JP2990723B2 - Power regeneration voltage type inverter - Google Patents

Power regeneration voltage type inverter

Info

Publication number
JP2990723B2
JP2990723B2 JP2030292A JP3029290A JP2990723B2 JP 2990723 B2 JP2990723 B2 JP 2990723B2 JP 2030292 A JP2030292 A JP 2030292A JP 3029290 A JP3029290 A JP 3029290A JP 2990723 B2 JP2990723 B2 JP 2990723B2
Authority
JP
Japan
Prior art keywords
power
instantaneous
conversion circuit
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2030292A
Other languages
Japanese (ja)
Other versions
JPH03235675A (en
Inventor
貴志 小玉
忠士 市岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2030292A priority Critical patent/JP2990723B2/en
Publication of JPH03235675A publication Critical patent/JPH03235675A/en
Application granted granted Critical
Publication of JP2990723B2 publication Critical patent/JP2990723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、電源回生電圧形インバータに係り、特に誘
導機の可変速機能と電源力率を進みから遅れまで連続的
に調整可能とする調相機能とを合わせ待たせた電圧形イ
ンバータに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to a power supply regenerative voltage type inverter, and in particular, to a variable speed function of an induction machine and a control capable of continuously adjusting a power supply power factor from a lead to a delay. The present invention relates to a voltage-source inverter having a phase function and a waiting function.

B.発明の概要 本発明は、順変換回路に系統の高調波抑制機能を持た
せた電源回生電圧形インバータにおいて、 系統の高調波成分を瞬時実電力で検出すると共に、相
電圧から求めた瞬時虚電力と基本波無効電力指令を加算
して、逆変換回路の直流電圧と電流から負荷への実電力
を求めて瞬時実電力に加算して順変換回路の電流指令を
求めることにより、 高調波抑制効果を高めながらインバータ負荷にも安定
した電力供給ができると共に、力率を連続的に調整でき
るようにしたものである。
B. Summary of the Invention The present invention relates to a power supply regenerative voltage inverter having a forward conversion circuit having a system harmonic suppression function, in which a system harmonic component is detected with instantaneous real power, and an instantaneous Add the imaginary power and the fundamental reactive power command to obtain the real power to the load from the DC voltage and current of the inverse conversion circuit, add it to the instantaneous real power to obtain the current command of the forward conversion circuit, A stable power supply to the inverter load can be performed while enhancing the suppression effect, and the power factor can be continuously adjusted.

C.従来の技術 電圧形インバータは、順変換回路を自己消弧形デバイ
ス(トランジスタやGTO)を用いてPWM制御回路に構成す
ることで電源側への電力の回生を可能にする。第3図は
電源回生電圧形インバータの回路図を示す。交流電源1
には電圧形インバータ2〜4が接続され、各インバータ
によって電動機5〜7を駆動する構成で示す。インバー
タ2〜4はインバータ2に代表して示すように、自己消
弧形デバイスを主回路スイッチとする順変換回路11とコ
ンデンサ12と逆変換回路13とを備え、交流電源1とは交
流リアクトル14を通して電力授受を行い、順変換回路11
はコンデンサ12の直流電圧を一定に保持するようPWM制
御することで順逆両方向変換、即ち電源回生も可能にす
る。搬送波除去フィルタ15はPMW制御による搬送波成分
の除去を行う。順変換回路11の制御回路16はコンデンサ
12の直流電圧Edと交流電源1の同期信号を検出して順変
換回路11のPWM制御を行う。
C. Conventional technology Voltage-source inverters can regenerate power to the power supply by constructing a forward conversion circuit into a PWM control circuit using self-extinguishing devices (transistors and GTOs). FIG. 3 shows a circuit diagram of a power regeneration voltage type inverter. AC power supply 1
Are connected to voltage-type inverters 2 to 4, and the motors 5 to 7 are driven by the respective inverters. Each of the inverters 2 to 4 includes a forward conversion circuit 11 having a self-extinguishing device as a main circuit switch, a capacitor 12 and an inverse conversion circuit 13 as represented by the inverter 2. Power transfer through the forward conversion circuit 11
By performing PWM control so that the DC voltage of the capacitor 12 is kept constant, forward and reverse bidirectional conversion, that is, power supply regeneration is also possible. The carrier removal filter 15 removes a carrier component by PMW control. The control circuit 16 of the forward conversion circuit 11 is a capacitor
The PWM control of the forward conversion circuit 11 is performed by detecting the DC voltage Ed of 12 and the synchronization signal of the AC power supply 1.

ここで、電圧形インバータ2に順変換回路11が持つ電
源回生機能を利用して高調波抑制機能を持たせるには、
制御回路16は交流電源1の電源ラインの負荷電流から高
調波成分を抽出し、この成分に応じた交流電流を電源1
側に供給する。
Here, in order to make the voltage source inverter 2 have a harmonic suppression function by using the power regeneration function of the forward conversion circuit 11,
The control circuit 16 extracts a harmonic component from the load current of the power supply line of the AC power supply 1 and outputs an AC current corresponding to this component to the power supply 1.
Supply to the side.

D.発明が解決しようとする課題 従来の構成において、高調波電流を完全に補償しよう
とすると、負荷の瞬時実電力の交流分によるエネルギー
が系統に接続される負荷と補償装置を往復してコンデン
サ12の蓄積エネルギーが増減する。従って、コンデンサ
12の電圧を一定に制御しようとすると高調波抑制効果を
低下させることになる。
D. Problems to be Solved by the Invention In the conventional configuration, in order to completely compensate for the harmonic current, the energy due to the AC component of the instantaneous real power of the load reciprocates between the load connected to the grid and the compensator and the capacitor. Twelve stored energy increases or decreases. Therefore, the capacitor
Attempting to control the voltage of 12 constant would reduce the harmonic suppression effect.

逆に、高調波抑制効果を高めると、コンデンサの直流
電圧が大きく振動し、インバータ13から負荷への安定し
た電力供給ができなくなる。
Conversely, if the harmonic suppression effect is enhanced, the DC voltage of the capacitor greatly fluctuates, and stable power supply from the inverter 13 to the load becomes impossible.

また、電源電流は正弦波であっても、力率は負荷によ
って変化し、必ずしも100%にはならない。
Further, even if the power supply current is a sine wave, the power factor varies depending on the load, and does not always become 100%.

本発明の目的は、高調波抑制効果を高めながらインバ
ータ負荷にも安定した電力供給ができると共に、力率を
連続的に調整可能な電圧形インバータを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a voltage type inverter capable of continuously supplying a stable power to an inverter load while enhancing a harmonic suppression effect and continuously adjusting a power factor.

E.課題を解決するための手段と作用 本発明は、前記目的を達成するため、自己消弧形デバ
イスを主回路スイッチとしてPWM制御により電源回生を
可能にした順変換回路と、この順変換回路から直流電力
が供給され負荷に交流電力を供給する逆変換回路と、前
記順変換回路をPWM制御する制御回路とを備えた電源回
生電圧形インバータにおいて、前記制御回路は順変換回
路の交流系統の負荷電流と相電圧から瞬時実電力と瞬時
虚電力とを求める演算手段と、この演算手段により求め
られた瞬時実電力から高調波成分を求める手段と、前記
演算手段によって求められた瞬時虚電力に基本波無効電
力指令を加算して力率を調整する手段と、前記逆変換回
路の直流電圧と直流電流から負荷の実電力を求める手段
と、この実電力を前記瞬時実電力の高調波成分に加算し
た成分と前記瞬時虚電力に基本波無効電力指令を加算し
た成分とから前記順変換回路の電流指令を求める手段と
を備え、順変換回路の交流系統の負荷電流から瞬時実電
力の高調波成分を求める高調波抑制のための検出信号と
し、このうち瞬時実電力の高調波成分に逆変換回路が負
荷に供給する実電力を加算して順変換回路の実電力制御
信号とすることで瞬時電力による高調波抑制制御に逆変
換回路の負荷電力分を含ませると共に、相電圧から求め
た瞬時虚電力と基本波無効電力により力率を調整できる
PWM制御を行う。
E. Means and Action for Solving the Problems In order to achieve the above object, the present invention provides a forward conversion circuit that enables power regeneration by PWM control using a self-extinguishing device as a main circuit switch, and a forward conversion circuit. A power conversion regenerative voltage type inverter including a reverse conversion circuit that is supplied with DC power and supplies AC power to a load, and a control circuit that performs PWM control on the forward conversion circuit, wherein the control circuit includes an AC system of the forward conversion circuit. Calculating means for calculating the instantaneous real power and the instantaneous imaginary power from the load current and the phase voltage; means for obtaining a harmonic component from the instantaneous real power obtained by the calculating means; and calculating the instantaneous imaginary power obtained by the calculating means. A means for adjusting the power factor by adding a fundamental wave reactive power command; a means for obtaining a real power of a load from a DC voltage and a DC current of the inverting circuit; and a harmonic generation of the instantaneous real power. Means for obtaining a current command of the forward conversion circuit from a component obtained by adding a fundamental reactive power command to the instantaneous imaginary power and a component of the instantaneous imaginary power. It is used as a detection signal for harmonic suppression to obtain the wave component, and by adding the real power supplied to the load by the inverse conversion circuit to the harmonic component of the instantaneous real power, it becomes the real power control signal for the forward conversion circuit. Harmonic suppression control by instantaneous power includes the load power of the inverter circuit, and the power factor can be adjusted by the instantaneous imaginary power and fundamental reactive power obtained from the phase voltage.
Perform PWM control.

F.実施例 以下に本発明の実施例を第1図〜第2図を参照しなが
ら説明する。
F. Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第2図は本発明の実施例による全体構成図を示し、第
3図のものと同一又は相当部分には同一符号が付されて
いる。第2図において、16Aは順変換部制御回路、17は
ベースドライブ回路、18は逆変換部制御回路である。
FIG. 2 shows an overall configuration diagram according to an embodiment of the present invention, and the same or corresponding parts as those in FIG. 3 are denoted by the same reference numerals. In FIG. 2, 16A is a forward conversion unit control circuit, 17 is a base drive circuit, and 18 is an inverse conversion unit control circuit.

第1図は本発明の一実施例を示す制御回路図である。
3相/2相変換部21は、系統の3相負荷電流IU,IV,IWを直
交α−β座標上の2相流Iα,Iβに変換する。
FIG. 1 is a control circuit diagram showing one embodiment of the present invention.
The three-phase / two-phase converter 21 converts the three-phase load currents I U , I V , I W of the system into two-phase flows I α , I β on orthogonal α-β coordinates.

同様に、3相/2相変換部22は、系統の相電圧EU,EV,EW
を直交α−β座標上の2相電圧Eα,Eβに変換する。
Similarly, the three-phase / two-phase conversion unit 22 outputs the system phase voltages E U , E V , and E W
Into two-phase voltages E α and E β on the orthogonal α-β coordinates.

上述の2相電流Iα,Iβと2相電圧Eα,Eβとはα−
β座標軸上の瞬時ベクトルとして取り扱え、瞬時電力は
α,Iα,Eβ,Iβのスカラ積で表される。従って、瞬時
電力演算部23は2相電圧と電流のスカラ積の和として瞬
時実電力Pと瞬時虚電力qを求める。
2-phase currents I alpha described above, I beta and 2-phase voltage E alpha, and E beta alpha-
handled as an instantaneous vector on beta coordinate axes, the instantaneous power E α, I α, E β , represented by the scalar product of the I beta. Accordingly, the instantaneous power calculator 23 obtains the instantaneous real power P and the instantaneous imaginary power q as the sum of the scalar products of the two-phase voltage and the current.

ところで、瞬時実電力P、虚電力Qを直流分と交流分
に分離すると、 (4)式の(交流分)と(交流分)は高調波瞬時電
力を表しており、高調波補償対象となる 交流分演算部24はローパスフィルタと加算器によって
ハイパスフィルタ機能を持ち、瞬時実電力Pから夫々の
交流分(高調波瞬時電力)Phを求める。
By the way, when the instantaneous real power P and the imaginary power Q are separated into a DC component and an AC component, In equation (4), (AC component) and (AC component) represent the instantaneous harmonic power, and the AC component calculation unit 24 to be subjected to harmonic compensation has a high-pass filter function using a low-pass filter and an adder. From the electric power P, respective AC components (instantaneous power of harmonics) Ph are obtained.

基本波無効電力をも補償して力率を調整するために、
全ての瞬時虚電力Q(基本波に起因するもの+高調波に
起因するもの)と、瞬時実電力Pを補償対象とする。
In order to adjust the power factor by also compensating for the fundamental reactive power,
All instantaneous imaginary powers Q (attributable to a fundamental wave + attributable to harmonics) and instantaneous real power P are to be compensated.

従って、瞬時虚電力においては、とを分離する必
要がなくなり、補償対象抽出のフィルタも不要になる。
それ故、第1図では瞬時実電力部分のみフィルタを用い
た構成となっている。
Therefore, in the instantaneous imaginary power, there is no need to separate the instantaneous imaginary power, and the filter for extracting the compensation target is not required.
Therefore, in FIG. 1, only the instantaneous real power portion uses a filter.

すなわち、電流指令部25においては、基本波成分の無
効電力指令Ψ(直流分)を補償対象に与えることで、
任意の進み電流・遅れ電流指令が与えられる。
That is, the current command unit 25 gives the reactive power command Ψ (DC component) of the fundamental wave component to the compensation target,
Arbitrary leading current / lagging current commands are given.

補償対象となる高調波に起因する瞬時実電力Pと、全
ての瞬時虚電力Qが求まったので、電流指令演算部26は
瞬時電力Ph,qhと相電圧Eα,Eβから直交α−β座標上
の座標電流Iα Ψ,Iβ Ψを求める。
Since the instantaneous real power P due to the harmonic to be compensated and all the instantaneous imaginary powers Q have been obtained, the current command calculator 26 calculates the quadrature α from the instantaneous powers P h , q h and the phase voltages E α , E β. coordinate current I alpha [psi on -β coordinates, obtains the I beta [psi.

2相/3相変換部27は、2相瞬時電流Iα Ψ,Iβ Ψを3
相瞬時電流Ica Ψ,Icb Ψ,Icc Ψに変換して3相瞬時電流
での補償電流指令値を求める。
The two-phase / three-phase converter 27, two-phase instantaneous current I alpha [psi, the I beta [psi 3
Phase instantaneous current I ca Ψ, I cb Ψ, obtaining the compensation current command value of a three-phase instantaneous current is converted into I cc [psi.

PWM制御部28は、3相瞬時電流Ica Ψ,Icb Ψ,Icc Ψと補
償電流の検出信号IR,IS,ITとを突き合わせ、コンパレー
タによる搬送波との比較方式でPWM波形のゲート信号を
得、このゲート信号により順変換回路11の自己消弧素子
をスイッチング制御する。
The PWM control unit 28 compares the three-phase instantaneous currents I ca Ψ , I cb Ψ , and I cc Ψ with the compensation current detection signals I R , I S , and I T, and compares the PWM waveform with a carrier by a comparator. A gate signal is obtained, and the switching of the self-extinguishing element of the forward conversion circuit 11 is controlled by the gate signal.

上述までの構成により、系統負荷電流に含まれる高調
波成分を順変換回路11から補償する電流として交流電源
1側に供給する。
With the configuration described above, the harmonic component included in the system load current is supplied from the forward conversion circuit 11 to the AC power supply 1 as a current to be compensated.

ここで、瞬時実電力Phには逆変換回路13が電動機5に
供給する実電力PLを加算して電流指令演算部26に供給す
る。この実電力PLはコンデンサ12の電圧Edと逆変換回路
13の直流電流Idの夫々の検出信号を乗算することで直流
負荷を求め、必要に応じてフィルタによる一次遅れを持
って実電力演算部29によって求められる。また、瞬時実
電力Phには順変換回路11のスイッチングロス等のロス分
を補償するロス電力Plを加算している。このロス電力Pl
はコンデンサ電圧Edの検出信号とコンデンサ12の直流電
圧指令Ed Ψとの突き合わせで電圧制御回路30から求め
る。
Here, the actual power P L supplied to the electric motor 5 by the inverse conversion circuit 13 is added to the instantaneous real power P h and supplied to the current command calculation unit 26. The real power P L is the voltage E d and the inverse conversion circuit of a capacitor 12
Obtains a DC load by multiplying the 13 detection signals of the respective direct current I d in is determined by the real power calculating section 29 with a first-order lag due to the filter as required. Further, the instantaneous real power P h are added loss power Pl to compensate for the loss in the switching loss or the like of the forward transform circuit 11. This loss power Pl
It is obtained from the voltage control circuit 30 in the butt of the DC voltage command E d [psi detection signal and the capacitor 12 of the capacitor voltage E d.

本実施例によれば、系統負荷電流から瞬時実電力Pと
瞬時虚電力qを求め、瞬時実電力Pから高調波瞬時実電
力Phを求めると共に、瞬時虚電力qに基本波無効電力指
Ψを加算することにより虚電力qhを求める。このう
ち実電力Phには逆変換回路13が負荷(5)に供給する実
電力PL及び順変換回路11の変換ロス分Plを加えて順変換
回路11の瞬時実電力Pの制御信号とし、この実電力Pと
瞬時虚電力qhから電流指令に変換し、さらに2相/3相変
換と電流フィードバック制御によってPWM制御信号を得
る。
According to this embodiment, the system load current calculated instantaneous real power P and instantaneous imaginary power q from with the instantaneous real power P seek harmonic instantaneous real power P h, the instantaneous imaginary power q to the fundamental wave reactive power command Ψ Request imaginary power q h by adding a. As a control signal of the instantaneous real power P of the forward conversion circuit 11 by adding the real power P L and the conversion loss in Pl of the rectifier circuit 11 supplies to the load the inverse transform circuit 13 (5) in these real power P h , and converted into a current command from the real power P and instantaneous imaginary power q h, to obtain a PWM control signal by an additional 2-phase / 3-phase conversion and a current feedback control.

従って、高調波抑制のためには瞬時実電力と虚電力か
ら高調波分を求めて順変換回路11への電流指令を求め、
この電流指令に逆変換回路13の負荷実電力を加えて順変
換回路11への電流指令を求めるため、高調波抑制機能を
低下させることなく逆変換回路の負荷にも安定した電力
供給を行うことができる。また、逆変換回路13の負荷に
供給するべき電力を直流電圧と直流電流のみから求める
ため実電力演算部29を簡単化する。さらに、逆変換回路
13の実電力を高調波抑制のための高調波実電力Phに加算
して、順変換回路11の電力制御になるため、逆変換回路
13から負荷に供給する電力は力率1になるし、同様に回
生運転時も力率1に制御される。
Therefore, in order to suppress harmonics, a harmonic component is obtained from the instantaneous real power and the imaginary power to obtain a current command to the forward conversion circuit 11,
To obtain the current command to the forward conversion circuit 11 by adding the actual power of the load of the inverse conversion circuit 13 to this current command, it is necessary to supply a stable power to the load of the reverse conversion circuit without lowering the harmonic suppression function. Can be. Further, since the power to be supplied to the load of the inverse conversion circuit 13 is obtained from only the DC voltage and the DC current, the actual power calculation unit 29 is simplified. In addition, an inverse conversion circuit
The real power of 13 is added to the harmonic real power P h for harmonic suppression, since the power control of the forward conversion circuit 11, the inverse transform circuit
The power supplied from 13 to the load has a power factor of 1, and is similarly controlled to a power factor of 1 during regenerative operation.

また、高調波成分を補償することで電源電流は正弦波
になり、さらに基本波無効電流を補償することによって
基本波電流の位相を力率1に制御できる。
Further, the power supply current becomes a sine wave by compensating for the harmonic component, and the phase of the fundamental wave current can be controlled to a power factor of 1 by compensating for the fundamental wave reactive current.

このように、全ての瞬時電力を補償対象とするので、
フィルタによって補償対象を抽出することなく、瞬時虚
電力成分に基本波無効電力指令(直流分)を加えること
で任意の基本波無効電流の補償ができ、結果として連続
的な力率の調整が可能である。
As described above, since all instantaneous powers are to be compensated,
By adding the fundamental reactive power command (DC component) to the instantaneous imaginary power component without extracting the compensation target with the filter, any fundamental reactive current can be compensated, and as a result, continuous power factor adjustment is possible It is.

G.発明の効果 以上のとおり、本発明によれば、電源回生機能を持つ
順変換回路のPWM制御に、系統負荷電流から求めた瞬時
電力の高調波成分に逆変換回路から負荷に供給する実電
力を瞬時実電力に加えておくため、系統の高調波抑制効
果を高めながら逆変換回路の負荷にも安定かつ力率1に
した電力供給ができる。また、逆変換回路の実電力は直
流電流と電圧から求めるため、回路構成を簡単化する。
G. Effects of the Invention As described above, according to the present invention, in the PWM control of the forward conversion circuit having the power regeneration function, the harmonic component of the instantaneous power obtained from the system load current is supplied to the load from the inverse conversion circuit. Since the power is added to the instantaneous real power, it is possible to supply power with a stable and power factor of 1 to the load of the inverter circuit while enhancing the harmonic suppression effect of the system. Further, since the actual power of the inversion circuit is obtained from the DC current and the voltage, the circuit configuration is simplified.

また、可変速装置として機能するだけでなく、電力系
統の電源力率を調整できるので力率調整用の進相コンデ
ンサ,位相制御リアクトル等が不要になり、回路構成が
簡単になると共に、負荷を運転していないときでも、順
変換部のみ動作させることで電源力率を連続的に調整で
きるので、高性能にして信頼性が向上する。
In addition to functioning as a variable speed device, the power supply power factor of the power system can be adjusted, so a phase-advancing capacitor for power factor adjustment, a phase control reactor, etc. become unnecessary, simplifying the circuit configuration and reducing the load. Even when the vehicle is not operating, the power supply power factor can be continuously adjusted by operating only the forward conversion unit, thereby improving the performance and improving the reliability.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す制御回路図、第2図は
本発明の実施例による電源回生電圧形インバータの全体
構成図、第3図は従来の電源回生電圧形インバータの回
路図である。 11……順変換回路、13……逆変換回路、23……瞬時電力
演算部、24……交流分演算部、25……電流指令部、26…
…電流指令演算部、29……実電力演算部、30……電圧制
御回路。
FIG. 1 is a control circuit diagram showing an embodiment of the present invention, FIG. 2 is an overall configuration diagram of a power regenerative voltage type inverter according to an embodiment of the present invention, and FIG. 3 is a circuit diagram of a conventional power regenerative voltage type inverter. It is. 11: forward conversion circuit, 13: reverse conversion circuit, 23: instantaneous power calculation unit, 24: AC component calculation unit, 25: current command unit, 26 ...
... Current command calculator, 29 ... Real power calculator, 30 ... Voltage control circuit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H02M 7/42 - 7/98 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H02M 7/42-7/98

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自己消弧形デバイスを主回路スイッチとし
てPWM制御により電源回生を可能にした順変換回路と、
この順変換回路から直流電力が供給され負荷に交流電力
を供給する逆変換回路と、前記順変換回路をPWM制御す
る制御回路とを備えた電源回生電圧形インバータにおい
て、前記制御回路は順変換回路の交流系統の負荷電流と
相電圧から瞬時実電力と瞬時虚電力とを求める演算手段
と、この演算手段により求められた瞬時実電力から高調
波成分を求める手段と、前記演算手段によって求められ
た瞬時虚電力に基本波無効電力指令を加算して力率を調
整する手段と、前記逆変換回路の直流電圧と直流電流か
ら負荷の実電力を求める手段と、この実電力を前記瞬時
実電力の高調波成分に加算した成分と前記瞬時虚電力に
基本波無効電力指令を加算した成分とから前記順変換回
路の電流指令を求める手段とを備えたことを特徴とする
電源回生電圧形インバータ。
1. A forward conversion circuit that enables power regeneration by PWM control using a self-extinguishing device as a main circuit switch;
In a power supply regenerative voltage type inverter including a reverse conversion circuit supplied with DC power from the forward conversion circuit and supplying AC power to a load, and a control circuit for performing PWM control on the forward conversion circuit, the control circuit includes a forward conversion circuit Calculating means for obtaining an instantaneous real power and an imaginary imaginary power from the load current and the phase voltage of the AC system; means for obtaining a harmonic component from the instantaneous real power obtained by the calculating means; A means for adjusting the power factor by adding a fundamental reactive power command to the instantaneous imaginary power; a means for obtaining the actual power of the load from the DC voltage and the DC current of the inversion circuit; Means for obtaining a current command for the forward conversion circuit from a component obtained by adding a harmonic component and a component obtained by adding a fundamental reactive power command to the instantaneous imaginary power. Over data.
JP2030292A 1990-02-09 1990-02-09 Power regeneration voltage type inverter Expired - Fee Related JP2990723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030292A JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030292A JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Publications (2)

Publication Number Publication Date
JPH03235675A JPH03235675A (en) 1991-10-21
JP2990723B2 true JP2990723B2 (en) 1999-12-13

Family

ID=12299656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030292A Expired - Fee Related JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Country Status (1)

Country Link
JP (1) JP2990723B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304156A (en) * 2004-04-09 2005-10-27 Toshiba Corp Power converter
CN112136271B (en) * 2018-04-19 2024-07-05 Abb瑞士股份有限公司 System and method for power conversion

Also Published As

Publication number Publication date
JPH03235675A (en) 1991-10-21

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
JP2954333B2 (en) AC motor variable speed system
EP3796538B1 (en) Capacitor size reduction and lifetime extension for cascaded h-bridge drives
JPS6137864B2 (en)
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JP5029315B2 (en) Motor drive system
US20200313566A1 (en) Reactive afe power control
JP3259571B2 (en) PWM control device and system using the same
JPS6148167B2 (en)
EP1380098B1 (en) Vector control of an induction motor
JP2624793B2 (en) Control device for PWM boost converter
JP2990723B2 (en) Power regeneration voltage type inverter
JP2926931B2 (en) Harmonic suppression device
JP3006084B2 (en) Power regeneration inverter
Shehada et al. An improved CSI fed induction motor drive
JP3392939B2 (en) Voltage converter for power converter
JPH07107744A (en) Power converter
JPH0984363A (en) Dead-time compensating method for inverter
JP4797371B2 (en) Power converter control method
JPH0375893B2 (en)
JPH0767280B2 (en) Power converter
US12088228B2 (en) Power conversion device and control method thereof
JP2924589B2 (en) Power converter
JPS61267109A (en) Controller of electric power converter
JP2531510B2 (en) Cycloconverter control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees