JP2990733B2 - Imaging device - Google Patents
Imaging deviceInfo
- Publication number
- JP2990733B2 JP2990733B2 JP2087218A JP8721890A JP2990733B2 JP 2990733 B2 JP2990733 B2 JP 2990733B2 JP 2087218 A JP2087218 A JP 2087218A JP 8721890 A JP8721890 A JP 8721890A JP 2990733 B2 JP2990733 B2 JP 2990733B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal
- output
- screen
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003384 imaging method Methods 0.000 title claims description 8
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 20
- 238000001444 catalytic combustion detection Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、撮像装置に関するものであり、特に光量制
御に関する。Description: TECHNICAL FIELD The present invention relates to an image pickup apparatus, and more particularly to light quantity control.
(従来の技術) 第5図にCCDを2個用いた2板式のビデオカメラ回路
の従来例を示す。図において、絞り3を制御するアイリ
ス駆動回路21は、増幅器8の出力信号をNAM(非加算ミ
クシング)回路18で、同時点におけるR,B,G各Chの信号
中の最大値を選択し、選択した信号を検波回路(Def)4
1で検波平滑し、この平滑された信号レベルが設定され
た基準値になるように、絞り3を制御しているが、この
平均検波の方法は、画面全体の明るさの平均が最適輝度
になるように制御する方法であり、ハイライト部分と黒
い部分が均等にあるような画面の検波電圧が、一定基準
値になるように絞りを制御するだけでは、例えば、全面
一色の画面を撮影したとすると、撮像素子出力が低くな
り、S/N比が悪くなると云う欠点がある。他に、ピーク
検波と云う方法があるが、ピーク検波の場合には、全面
一色の画面での撮像素子出力を高くすることができる
が、領域の大小に係わらず最高ピーク値により、絞り制
御を行うために、高輝度部が小領域であっても、小領域
の高輝度部の輝度レベルに引かれて絞り制御が行われ、
広領域の低輝度部の信号レベルが低くなって、画面全体
が暗くなってしまい、S/N比も悪くなると云う問題があ
った。(Prior Art) FIG. 5 shows a conventional example of a two-panel video camera circuit using two CCDs. In the figure, an iris drive circuit 21 for controlling the diaphragm 3 selects a maximum value among R, B, and G Ch signals at the same point in a NAM (non-additive mixing) circuit 18 by using an output signal of the amplifier 8. Detection circuit (Def) 4 for selected signal
The detection and smoothing are performed in step 1, and the aperture 3 is controlled so that the smoothed signal level becomes the set reference value. In this average detection method, the average of the brightness of the entire screen is set to the optimum brightness. It is a method of controlling so that the detection voltage of the screen where the highlight part and the black part are evenly controlled only by controlling the aperture so that it becomes a constant reference value, for example, a full-color screen is photographed In this case, there is a disadvantage that the output of the image sensor is reduced and the S / N ratio is deteriorated. In addition, there is a method called peak detection. In the case of peak detection, the output of the image sensor can be increased in a single color screen, but the aperture control is performed by the maximum peak value regardless of the size of the area. In order to perform, even if the high-luminance part is a small area, aperture control is performed by being subtracted from the luminance level of the high-luminance part of the small area,
There has been a problem that the signal level of the low-luminance part in the wide area becomes low, the entire screen becomes dark, and the S / N ratio also deteriorates.
(発明が解決しようとする課題) 本発明は、画面一色の画面を撮影する場合や、画面の
大部分が低輝度で、一部に非常な高輝度部分がある場合
のS/N比を改善すると云う課題を、一部に非常な高輝度
部分がある場合にも、絞りの作用で画面全体が必要以上
に暗くなったりすることなく解消することを目的とす
る。(Problems to be Solved by the Invention) The present invention improves the S / N ratio when shooting a screen of a single color or when the screen is mostly low in brightness and has a very high brightness portion in part. It is an object of the present invention to solve the problem described above even when there is a very high luminance portion in a part without the whole screen being darkened more than necessary by the effect of the aperture.
(課題を解決するための手段) 上記目的を達成するために、本発明の撮像装置は、撮
影レンズと、撮影レンズを透過した光を受光して映像信
号を出力する撮像手段と、撮像手段から出力される映像
信号のうち、所定レベル以上の映像信号に対して高い利
得で増幅し、所定レベル以下の映像信号に対しては前記
利得より低い利得で増幅する増幅手段と、前記撮像手段
に入射する光量を制御する光量制御手段とを有し、前記
増幅手段からの出力に応じて光量制御手段を制御するこ
とを特徴とする。(Means for Solving the Problems) In order to achieve the above object, an image pickup apparatus according to the present invention includes a photographing lens, an image pickup unit that receives light transmitted through the photographing lens and outputs a video signal, and an image pickup unit. Amplifying means for amplifying a video signal having a predetermined level or higher with a high gain, and amplifying a video signal having a predetermined level or less with a lower gain than the gain; Light amount control means for controlling the amount of light to be emitted, and the light amount control means is controlled in accordance with the output from the amplification means.
(作用) 上記構成によると、所定レベル以上の映像信号は高い
利得で増幅され、所定レベル以下の映像信号は低い利得
で増幅されるという、非線形な増幅が行われる。そし
て、増幅後の出力信号に応じて撮像手段への入射光量が
制御される。(Operation) According to the above configuration, non-linear amplification is performed such that a video signal having a predetermined level or higher is amplified with a high gain, and a video signal having a predetermined level or lower is amplified with a low gain. Then, the amount of light incident on the imaging means is controlled according to the amplified output signal.
例えば、たとえ画面中に微小面積のハイライト部分が
あっても、その影響で絞りが絞り込まれて、画面全体が
必要以上に暗くなると云うことがない。また、コントラ
ストの低い被写体では、CCDのダイナミックレンジ内で
できるだけ高い動作点を与えることができるので、常に
S/N比の良い画面が得られる。For example, even if there is a highlight area having a small area in the screen, the aperture is narrowed down by the influence of the highlight area, and the entire screen is not darkened more than necessary. Also, for subjects with low contrast, the operating point can be given as high as possible within the dynamic range of the CCD.
A screen with a good S / N ratio can be obtained.
(実施例) 第1図にCCD2個用いた2板式ビデオカメラに本発明を
用いた一実施例のブロック図を示す。本発明は、第1図
において、増幅器8の出力信号を、NAM回路18におい
て、R,B,G3色チャンネル中の最大強度信号を選択し、選
択された最大強度信号を、非線形補正回路19で増幅し、
非線形補正回路19の出力信号を、検波回路(Det)20で
平均検波し、平均検波された信号によりアイリス駆動回
路21が絞りを制御するものである。(Embodiment) FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to a two-panel video camera using two CCDs. In the present invention, in FIG. 1, the output signal of the amplifier 8 is selected by the NAM circuit 18 to select the maximum intensity signal in the R, B, and G color channels, and the selected maximum intensity signal is converted by the nonlinear correction circuit 19. Amplify,
The output signal of the non-linear correction circuit 19 is averagely detected by a detection circuit (Det) 20, and the iris drive circuit 21 controls the aperture by the average detected signal.
非線形補正回路19は、第3図に示すような入出力特性
を有し、一定信号レベル範囲内の入力信号の増幅率を上
げ、その範囲の下限以下の入力信号に対しては、増幅率
を低く設定し、一定信号レベル以上は出力をクリップし
て、出力信号強度の最大値を抑制する回路で、第2図に
その実施例の一例を示す。The nonlinear correction circuit 19 has input / output characteristics as shown in FIG. 3, increases the amplification factor of an input signal within a certain signal level range, and increases the amplification factor for an input signal below the lower limit of the range. FIG. 2 shows an example of a circuit for setting the output signal to a low level and clipping the output above a certain signal level to suppress the maximum value of the output signal strength.
検波回路(Det)20は、非線形補正回路19の出力信号
を検波して平均化し、全画面平均検波電圧Vavを出力す
る。上記全画面平均検波電圧Vavがアイリス駆動回路21
に送られ、上記検波電圧Vavが所定値になるように絞り
を制御している。このように非線形補正回路19で一定輝
度レベル以上をクリップしているので、画面内に非常に
明るい部分があっても、そのために絞りが絞り込まれ全
体が必要以上に暗くなると云うことがない。The detection circuit (Det) 20 detects and averages the output signal of the non-linear correction circuit 19, and outputs a full-screen average detection voltage Vav. The average detection voltage Vav of the entire screen is the iris drive circuit 21
The aperture is controlled so that the detection voltage Vav becomes a predetermined value. As described above, since the non-linear correction circuit 19 clips a certain luminance level or higher, even if there is a very bright portion in the screen, the aperture is stopped down for that reason, and the whole is not darkened more than necessary.
さらに詳しく説明する。非線形補正回路19への入力電
圧Vinが、Vin<E1の時、トランジスタQ4のコレクタ電圧
VMは次式で与えられる。This will be described in more detail. Input voltage Vin to the non-linear correction circuit 19, when Vin <of E 1, the collector voltage of the transistor Q 4
V M is given by the following equation.
一方、Vin≧E1の時、トランジスタQ2が貫通するの
で、この場合には、トランジスタQ4のコレクタ電圧VMは
次式のようになる。 On the other hand, when the Vin ≧ E 1, the transistor Q 2 passes, in this case, the collector voltage V M of the transistor Q 4 are expressed as follows.
また、非線形補正回路19からの出力電圧Voutは次式の
ようになる。 Further, the output voltage V out from the nonlinear correction circuit 19 is represented by the following equation.
Vout=VM+0.6(但し、VM<E3の時) Vout=V3 (但し、VM<E3の時) 第3図に示した特性図においては、撮像素子出力を10
0%としている。例えば、CCDのダイナミックレンジが60
0mVとすると、100%相当は、200mVに設定し、ハイライ
ト部分の再現を損なわないようにしている。第3図に示
した例では,40%入力まではゲインが1、40%〜90%入
力ではゲインが約3.8、90%入力以上では224%に固定さ
れる。階調比40:1、ガンマ0.45、平均反射率24%のグレ
ースケールチャートを撮影した時に、反射率83%の白に
対する撮像素子出力を100%になるように調整したとす
ると、従来の平均検波方式では、全画面一色のチャート
を撮影した場合の撮像素子出力は24%であった。これに
対し、本実施例では、上記と同様に100%の撮像素子出
力が調整された状態で、全画面一色のチャートを撮影し
たとすると、撮像素子出力は40%となり、約4dBS/N比が
向上することになる。V out = V M +0.6 (where V M <When E 3) V out = V 3 ( provided that when V M <E 3) in the characteristic diagram shown in FIG. 3, the imaging element output Ten
0%. For example, the CCD dynamic range is 60
If it is 0 mV, 100% equivalent is set to 200 mV so as not to impair the reproduction of the highlighted portion. In the example shown in FIG. 3, the gain is fixed at 1 for up to 40% input, about 3.8 for 40% to 90% input, and 224% for 90% input or more. When taking a gray scale chart with a gradation ratio of 40: 1, gamma of 0.45, and an average reflectance of 24%, if the image sensor output for white with an reflectance of 83% was adjusted to 100%, the conventional average detection With this method, the output of the image sensor when capturing a full-color chart was 24%. On the other hand, in the present embodiment, if a full-screen one-color chart is photographed with the image sensor output adjusted to 100% in the same manner as described above, the image sensor output becomes 40% and the ratio of about 4 dBS / N Will be improved.
第1図を用いて、ビデオカメラの回路全体についての
説明を行う。1はレンズ、2は赤外カットフィルター、
3は絞り、4はグリーン(G)透過プリズムで、グリー
ンの光だけを透過する。5はマゼンダ透過プリズムで、
グリーンの光だけを遮断する。6はG−CCDで全画素か
らGの信号を検出する。7はR,B−CCDで、前面に平行格
子状にR透過フィルター、B透過フィルターが交互配置
され、R,B信号出力が点順次に得られる。CCD6,7で検出
されたG,R,Bの信号は、良く知られているCDS回路(Corr
elation Double Sampling)8で個々に雑音が低減さ
れ、G,R,Bの映像信号となる。その後G,R,Bの映像信号は
ローパスフィルター(LPF)回路9で更に雑音が除去さ
れ、AGC(オートゲインコントロール)回路10で適当な
強度に増幅され、クランプ回路11で黒レベルを一定電位
に固定(クランプ)し、映像信号の黒レベルの安定を計
る。12はホワイトバランス回路で、R,Bチャンネルのゲ
イン調整によってホワイトバランス調整を行う。The overall circuit of the video camera will be described with reference to FIG. 1 is a lens, 2 is an infrared cut filter,
Reference numeral 3 denotes an aperture, and 4 denotes a green (G) transmission prism, which transmits only green light. 5 is a magenta transmission prism,
Blocks only green light. A G-CCD 6 detects a G signal from all pixels. Reference numeral 7 denotes an R, B-CCD in which R transmission filters and B transmission filters are alternately arranged in a parallel lattice on the front surface, and R, B signal outputs are obtained in a dot-sequential manner. The G, R, and B signals detected by the CCDs 6 and 7 are converted to a well-known CDS circuit (Corr
(Elation Double Sampling) 8 individually reduces noise, and becomes G, R, B video signals. Thereafter, the G, R, and B video signals are further removed of noise by a low-pass filter (LPF) circuit 9, amplified to an appropriate intensity by an AGC (auto gain control) circuit 10, and a black level is kept at a constant potential by a clamp circuit 11. Fix (clamp) and measure the stability of the black level of the video signal. Reference numeral 12 denotes a white balance circuit which performs white balance adjustment by adjusting gains of R and B channels.
13はペデスタル調整回路で、各素子のバラツキや光学
系のフレアによる黒レベルの上昇を補正して、映像信号
の黒レベルの零点を調整する回路で、入力信号にバイア
ス電圧を重畳し、通常入力信号が0の時、出力信号が0
となるように調整する。この回路により、逆光状態に応
じてバイアス電圧を変えることで、逆光時の黒レベル補
正ができる。この黒レベル補正に用いるバイアス電圧
は、演算回路26で平均検波電圧Vavと画面中央下部の平
均検波電圧Vaとの差ΔEを変数とする関数Fped(ΔE)
で演算される。13 is a pedestal adjustment circuit that adjusts the black level of the video signal by correcting the black level rise due to the variation of each element and the flare of the optical system. When the signal is 0, the output signal is 0
Adjust so that With this circuit, the black level can be corrected during backlight by changing the bias voltage according to the backlight state. The bias voltage used for the black level correction is calculated by a function Fped (ΔE) using the difference ΔE between the average detection voltage Vav and the average detection voltage Va at the lower center of the screen in the arithmetic circuit 26 as a variable.
Is calculated by
14はガンマ補正回路で、本実施例では、受像機の特性
に合わせてガンマ0.45に補正している。Reference numeral 14 denotes a gamma correction circuit, which in this embodiment corrects the gamma to 0.45 in accordance with the characteristics of the receiver.
15は二一補正回路で、高輝度部の階調を圧縮し、ダイ
ナミックレンジの拡大を図っている。Reference numeral 15 denotes a twenty-first correction circuit which compresses the gradation of a high-luminance part to expand the dynamic range.
16はマトリクス回路で、R,B,G映像信号から輝度信
号,色素信号を形成する。色差信号は平衡変調されて色
信号となり、同期信号を付加した輝度信号と混合され、
複合映像信号になる。Reference numeral 16 denotes a matrix circuit which forms a luminance signal and a dye signal from the R, B, and G video signals. The color difference signal is balanced modulated to become a color signal, mixed with a luminance signal to which a synchronization signal is added,
It becomes a composite video signal.
18は第4図に示すようなNAM回路で、増幅器回路8の
出力信号をR,B,G各チャンネル共入力し、R,B,G信号の内
最大値の信号を出力する。Reference numeral 18 denotes a NAM circuit as shown in FIG. 4, which inputs the output signal of the amplifier circuit 8 to each of the R, B, and G channels, and outputs a signal having the maximum value among the R, B, and G signals.
20は検波回路(Def)で、非線形補正回路19の出力信
号を検波して平均化し、全画面平均検波電圧Vavを、ア
イリス駆動回路21に送る。Reference numeral 20 denotes a detection circuit (Def) which detects and averages the output signal of the non-linear correction circuit 19 and sends the full-screen average detection voltage Vav to the iris drive circuit 21.
22はA/D回路で、Def20のアナログ信号をデジタル信号
に変換し、演算回路26に入力させる。23はパルス発生回
路36からの制御信号により制御され、撮影画面の中央下
部の輝度信号だけを通過させるアナログスイッチであ
る。検波回路24はアナログスイッチ23を通過した画面中
央下部の輝度信号を検波し、中央下部平均検波電圧Vaを
出力する。A/D回路25は同信号Vaをデジタル信号に変換
し、演算回路26に入力させる。An A / D circuit 22 converts an analog signal of Def20 into a digital signal and inputs the digital signal to the arithmetic circuit 26. Reference numeral 23 denotes an analog switch which is controlled by a control signal from the pulse generation circuit 36 and passes only a luminance signal at the lower center of the photographing screen. The detection circuit 24 detects the luminance signal at the lower center of the screen that has passed through the analog switch 23, and outputs an average detection voltage Va at the lower center. The A / D circuit 25 converts the signal Va into a digital signal and inputs the digital signal to the arithmetic circuit 26.
演算回路26は、上記検波電圧VavとVaの差ΔEを求
め、ΔEが所定値より大きい場合には、絞り補正信号を
D/A回路28に送り、デジタル信号のアナログ信号に変換
した後、加算回路29に加算して、絞り3を開かせ、被写
体が適当な明るさで見えるようにする。また、AGC回路1
0補正信号をD/A回路32に、ペデスタル調整回路13補正信
号をD/A回路30に、二一補正回路15補正信号をD/A回路31
に出力して、各種の逆光補正制御を行っている。The arithmetic circuit 26 calculates the difference ΔE between the detection voltages Vav and Va, and when ΔE is larger than a predetermined value, calculates the aperture correction signal.
The digital signal is sent to a D / A circuit 28 and converted into an analog signal of a digital signal. Then, the digital signal is added to an adding circuit 29 to open the aperture 3 so that the subject can be seen with appropriate brightness. Also, AGC circuit 1
0 The correction signal is supplied to the D / A circuit 32, the pedestal adjustment circuit 13 is supplied to the D / A circuit 30, and the correction signal is supplied to the D / A circuit 31.
To perform various types of backlight correction control.
(発明の効果) 以上説明したように、本発明によると、所定レベル以
上の映像信号は高い利得で増幅し、所定レベル以下の映
像信号は低い利得で増幅した信号に応じて撮像手段への
入射光量を制御するようにしたので、画面のコントラス
ト比にかかわらず、S/N比の良い映像が得られるように
なった。即ち、画面の一部にハイライト部分があって
も、そのために絞りが必要以上に絞り込まれると云うこ
とがなくなる。また、たとえ全画面一色の画面のように
コントラストが全くない画面を撮影した場合でも、撮像
素子出力が飽和しない範囲で、適正な出力レベルになる
ように絞りが制御されるので、S/N比の良い映像が常に
得られるようになる。(Effects of the Invention) As described above, according to the present invention, a video signal having a predetermined level or higher is amplified with a high gain, and a video signal having a predetermined level or lower is incident on an imaging unit in accordance with a signal amplified with a low gain. By controlling the amount of light, images with a good S / N ratio can be obtained regardless of the contrast ratio of the screen. That is, even if there is a highlight portion in a part of the screen, the aperture is not narrowed down more than necessary. Even when shooting a screen with no contrast, such as a full-screen one-color screen, the aperture is controlled to an appropriate output level within the range where the image sensor output does not saturate, so the S / N ratio is controlled. You can always get good images.
第1図は本発明の一実施例の構成図、第2図は非線形補
正回路図、第3図は非線形補正回路の特性曲線、第4図
はNAM回路図、第5図は従来例の構成図である。 1……レンズ、2……赤外カットフィルター、3……絞
り、4……G透過プリズム、5……マゼンダ透過プリズ
ム、6……G−CCD、7……R,B−CCD、8……増幅器、
9……LPF、10……AGC、11……クランプ回路、12……ホ
ワイトバランス回路、13……ペデスタル調整回路、14…
…ガンマ補正回路、15……二一補正回路、16……マトリ
クス回路、17……MOD、18……NAM、19……非線形補正回
路、20……検波回路(Def)、21……アイリス駆動回
路、22……A/D回路、23……アナログSW、24……Def、25
……A/D回路、26……演算回路、27……CCD駆動回路、28
……D/A回路、29……加算回路、30……D/A回路、31……
D/A回路、32……D/A回路、33……加算回路、34……NA
M、35……ゲイン切替回路、36……パルス発生回路、37
……Def。1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram of a nonlinear correction circuit, FIG. 3 is a characteristic curve of the nonlinear correction circuit, FIG. 4 is a NAM circuit diagram, and FIG. FIG. 1 ... Lens, 2 ... Infrared cut filter, 3 ... Aperture, 4 ... G transmission prism, 5 ... Magenta transmission prism, 6 ... G-CCD, 7 ... R, B-CCD, 8 ... …amplifier,
9 LPF, 10 AGC, 11 clamp circuit, 12 white balance circuit, 13 pedestal adjustment circuit, 14
... Gamma correction circuit, 15 ... 21 correction circuit, 16 ... Matrix circuit, 17 ... MOD, 18 ... NAM, 19 ... Non-linear correction circuit, 20 ... Detection circuit (Def), 21 ... Iris drive Circuit, 22 A / D circuit, 23 Analog switch, 24 Def, 25
…… A / D circuit, 26 …… Calculation circuit, 27 …… CCD drive circuit, 28
... D / A circuit, 29 ... Addition circuit, 30 ... D / A circuit, 31 ...
D / A circuit, 32 D / A circuit, 33 Adder circuit, 34 NA
M, 35: Gain switching circuit, 36: Pulse generation circuit, 37
...... Def.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H04N 5/238 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) H04N 5/238
Claims (3)
撮像手段と、 撮像手段から出力される映像信号のうち、所定レベル以
上の映像信号に対して高い利得で増幅し、所定レベル以
下の映像信号に対しては前記利得より低い利得で増幅す
る増幅手段と、 前記撮像手段に入射する光量を制御する光量制御手段と
を有し、 前記増幅手段からの出力に応じて光量制御手段を制御す
る ことを特徴とする撮像装置。An imaging means for receiving a light transmitted through the imaging lens and outputting a video signal; and a high gain for a video signal having a predetermined level or more among the video signals output from the imaging means. Amplifying means for amplifying the image signal at a predetermined level or less, and amplifying the image signal with a gain lower than the gain, and a light amount controlling means for controlling the amount of light incident on the imaging means, and an output from the amplifying means. An image pickup apparatus, wherein the light amount control means is controlled in accordance with the condition.
の平均値に応じて制御されることを特徴とする特許請求
の範囲第1項記載の撮像装置。2. The image pickup apparatus according to claim 1, wherein said light amount control means is controlled in accordance with an average value of the output of said amplification means.
特徴とする特許請求の範囲第1項記載の撮像装置。3. An image pickup apparatus according to claim 1, wherein said light amount control means is an aperture mechanism.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2087218A JP2990733B2 (en) | 1990-03-31 | 1990-03-31 | Imaging device |
US07/677,140 US5221963A (en) | 1990-03-31 | 1991-03-29 | Video camera having a video signal processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2087218A JP2990733B2 (en) | 1990-03-31 | 1990-03-31 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03285469A JPH03285469A (en) | 1991-12-16 |
JP2990733B2 true JP2990733B2 (en) | 1999-12-13 |
Family
ID=13908772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2087218A Expired - Lifetime JP2990733B2 (en) | 1990-03-31 | 1990-03-31 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2990733B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964830B2 (en) * | 2008-06-11 | 2012-07-04 | 富士フイルム株式会社 | Omnidirectional imaging apparatus and omnidirectional image imaging control method |
-
1990
- 1990-03-31 JP JP2087218A patent/JP2990733B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03285469A (en) | 1991-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5221963A (en) | Video camera having a video signal processing apparatus | |
KR100363827B1 (en) | Television signal processor for generating video signal of wide dynamic range, television camera using the same, and method for television signal processing | |
JP4187004B2 (en) | Imaging apparatus and exposure control method for imaging apparatus | |
US5068718A (en) | Image quality correcting system for use with an imaging apparatus | |
JP4042432B2 (en) | Imaging device | |
JP2990733B2 (en) | Imaging device | |
JP3979682B2 (en) | Electronic imaging device | |
JPH05103256A (en) | Image pickup device | |
JP2527592B2 (en) | Imaging device | |
JP2504939B2 (en) | Imaging device | |
JP2007036714A (en) | Imaging apparatus | |
JP2990732B2 (en) | Imaging device | |
JP2629907B2 (en) | Contour compensation signal control device | |
EP0632647A1 (en) | Color video camera capable of improving gradation of dark signal level | |
JP2869976B2 (en) | Imaging device | |
JP2952488B2 (en) | Image quality correction method for imaging device | |
JP2860996B2 (en) | Imaging device | |
JPS601989A (en) | Image pickup device | |
JP3395237B2 (en) | Film image reading device | |
JPH07143509A (en) | Chromanoise suppressing method for video camera | |
JPH03285470A (en) | Video camera | |
JPH04142177A (en) | Video camera | |
JP4465807B2 (en) | White balance adjustment circuit, television camera apparatus including the same, and white balance adjustment method | |
JP2729335B2 (en) | Video camera with reception sensitivity control function | |
JPH0779439B2 (en) | Imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 11 |