nb lowers the toughness of the welded portion, so the upper limit is 0.1%. V is
Although the strength can be increased without impairing the toughness of the base material, if too large, the toughness of the welded portion is reduced.
% As the upper limit. Cr can increase the strength without deteriorating the toughness of the base material, but if too much, lowers the toughness of the base material and the welded portion. Therefore, the upper limit was made 1.0%.

【0014】Tiは、鋼中でTiNを生成することによ
り再加熱圧延時の加熱時や溶接熱影響部でのオーステナ
イト粒の成長を抑制することにより靭性を向上させるこ
とができる。しかし添加量が少なすぎるとその効果がな
く、多すぎるとTiCの生成により母材および溶接熱影
響部の靭性が著しく低下するため、下限を0.005
%、上限を0.02%とした。Bは、固溶Bとして母材
強度の増加、BNやFe23CB6 の析出により溶接熱影
響部での組織微細化のために添加する。少なすぎるとそ
の効果がなく、多すぎると溶接性の低下および靭性の低
下を招くため、下限を0.0005%、上限を0.00
20%とした。
Ti can improve toughness by generating TiN in the steel to suppress the growth of austenite grains at the time of heating during reheating rolling and in the weld heat affected zone. However, if the addition amount is too small, the effect is not obtained. If the addition amount is too large, the toughness of the base material and the weld heat affected zone is significantly reduced due to the generation of TiC.
% And the upper limit is set to 0.02%. B is added as solid solution B to increase the strength of the base material and to precipitate BN and Fe 23 CB 6 to refine the structure in the weld heat affected zone. If the amount is too small, the effect is not obtained. If the amount is too large, the weldability and the toughness are reduced. Therefore, the lower limit is 0.0005% and the upper limit is 0.00.
20%.

【0015】上記の成分を有するスラブを直送圧延また
は再加熱圧延するにあたり、仕上圧延においてAr3
+10℃〜Ar3 点−50℃の範囲で圧延を終了し、そ
の後Ar3 点−50℃以下の温度から鋼板の表裏面同時
に水冷を開始し、600℃以下の温度で水冷を停止した
後空冷することによって、組織がフェライト、パーライ
ト、ベイナイトの1種または2種以上で主に構成され、
さらに平均存在間隔20μm以下でかつ平均偏平比5以
上の形状をした島状マルテンサイトが、積率5%以下
の割合で存在する鋼板を製造することができ、疲労亀裂
の進展速度を低下できる。しかし島状マルテンサイト
は、多量に存在すると、シャルピー試験値等の靭性を著
しく低下させるため上限の積率を5%とし、少なすぎ
ると効果がないことから下限の積率を0.5%とし
た。
In direct rolling or reheating rolling of the slab having the above-mentioned components, rolling is finished in the range of Ar 3 points + 10 ° C. to Ar 3 points−50 ° C. in finish rolling, and then Ar 3 points−50 ° C. or less By starting water cooling at the same time on both sides of the steel sheet from the temperature of the steel sheet, by stopping the water cooling at a temperature of 600 ° C. or less and then air cooling, the structure is mainly composed of one or more of ferrite, pearlite, bainite,
Further Mean presence spacing 20μm or less and island martensite in which the average flatness ratio of 5 or more shape, it is possible to manufacture a steel sheet that is present in a proportion of 5% or less surface factor, can reduce the growth rate of fatigue cracks . However island martensite, when large quantities are present, the surface factor of the upper limit for significantly reducing the toughness of Charpy test values such as 5%, the surface factor of the lower limit since it is not too small effect 0.5 %.

【0016】[0016]

【作用】本発明者らは、下記の成分のスラブから製造し
た数種類の鋼板の疲労伝播速度を調査し、図3に示すよ
うな結果を得、以下のことを見出した。 仕上温度が低いほど、疲労亀裂の伝播速度が遅いこ
と。 圧延後空冷した鋼板と水冷した鋼板では、水冷した鋼
板の方が疲労亀裂の伝播速度が遅いこと。
The present inventors have investigated the fatigue propagation speed of several types of steel plates manufactured from slabs having the following components, obtained the results shown in FIG. 3, and found the following. The lower the finishing temperature, the slower the rate of fatigue crack propagation. The water-cooled steel sheet has a lower fatigue crack propagation speed than the air-cooled steel sheet and the water-cooled steel sheet after rolling.

【0017】[0017]

【表1】 [Table 1]

【0018】これらの鋼板の疲労亀裂の伝播部の組織を
調査した結果、仕上圧延終了温度が低くしかも圧延後に
水冷を行った鋼板では、鋼板中に島状マルテンサイトが
生成し、しかも島状マルテンサイトの生成部で疲労亀裂
の分岐が見られることを発見した。疲労亀裂が分岐する
と亀裂先端での応力が低下することが予測され、この応
力低下により疲労亀裂の伝播速度が低下したと思われ
る。
As a result of examining the structure of the fatigue crack propagation portion of these steel sheets, it was found that in the steel sheet having a low finish rolling end temperature and water cooling after the rolling, island martensite was formed in the steel sheet, and moreover, island martensite was formed. It was discovered that fatigue crack branching was observed at the site formation site. It is predicted that when the fatigue crack branches, the stress at the tip of the crack decreases, and it is considered that the propagation speed of the fatigue crack decreases due to the decrease in the stress.

【0019】ここでの水冷は、鋼板の表面および裏面に
おいて同時に行っているため、鋼板の強度(硬さ)は、
図4に示すように、特開平3−291355号公報に開
示されているような板厚方向に単調かつ連続的な強度勾
配を持つものではない。
Since the water cooling is performed simultaneously on the front and back surfaces of the steel sheet, the strength (hardness) of the steel sheet is
As shown in FIG. 4, it does not have a monotonous and continuous intensity gradient in the thickness direction as disclosed in Japanese Patent Application Laid-Open No. 3-291355.

【0020】そこでさらに組織を詳細に調査した結果、
フェライト、パーライトまたはベイナイトを主とする組
織中に、島状マルテンサイトが層状に分散し、しかもそ
の平均存在間隔が20μmである場合に、上記の疲労亀
裂伝播速度の遅延が起こることを見出した。さらに疲労
亀裂が分岐するためには、島状マルテンサイトの形状
が、鋼板表面に平行に伸延した形状で、偏平比(長軸の
長さ/短軸の長さ)の平均値で5以上である方が良いこ
とを見出した。
Therefore, as a result of further investigation of the organization,
It has been found that when the island martensite is dispersed in a layered structure in a structure mainly composed of ferrite, pearlite or bainite, and the average interval thereof is 20 μm, the above-mentioned delay in the fatigue crack propagation speed occurs. Furthermore, in order for fatigue cracks to branch, the shape of the island-like martensite extends parallel to the surface of the steel sheet, and the average of the flatness ratio (length of major axis / length of minor axis) is 5 or more. I found something better.

【0021】さらに上記の組織を得るための製造条件を
検討した結果、成分は通常の構造用鋼と同等で良く、圧
延および圧延後の冷却条件として、圧延終了温度をA
3点+10℃〜Ar3 点−50℃とすることによりオ
ーステナイト粒を偏平させ、フェライト変態の進行し
たAr3 点−50℃以下の温度から水冷を開始すること
によりオーステナイト中に成分を濃縮させ、水冷する
ことにより冷却速度を増加し成分の濃縮したオーステナ
イトを島状マルテンサイトに変態させ、かつ600℃
以下の温度で水冷を停止した後に空冷することにより変
態後の島状マルテンサイトを残存させることが必要であ
ることを見出した。
Further, as a result of studying the manufacturing conditions for obtaining the above structure, the components may be the same as those of ordinary structural steels.
was flattened by the austenite grains by the r 3 point + 10 ° C. to Ar 3 point -50 ° C., then concentrated ingredients into austenite by starting the advanced Ar 3 point -50 ° C. water cooling from the temperature of the ferrite transformation The cooling rate was increased by cooling with water to transform the austenite in which the components were concentrated into island martensite, and at 600 ° C.
It has been found that it is necessary to stop the water-cooling at the following temperature and then air-cool to leave the island-like martensite after transformation.

【0022】[0022]

【実施例】表2および表3に、本発明での実施例を示
す。本圧延条件を決定するために、Ar3 点を求めるこ
とが必要であるが、下式を用いて計算により求めた。 Ar3 =1108−777×C−200×Mn−23×
Cu−38×Ni
EXAMPLES Tables 2 and 3 show examples of the present invention. In order to determine the main rolling conditions, it is necessary to determine the Ar 3 point, which was determined by calculation using the following equation. Ar 3 = 1108-777 × C-200 × Mn-23 ×
Cu-38 × Ni

【0023】疲労伝播速度は、図1に示す形状の試験片
に、図2で示す3点曲げの方法で応力を付加し、一定の
応力振幅付加回数ごとに応力振幅を小さくすることでビ
ーチマークを入れ、ビーチマーク間の疲労亀裂の進展長
さを応力振幅付加回数で割った値を指標として用いた。
この値は、応力振幅1回あたりの疲労亀裂の進展長さを
示し、この値が小さいほど、疲労亀裂の伝播が遅いこと
を示す。試験体の長軸方向が圧延方向と平行になるよう
に採取した。
The fatigue propagation speed is obtained by applying a stress to the test piece having the shape shown in FIG. 1 by the three-point bending method shown in FIG. 2 and reducing the stress amplitude at every given number of stress amplitude applications. And the value obtained by dividing the fatigue crack growth length between the beach marks by the number of stress amplitude additions was used as an index.
This value indicates the propagation length of the fatigue crack per one stress amplitude, and the smaller the value, the slower the propagation of the fatigue crack. The specimen was sampled so that the major axis direction was parallel to the rolling direction.

【0024】鋼材の主たる組織は、鋼材から切り出した
小型試験体の板厚方向断面(圧延方向と平行な面)を研
磨し、鏡面状態まで仕上げた面にて、5%硝酸−アルコ
ール溶液にて腐食を行い、その面を金属顕微鏡で観察す
ることによって決定した。
The main structure of the steel material is that a small specimen cut out from the steel material is polished in a section in the thickness direction (a plane parallel to the rolling direction), and is polished to a mirror-finished surface with a 5% nitric acid-alcohol solution. Corrosion was performed and the surface was determined by observation with a metallurgical microscope.

【0025】鋼材中の島状マルテンサイトは、鋼材から
切り出した小型試験体の板厚方向断面(圧延方向と平行
な面)を研磨し、鏡面状態まで仕上げた面にて、1%ピ
ロ亜硫酸ナトリウム−4%ピクリン酸混合溶液での腐食
により現出させた。現出させた島状マルテンサイトを写
真撮影し、その写真について画像解析装置で解析を行
い、面積率、平均存在間隔および平均偏平比を求めた。
The island-like martensite in the steel material is obtained by polishing a cross section in a thickness direction (a surface parallel to the rolling direction) of a small specimen cut out from the steel material and polishing it to a mirror-finished surface with 1% sodium pyrosulfite-4%. % Picric acid by corrosion in a mixed solution. The resulting island-like martensite was photographed, and the photograph was analyzed by an image analyzer to determine the area ratio , average existence interval, and average aspect ratio.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】No.A,C,F,H,J,Lは本発明鋼で
あり、本発明の条件から外れた比較鋼のNo.B,D,
E,G,I,K,Mに比較し、本発明鋼は疲労の伝播速
度が1/3〜1/4に低下しており、本発明の効果が認
められる。
No. A, C, F, H, J, and L are the steels of the present invention. B, D,
Compared with E, G, I, K, and M, the steel of the present invention has a fatigue propagation speed reduced to 1/3 to 1/4, and the effect of the present invention is recognized.

【0030】[0030]

【発明の効果】本発明の鋼板を疲労亀裂の発生する可能
性のある構造物に使用することによって、疲労亀裂の進
展を遅らせることができ、疲労設計条件の緩和、定期点
検の期間の延長、構造物の破壊の回避等の効果が期待で
き、本発明の社会的意義は非常に大きい。
By using the steel sheet of the present invention for a structure where a fatigue crack may occur, the growth of the fatigue crack can be delayed, the fatigue design conditions can be relaxed, the period of the periodic inspection can be extended, The effect of avoiding the destruction of the structure can be expected, and the social significance of the present invention is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b),(c)は疲労伝播特性調査に
用いた試験片の形状の説明図を示す。
1 (a), 1 (b) and 1 (c) show explanatory views of the shape of a test piece used for investigating fatigue propagation characteristics.

【図2】疲労伝播特性調査に用いた試験片への応力付加
方法の説明図を示す。
FIG. 2 is an explanatory view of a method for applying stress to a test piece used for investigating fatigue propagation characteristics.

【図3】圧延終了温度、圧延後の水冷有無と疲労亀裂伝
播速度の関係の図表を示す。
FIG. 3 is a table showing the relationship between the rolling end temperature, the presence or absence of water cooling after rolling, and the fatigue crack propagation speed.

【図4】本発明鋼の板厚方向の硬さ分布の図表を示す。FIG. 4 is a table showing the hardness distribution of the steel of the present invention in the thickness direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船津 裕二 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 昭59−110729(JP,A) 特公 昭62−35452(JP,B2) 特公 昭60−9086(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/54 C21D 8/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yuji Funatsu 1 Nishinoshima, Oita, Nippon Steel Corporation Oita Works (56) References JP-A-59-110729 (JP, A) Akira Tokubo 62-35452 (JP, B2) JP-B-60-9086 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00-38/54 C21D 8/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.20%、 Si:≦0.50%、 Mn:0.4〜1.6%、 P :≦0.020%、 S :≦0.010%、 Al:≦0.10%、 N :≦0.006%、 残部は鉄または不可避的不純物からなる鋼で、しかも
織がフェライト、パーライト、ベイナイトの1種または
2種以上で主に構成され、さらに平均存在間隔20μm
以下でかつ平均偏平比5以上の形状をした島状マルテン
サイトが、面積率で0.5〜5%の割合で存在すること
を特徴とする耐疲労伝播特性の優れた鋼板。
1. A weight%, C: 0.03~0.20%, Si : ≦ 0.50%, Mn: 0.4~1.6%, P: ≦ 0.020%, S: ≦ 0.010%, Al: ≤ 0.10%, N: ≤ 0.006%, balance being steel consisting of iron or unavoidable impurities, and one or more of ferrite, pearlite, bainite microstructures And the average existence interval is 20 μm
A steel sheet having excellent fatigue propagation resistance, characterized in that island martensite having a shape of not more than 5 and having an average aspect ratio of 5 or more is present in an area ratio of 0.5 to 5%.
【請求項2】 上記鋼はさらに重量%で、 Cu:≦1.0%、 Ni:≦1.5%、 Nb:≦0.1%、 V :≦0.1%、 Cr:≦1.0%、 Ti:0.005〜0.02%、 B :0.0005〜0.0020% のうち1種または2種以上を含有することを特徴とする
請求項1記載の耐疲労伝播特性の優れた鋼板。
2. The steel according to claim 1, further comprising : by weight : Cu: ≦ 1.0%, Ni: ≦ 1.5%, Nb: ≦ 0.1%, V: ≦ 0.1%, Cr: ≦ 1. 0%, Ti: 0.005 to 0.02%, B: 0.0005 to 0.0020%, characterized by containing one or more of them.
The steel sheet having excellent fatigue propagation resistance according to claim 1.
【請求項3】 重量%で、C :0.03〜0.20%、 Si:≦0.50%、 Mn:0.4〜1.6%、 P :≦0.020%、 S :≦0.010%、 Al:≦0.10%、 N :≦0.006%、 残部は鉄または不可避的不純物からなる鋼を連続鋳造ま
たは造塊によりスラブとし、直送圧延または再加熱後圧
延を行い、仕上圧延においてAr 3 点+10℃〜Ar 3
点−50℃の範囲で圧延を終了し、その後Ar 3 点−5
0℃以下の温度から鋼板の表裏面同時に水冷を開始し、
600℃以下の温度で水冷を停止した後空冷し、しかも
組織がフェライト、パーライト、ベイナイトの1種また
は2種以上で主に構成され、さらに平均存在間隔20μ
m以下でかつ平均偏平比5以上の形状をした島状マルテ
ンサイトが、面積率で0.5〜5%の割合で存在 するこ
とを特徴とする耐疲労伝播特性の優れた鋼板の製造方
法。
3. In% by weight, C: 0.03 to 0.20%, Si: ≤ 0.50%, Mn: 0.4 to 1.6%, P: ≤ 0.020%, S: ≤ 0.010%, Al: ≤ 0.10%, N: ≤ 0.006%, with the balance being steel or iron or unavoidable impurities.
Or slab by agglomeration, pressure after direct rolling or reheating
And then, in finish rolling, Ar 3 points + 10 ° C. to Ar 3
Rolling is completed within the range of the point -50 ° C, and then Ar 3 point -5
Starting water cooling from the temperature of 0 ° C or less at the same time on both sides of the steel sheet,
After stopping water cooling at a temperature of 600 ° C or less, air-cool,
The structure is one of ferrite, pearlite, bainite or
Is mainly composed of two or more kinds,
m or less and an average aspect ratio of 5 or more
A method for producing a steel sheet having excellent fatigue propagation resistance, characterized in that insites are present in an area ratio of 0.5 to 5% .
【請求項4】 上記スラブはさらに重量%で、 Cu:≦1.0%、 Ni:≦1.5%、 Nb:≦0.1%、 V :≦0.1%、 Cr:≦1.0%、 Ti:0.005〜0.02%、 B :0.0005〜0.0020% のうち1種または2種以上を含有することを特徴とする
請求項3記載の耐疲労伝播特性の優れた鋼板の製造方
法。
4. The slab further comprises, by weight : Cu: ≦ 1.0%, Ni: ≦ 1.5%, Nb: ≦ 0.1%, V: ≦ 0.1%, Cr: ≦ 1. 0%, Ti: 0.005 to 0.02%, B: 0.0005 to 0.0020%, characterized by containing one or more of them.
4. A method for producing a steel sheet having excellent fatigue propagation resistance according to claim 3.
Law.
JP5062232A 1993-03-22 1993-03-22 Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof Expired - Lifetime JP2991586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5062232A JP2991586B2 (en) 1993-03-22 1993-03-22 Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5062232A JP2991586B2 (en) 1993-03-22 1993-03-22 Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06271985A JPH06271985A (en) 1994-09-27
JP2991586B2 true JP2991586B2 (en) 1999-12-20

Family

ID=13194212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5062232A Expired - Lifetime JP2991586B2 (en) 1993-03-22 1993-03-22 Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2991586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537649B2 (en) * 2002-10-08 2010-09-01 新日本製鐵株式会社 Rotating welded joint, manufacturing method of Rotated welded joint, and welded structure
JP5168806B2 (en) * 2006-03-23 2013-03-27 新日鐵住金株式会社 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
KR101392448B1 (en) * 2012-03-21 2014-05-12 동국제강주식회사 High strength and heavy wall thickness Linepipe steel having low yield ratio and excellent low temperature toughness, and method for Manufacturing the Same

Also Published As

Publication number Publication date
JPH06271985A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
RU2205245C2 (en) Steel with high rupture resistance and process of production thereof
JP4226626B2 (en) High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
JP5598485B2 (en) Thick steel plate having a thickness of 50 mm or more excellent in long and brittle crack propagation stopping characteristics and method for producing the same
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
WO2013051231A1 (en) High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
JP6477993B1 (en) Thick steel plate and manufacturing method thereof
WO2014155439A1 (en) High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same
KR19980703593A (en) Welding coefficient with excellent fatigue strength
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
JP2007107072A (en) Steel material excellent in fatigue cracking propagation resistance
JP2991586B2 (en) Steel sheet excellent in fatigue propagation resistance and manufacturing method thereof
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP2007119857A (en) High toughness steel material with excellent fatigue crack propagation resistance
JPH06271984A (en) Steel plate excellent in fatigue propagation resistance and arrest property and its production
JP6384638B1 (en) Ferritic / austenitic duplex stainless steel sheet
CN103459640A (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JPH08144008A (en) High tensile strength steel and its production
JP3509520B2 (en) High-strength hot-rolled steel sheet for processing excellent in corrosion resistance and fatigue properties and method for producing the same
JP7468814B1 (en) High strength extra thick steel plate and its manufacturing method
JPH06299238A (en) Manufacture of steel plate having excellent fatigue crack propagation resistant characteristic and toughness at welding heat-influenced part
JP4659593B2 (en) Method for producing high-tensile steel sheet with low acoustic anisotropy and excellent base material toughness
JP7173163B2 (en) Welded structure
JP2010077494A (en) Steel for large heat-input welding
JP3549365B2 (en) Manufacturing method of steel for ERW steel pipe
JP2007182611A (en) Fatigue crack resistant steel plate for welding having excellent fatigue strength of joint

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14