JP2990732B2 - Imaging device - Google Patents

Imaging device

Info

Publication number
JP2990732B2
JP2990732B2 JP2087217A JP8721790A JP2990732B2 JP 2990732 B2 JP2990732 B2 JP 2990732B2 JP 2087217 A JP2087217 A JP 2087217A JP 8721790 A JP8721790 A JP 8721790A JP 2990732 B2 JP2990732 B2 JP 2990732B2
Authority
JP
Japan
Prior art keywords
circuit
signal
level
correction
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2087217A
Other languages
Japanese (ja)
Other versions
JPH03285471A (en
Inventor
信雄 橋本
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2087217A priority Critical patent/JP2990732B2/en
Priority to US07/677,140 priority patent/US5221963A/en
Publication of JPH03285471A publication Critical patent/JPH03285471A/en
Application granted granted Critical
Publication of JP2990732B2 publication Critical patent/JP2990732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、撮像装置に関するものであり、特に撮影時
の補正に関する。
Description: TECHNICAL FIELD The present invention relates to an image pickup apparatus, and more particularly to correction at the time of photographing.

(従来の技術) ビデオカメラでは、被写界の平均輝度が高いとき、通
常は絞りが絞り込まれるので、逆光時、主被写体は露出
不足となって黒くなってしまう。これを防ぐため、逆光
時、主被写体に絞りを合わせることが行われているが、
そのようにしても、レンズ面での光反射により、背景か
らの光が被写体内に入り込み、主被写体の平均輝度が上
昇して、被写体が白っぽくなり、鮮明さが無くなると云
う問題があった。例えば、第9図Aに示すように、黒の
被写体を逆光で撮影した場合、主被写体がある画面中央
は黒く、背景である周囲は明るい被写界状態となるが、
光学系の内面反射のためにフレアが発生し、被写体映像
内の輝度が上昇し、被写体の輝度レベルが、同図Bに示
す実際の輝度レベル(黒レベル)Vdより、同図Cに示す
ように、フレアによってVfだけ上昇する。このような現
象を補正する場合、単に絞りを主被写体の輝度に合わせ
て開いただけでは良好な画面の再現性が図れないと云う
問題があった。
(Prior Art) In a video camera, when the average luminance of the object scene is high, the aperture is usually stopped down. Therefore, when the subject is backlit, the main subject is underexposed and becomes black. In order to prevent this, the aperture is adjusted to the main subject during backlighting.
Even in such a case, there is a problem that light from the background enters the subject due to light reflection on the lens surface, the average luminance of the main subject increases, the subject becomes whitish, and sharpness is lost. For example, as shown in FIG. 9A, when a black subject is photographed by backlight, the center of the screen where the main subject is located is black, and the surrounding background is a bright field state.
Flare occurs due to the internal reflection of the optical system, and the luminance in the subject image increases, and the luminance level of the subject is changed from the actual luminance level (black level) Vd shown in FIG. In addition, Vf increases by flare. In correcting such a phenomenon, there has been a problem that satisfactory screen reproducibility cannot be achieved simply by opening the aperture in accordance with the luminance of the main subject.

(発明が解決しようとする課題) 本発明は、逆光撮影におけるフレアによる輝度レベル
上昇を解消し、被写体の再現性を向上させることを目的
とする。
(Problems to be Solved by the Invention) It is an object of the present invention to eliminate an increase in luminance level due to a flare in backlight photography and to improve the reproducibility of a subject.

(課題を解決するための手段) 上記目的を達成するために、本発明の撮像装置は、撮
影レンズと、前記撮影レンズを透過した光を受光して映
像信号を生成する撮像手段と、前記映像信号黒レベルを
調整する調整手段と、被写界の主要被写体と背景の輝度
差を検出する検出手段と、前記検出手段の検出結果に応
じて前記調整手段による黒レベル調整の方法を切り換え
るように制御する制御手段とを備えたことを特徴とする
撮像装置。
(Means for Solving the Problems) In order to achieve the above object, an image pickup apparatus according to the present invention comprises: a photographing lens; an image pickup unit for receiving a light transmitted through the photographing lens to generate a video signal; An adjusting unit that adjusts a signal black level; a detecting unit that detects a luminance difference between a main subject in a field and a background; and a method of adjusting a black level by the adjusting unit according to a detection result of the detecting unit. An imaging apparatus, comprising: control means for controlling.

(作用) 上記構成によると、撮像手段により撮像が行われ映像
信号が生成され、映像信号の黒レベルが調整される。そ
して、被写界の主要被写体と背景の輝度差が検出され、
その検出結果に応じて前記黒レベル調整の調整方法が切
り換えられる。このようにすると、主要部分と背景との
明るさの差を、黒信号レベルの調整規準としていること
になり、主要被写体と背景との輝度差によって黒信号レ
ベル調整が行われ、常に調和のとれた画像を得ることが
可能となる。
(Operation) According to the above configuration, imaging is performed by the imaging unit, a video signal is generated, and the black level of the video signal is adjusted. Then, the luminance difference between the main subject in the scene and the background is detected,
The adjustment method of the black level adjustment is switched according to the detection result. In this way, the difference in brightness between the main part and the background is used as a standard for adjusting the black signal level, and the black signal level is adjusted based on the difference in luminance between the main subject and the background, so that harmony is always achieved. Image can be obtained.

(実施例) 第1図にCCD2個用いた2板式ビデオカメラに本発明を
用いた一実施例のブロック図を示す。まず、本発明の主
要部のペデスタル調整回路13について説明を行う。ペデ
スタル調整回路13は、撮像素子により得られた映像信号
を増幅するもので、黒レベルクランプ、ホワイトバラン
ス調整等を行った後に、挿入されており、具体的には、
入力信号にバイアス電圧を重畳し、通常入力信号が0の
時、出力信号が0となるような調整を行う。第2図にそ
の回路の一例を示す。図において、3,4はOPアンプであ
り、この回路は、規準電圧Vrefに対し、外部から制御電
圧Vpedを入力させることにより、入力映像信号の零点調
整を行っており、通常は、製造過程の調整で映像信号の
黒レベルが帰線消去信号レベルと略等しくなるように調
整されて、以後は固定されている。本発明では、逆光状
態に応じてこのVpedを変えることで、逆光時の黒レベル
を補正する。この黒レベルの補正に用いるVpedは、演算
回路26から出力される。演算回路26では、映像信号の画
面全体の平均検波電圧Vavと画面中央下部の平均検波電
圧Vaとの差ΔEを変数とする関数Fped(ΔE)で演算さ
れ、D/A回路30でアナログ化されて入力される。つま
り、フレアによる重畳電圧VpedはVped=Fped(ΔE)で
与えられる。ペデスタル調整回路13のオフセット電圧Vr
efからVpedを引くと、オフセット電圧がVped分下がり、
従って、ヘジスタル調整回路13の出力電圧もフレアによ
る重畳電圧Vped分下がる。
(Embodiment) FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to a two-panel video camera using two CCDs. First, the pedestal adjustment circuit 13 as a main part of the present invention will be described. The pedestal adjustment circuit 13 is for amplifying a video signal obtained by the imaging device, and is inserted after performing black level clamp, white balance adjustment, and the like.Specifically,
A bias voltage is superimposed on the input signal, and adjustment is performed so that the output signal becomes 0 when the input signal is normally 0. FIG. 2 shows an example of the circuit. In the figure, reference numerals 3 and 4 denote OP amplifiers, and this circuit adjusts a zero point of an input video signal by externally inputting a control voltage Vped to a reference voltage Vref. The adjustment is performed so that the black level of the video signal is substantially equal to the level of the blanking signal, and is fixed thereafter. In the present invention, the black level at the time of backlight is corrected by changing this Vped according to the backlight state. The Vped used for the black level correction is output from the arithmetic circuit 26. The arithmetic circuit 26 calculates a function Fped (ΔE) using a difference ΔE between the average detection voltage Vav of the entire screen of the video signal and the average detection voltage Va at the lower center of the screen as a variable, and converts the analog signal into an analog signal by the D / A circuit 30. Is entered. That is, the superimposed voltage Vped due to flare is given by Vped = Fped (ΔE). Offset voltage Vr of pedestal adjustment circuit 13
When Vped is subtracted from ef, the offset voltage decreases by Vped,
Accordingly, the output voltage of the hemister adjustment circuit 13 also decreases by the superimposed voltage Vped due to flare.

次に実施例の全般について述べる。この実施例は、上
述した補正の他、絞りについての逆光補正及び逆光時の
ニー補正(階調圧縮)も併せて行っている。第1図にお
いて、1はレンズ、2は赤外カットフィルターで、人間
の目に感応せず、ノイズだけを生じさせ、撮影にとって
邪魔な赤外光をカットする。3は絞り、4はG透過プリ
ズムでグリーン(G)の光だけを透過する。5はマゼン
ダ透過プリズムで、G透過プリズム4を透過したマゼン
タ光を透過する。6はG−CCDで、G透過プリズム4を
透過した光が入射し、全画素でGの輝度信号を検出す
る。7はR,B−CCDで、マゼンダ透過プリズム5の透過光
が入射し、レッド(R)とブルー(B)の2光を個々に
対応した画素で検出し、RとBを別々の信号として出力
している。CCD6,7で検出されたG,R,Bの信号は、良く知
られているCDS回路(Correlation Double Sampling)
8で個々に雑音が低減され、G,R,Bの映像信号となる。
その後G,R,Bの映像信号はLPF(ローパスフィルター)回
路9で更に雑音が除去され、AGC(オートゲインコント
ロール)回路10で適当な強度に増幅され、クランプ回路
11でクランプされる。12はホワイトバランス回路で、R,
Bチャンネルのゲイン調整によってホワイトバランス調
整を行う。
Next, general examples will be described. In this embodiment, in addition to the above-described correction, backlight correction for the diaphragm and knee correction (gradation compression) at the time of backlight are also performed. In FIG. 1, reference numeral 1 denotes a lens, and 2 denotes an infrared cut filter, which is insensitive to human eyes, generates only noise, and cuts infrared light which is disturbing for photographing. Reference numeral 3 denotes an aperture, and 4 denotes a G transmission prism that transmits only green (G) light. Reference numeral 5 denotes a magenta transmission prism, which transmits the magenta light transmitted through the G transmission prism 4. Reference numeral 6 denotes a G-CCD, in which light transmitted through the G transmitting prism 4 is incident, and a G luminance signal is detected in all pixels. Reference numeral 7 denotes an R, B-CCD, in which the light transmitted through the magenta transmitting prism 5 is incident, and two lights of red (R) and blue (B) are detected by individually corresponding pixels, and R and B are formed as separate signals. Output. The G, R, and B signals detected by the CCDs 6 and 7 are converted to a well-known CDS circuit (Correlation Double Sampling).
In step 8, the noise is reduced individually to produce G, R, and B video signals.
Thereafter, the G, R, and B video signals are further removed of noise by an LPF (low-pass filter) circuit 9, amplified to an appropriate intensity by an AGC (auto gain control) circuit 10, and clamped.
Clamped at 11. 12 is a white balance circuit, R,
The white balance is adjusted by adjusting the gain of the B channel.

13はペデスタル調整回路で、映像信号の黒レベルを一
定規準(帰線消去レベル)になるように調整する回路で
あり、具体的には、入力信号にバイアス電圧を重畳し、
通常入力信号が0の時、出力信号が0となるような調整
を行う。
Reference numeral 13 denotes a pedestal adjustment circuit which adjusts the black level of the video signal so as to be a predetermined reference (blank elimination level). Specifically, a bias voltage is superimposed on the input signal,
Normally, when the input signal is 0, adjustment is performed so that the output signal becomes 0.

ガンマ補正回路14は、受像機の特性に合わせてガンマ
値を補正する回路で、本実施例ではガンマ0.45に補正し
ている。
The gamma correction circuit 14 is a circuit that corrects a gamma value in accordance with the characteristics of the receiver, and in this embodiment, corrects the gamma to 0.45.

16はマトリクス回路で、R,B,G映像信号から輝度信
号,色素信号を形成する。色素信号は平衡変調されて色
信号となり、同期信号を付加した輝度信号と混合され、
複合映像信号になる。
Reference numeral 16 denotes a matrix circuit which forms a luminance signal and a dye signal from the R, B, and G video signals. The dye signal is balanced-modulated to become a color signal, mixed with a luminance signal to which a synchronization signal is added,
It becomes a composite video signal.

18は第4図に示すようなNAM(非加算ミクシング)回
路で、CDS回路8の出力信号をR,B,G各チャンネル共入力
し、R,B,G信号の内最大値の信号を出力する。
Reference numeral 18 denotes a non-additive mixing (NAM) circuit as shown in FIG. 4, which receives the output signal of the CDS circuit 8 for each of the R, B, and G channels and outputs the signal of the maximum value among the R, B, and G signals. I do.

19は非線形補正回路で、第5図に示すような入出力特
性を有し、一定輝度レベル範囲内の入力信号の増幅率を
上げて、ハイライト部を強調する共に、一定輝度レベル
以上はクリップして、出力信号強度の最大値を抑制する
回路である。
Numeral 19 is a non-linear correction circuit which has input / output characteristics as shown in FIG. 5, increases the amplification factor of an input signal within a certain luminance level range, emphasizes highlights, and clips at a certain luminance level or higher. And a circuit for suppressing the maximum value of the output signal strength.

検波回路(Def)20は、非線形補正回路19の出力信号
を検波して平均化し、全画面平均検波電圧Vavを出力す
る。上記全画面平均検波電圧Vavがアイリス駆動回路21
に送られ、アイリス駆動回路21において、上記検波電圧
Vavが所定値に近づくように絞りを制御している。
The detection circuit (Def) 20 detects and averages the output signal of the non-linear correction circuit 19 and outputs a full-screen average detection voltage Vav. The average detection voltage Vav of the entire screen is the iris drive circuit 21
To the iris drive circuit 21 and the detection voltage
The aperture is controlled so that Vav approaches a predetermined value.

このように非線形補正回路19で一定輝度レベル以上を
クリップしているので、画面中に非常に明るい所があっ
ても、それに引かれて絞り3が絞り込まれ、画面全体が
暗くなると云う現象が防がれる。
As described above, since the non-linear correction circuit 19 clips a certain luminance level or higher, even if there is a very bright portion in the screen, the aperture 3 is narrowed down by the pulling of the portion, and the phenomenon that the entire screen becomes dark is prevented. Can come off.

22はA/D回路で検波回路20の出力である全画面平均検
波電圧Vavのアナログ信号をデジタル信号に変換し、演
算回路26に入力させる。
Reference numeral 22 denotes an A / D circuit which converts an analog signal of the full-screen average detection voltage Vav, which is an output of the detection circuit 20, into a digital signal, and inputs the digital signal to the arithmetic circuit 26.

23はパルス発生回路36からの制御信号により制御さ
れ、撮影画面の中央下部に対応した非線形補正回路17の
出力信号だけを通過させるアナログスイッチである。
Reference numeral 23 denotes an analog switch which is controlled by a control signal from the pulse generation circuit 36 and passes only the output signal of the nonlinear correction circuit 17 corresponding to the lower center of the photographing screen.

検波回路24はアナログスイッチ23を通過した画面中央
下部に対応した非線形補正回路17の出力信号を検波し、
中央下部平均検波電圧Vaを出力する。
The detection circuit 24 detects the output signal of the non-linear correction circuit 17 corresponding to the lower center of the screen passing through the analog switch 23,
The lower center average detection voltage Va is output.

A/D回路25は同信号Vaをデジタル信号に変換し、演算
回路26に入力させる。
The A / D circuit 25 converts the signal Va into a digital signal and inputs the digital signal to the arithmetic circuit 26.

演算回路26は、上述したように、上記検波電圧VavとV
aの差(ΔE)から得られた逆光補正のための絞り補正
信号をD/A回路28に、AGC回路10補正信号をD/A回路32
に、ペデスタル調整回路13補正信号をD/A回路30に、ニ
ー補正回路15補正信号をD/A回路31に出力して行う。
As described above, the arithmetic circuit 26 detects the detection voltages Vav and V
The aperture correction signal for backlight correction obtained from the difference (ΔE) a is supplied to the D / A circuit 28, and the AGC circuit 10 correction signal is supplied to the D / A circuit 32.
Then, the pedestal adjustment circuit 13 correction signal is output to the D / A circuit 30 and the knee correction circuit 15 correction signal is output to the D / A circuit 31.

36はパルス発生回路で、第6図にその一実施例を、第
7図に信号図を示す。カウンター36Aで水平同期信号HD
をカウントし、所定のカウント数になると、キャリー信
号でフリップフロップ36Dを反転し、出力信号Cを“H"
レベルとする。垂直同期信号VDの入力により、カウンタ
ー36Aとフリップフロップ36Dをリセットし、出力信号C
を“L"とし、図に示すような、垂直同期信号と同期した
制御信号Cを送信する。モノマルチ36Bは水平同期信号H
Dと同期し、1パルス間の中央部が“H"レベルの制御信
号Dを発生し、モノマルチ36Cは水平同期信号HDと同期
し、1パルス間の中央部が信号Aより少し広い範囲で
“H"レベルとなる制御信号Eを発生する。加算器36Eは
制御信号Cと制御信号Dを加算し、両信号が“H"レベル
の時に“H"レベルとなるWindowA(第8図参照)に対応
する制御信号Aを発生する。加算器36Fは制御信号Cと
制御信号Dを加算し、両信号が“H"レベルの時に“H"レ
ベルとなるWindowB(第8図参照)に対応する制御信号
Bを発生する。
36 is a pulse generating circuit, FIG. 6 shows an embodiment thereof, and FIG. 7 shows a signal diagram. Horizontal sync signal HD with counter 36A
When the count reaches a predetermined count, the flip-flop 36D is inverted with the carry signal, and the output signal C is set to “H”.
Level. The counter 36A and the flip-flop 36D are reset by the input of the vertical synchronization signal VD, and the output signal C is reset.
Is set to “L”, and a control signal C synchronized with the vertical synchronization signal as shown in the figure is transmitted. Mono multi 36B is horizontal sync signal H
Synchronized with D, the central part between one pulse generates a control signal D of "H" level, the mono multi 36C is synchronized with the horizontal synchronizing signal HD, and the central part between one pulse is a little wider than the signal A. A control signal E which becomes "H" level is generated. The adder 36E adds the control signal C and the control signal D, and generates a control signal A corresponding to WindowA (see FIG. 8) which becomes "H" level when both signals are at "H" level. The adder 36F adds the control signal C and the control signal D, and generates a control signal B corresponding to WindowB (see FIG. 8) which becomes "H" level when both signals are at "H" level.

この制御信号Aはアナログスイッチ23に送られ、制御
信号Aが“H"レベルの時にアナログスイッチ23をONさ
せ、WindowA領域に対応した非線形補正回路19の出力信
号を通過させる。WindowA,Bの選択は、カメラ使用者が
被写体により手動的に行う。従って、選択されたWindow
A或はWindowBが、画面中央下部を定義することになる。
The control signal A is sent to the analog switch 23, and when the control signal A is at the "H" level, the analog switch 23 is turned on, and the output signal of the nonlinear correction circuit 19 corresponding to the WindowA area is passed. Selection of WindowA and B is manually performed by the camera user depending on the subject. Therefore, the selected Window
A or WindowB defines the lower center of the screen.

34は18と同様なNAM回路で、ニー補正回路15の出力信
号をR,B,G各チャンネル共入力し、R,B,G信号の内最大値
の信号を出力する。
Reference numeral 34 denotes a NAM circuit similar to 18, which receives the output signal of the knee correction circuit 15 for each of the R, B, and G channels and outputs the signal of the maximum value among the R, B, and G signals.

35はゲイン切換器で、入力信号がWindowAがWindowBか
を判定し、WindowAが選択されている時には、WindowBが
選択されている時に比べて、AGC回路10のゲインを大き
くするようにしている。このことによって、WindowAが
選択されている場合には、WindowBが選択されている場
合に比べて、画面中央下部の主要被写体像がより明るく
撮影される。
Numeral 35 denotes a gain switch, which determines whether the input signal is WindowA or WindowB. When WindowA is selected, the gain of the AGC circuit 10 is made larger than when WindowB is selected. As a result, when Window A is selected, the main subject image at the lower center of the screen is captured brighter than when Window B is selected.

37は検波回路(Def)で、ゲイン切換器35で増幅され
た映像信号を検波する。検波した信号によって、AGC回
路10を制御する。
A detection circuit (Def) 37 detects the video signal amplified by the gain switch 35. The AGC circuit 10 is controlled by the detected signal.

尚、上記実施例は2板式のビデオカメラに本発明を適
用したものであったが、本発明は単板式或は3板式のビ
デオカメラにも勿論適用することができる。
In the above embodiment, the present invention is applied to a two-panel video camera. However, the present invention can of course be applied to a single-panel or three-panel video camera.

(発明の効果) 以上説明したように、本発明によると、被写界の主要
被写体と背景の輝度差に応じて黒レベル調整の調整方法
が切り換えられる。従って、被写界の状況に応じて適切
な黒レベル調整が行われるので、輝度差の大きい撮影状
況応であっても、黒レベルの再現性が向上する。
(Effects of the Invention) As described above, according to the present invention, the adjustment method of the black level adjustment is switched according to the luminance difference between the main subject in the field and the background. Therefore, since the appropriate black level adjustment is performed according to the situation of the object scene, the reproducibility of the black level is improved even in a shooting situation having a large luminance difference.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の構成図、第2図はペデスタ
ル調整回路図、第3図はニー補正回路の特性曲線、第4
図はNAM回路図、第5図は非線形補正回路の特性曲線、
第6図はパルス発生回路図、第7図はパルス発生回路の
信号図、第8図は画面の枠決め図、第9図はフレアによ
る信号の変化を説明する図である。 1……レンズ、2……赤外カットフィルター、3……絞
り、4……G透過プリズム、5……マゼンダ透過プリズ
ム、6……G−CCD、7……R,B−CCD、8……CDS、9…
…LPF、10……AGC、11……クランプ回路、12……ホワイ
トバランス回路、13……ペデスタル調整回路、14……ガ
ンマ補正回路、15……ニー補正回路、16……マトリクス
回路、17……MOD、18……NAM、19……非線形補正回路、
20……検波回路(Def)、21……アイリス駆動回路、22
……A/D回路、23……アナログスイッチ、24……Def、25
……A/D回路、26……演算回路、27……CCD駆動回路、28
……D/A回路、29……加算回路、30……D/A回路、31……
D/A回路、32……D/A回路、33……加算回路、34……NA
M、35……ゲイン切替回路、36……パルス発生回路、37
……Def。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a pedestal adjustment circuit diagram, FIG. 3 is a characteristic curve of a knee correction circuit, and FIG.
The figure shows the NAM circuit diagram, FIG. 5 shows the characteristic curve of the nonlinear correction circuit,
FIG. 6 is a diagram of a pulse generating circuit, FIG. 7 is a signal diagram of the pulse generating circuit, FIG. 8 is a diagram for determining a frame of a screen, and FIG. 9 is a diagram for explaining signal changes due to flare. 1 ... lens, 2 ... infrared cut filter, 3 ... aperture, 4 ... G transmission prism, 5 ... magenta transmission prism, 6 ... G-CCD, 7 ... R, B-CCD, 8 ... … CDS, 9…
... LPF, 10 ... AGC, 11 ... Clamp circuit, 12 ... White balance circuit, 13 ... Pedestal adjustment circuit, 14 ... Gamma correction circuit, 15 ... Knee correction circuit, 16 ... Matrix circuit, 17 ... … MOD, 18… NAM, 19 …… Non-linear correction circuit,
20 ... Detection circuit (Def), 21 ... Iris drive circuit, 22
…… A / D circuit, 23 …… Analog switch, 24 …… Def, 25
…… A / D circuit, 26 …… Calculation circuit, 27 …… CCD drive circuit, 28
... D / A circuit, 29 ... Addition circuit, 30 ... D / A circuit, 31 ...
D / A circuit, 32 D / A circuit, 33 Adder circuit, 34 NA
M, 35: Gain switching circuit, 36: Pulse generation circuit, 37
...... Def.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】撮影レンズと、 前記撮影レンズを透過した光を受光して映像信号を生成
する撮像手段と、 前記映像信号黒レベルを調整する調整手段と、 被写界の主要被写体と背景の輝度差を検出する検出手段
と、 前記検出手段の検出結果に応じて前記調整手段による黒
レベル調整の方法を切り換えるように制御する制御手段
と を備えたことを特徴とする撮像装置。
A photographing lens; an image pickup unit for receiving a light transmitted through the photographing lens to generate a video signal; an adjusting unit for adjusting the black level of the video signal; An imaging apparatus comprising: a detection unit that detects a luminance difference; and a control unit that controls a method of adjusting a black level by the adjustment unit in accordance with a detection result of the detection unit.
JP2087217A 1990-03-31 1990-03-31 Imaging device Expired - Lifetime JP2990732B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2087217A JP2990732B2 (en) 1990-03-31 1990-03-31 Imaging device
US07/677,140 US5221963A (en) 1990-03-31 1991-03-29 Video camera having a video signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087217A JP2990732B2 (en) 1990-03-31 1990-03-31 Imaging device

Publications (2)

Publication Number Publication Date
JPH03285471A JPH03285471A (en) 1991-12-16
JP2990732B2 true JP2990732B2 (en) 1999-12-13

Family

ID=13908750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087217A Expired - Lifetime JP2990732B2 (en) 1990-03-31 1990-03-31 Imaging device

Country Status (1)

Country Link
JP (1) JP2990732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964830B2 (en) * 2008-06-11 2012-07-04 富士フイルム株式会社 Omnidirectional imaging apparatus and omnidirectional image imaging control method

Also Published As

Publication number Publication date
JPH03285471A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
US5221963A (en) Video camera having a video signal processing apparatus
US6593970B1 (en) Imaging apparatus with dynamic range expanded, a video camera including the same, and a method of generating a dynamic range expanded video signal
EP0224904B1 (en) White balance adjusting device of color video camera
JP2749921B2 (en) Imaging device
US5767899A (en) Image pickup device
US7646406B2 (en) Image taking apparatus
US5633677A (en) Television camera apparatus
US5075778A (en) Backlight correction system
JP2990732B2 (en) Imaging device
KR960008992B1 (en) Method and apparatus for adjusting chroma
JP2527592B2 (en) Imaging device
JP2504939B2 (en) Imaging device
JP2990733B2 (en) Imaging device
JPH04107083A (en) Variable gamma correcting circuit and picture signal processing circuit using the same
JP3701172B2 (en) Camera exposure control method
JP4145704B2 (en) White balance circuit
JPH03285470A (en) Video camera
JPS601989A (en) Image pickup device
JPH07143509A (en) Chromanoise suppressing method for video camera
JPH03289274A (en) Video camera
JPH09205653A (en) Image pickup device
JP3974290B2 (en) Imaging system
JPH05292387A (en) Image pickup device
JP2667721B2 (en) Video camera
JPH0657067B2 (en) Color temperature compensation device for color television cameras

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11