JP2990516B1 - Method for producing reaction layer raw material for gas diffusion electrode - Google Patents

Method for producing reaction layer raw material for gas diffusion electrode

Info

Publication number
JP2990516B1
JP2990516B1 JP11024164A JP2416499A JP2990516B1 JP 2990516 B1 JP2990516 B1 JP 2990516B1 JP 11024164 A JP11024164 A JP 11024164A JP 2416499 A JP2416499 A JP 2416499A JP 2990516 B1 JP2990516 B1 JP 2990516B1
Authority
JP
Japan
Prior art keywords
average particle
carbon black
dispersed
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11024164A
Other languages
Japanese (ja)
Other versions
JP2000219987A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP11024164A priority Critical patent/JP2990516B1/en
Priority to US09/600,114 priority patent/US6428722B1/en
Priority to CNB998021105A priority patent/CN1134556C/en
Priority to EP99972265A priority patent/EP1055748A4/en
Priority to PCT/JP1999/003440 priority patent/WO2000029643A1/en
Application granted granted Critical
Publication of JP2990516B1 publication Critical patent/JP2990516B1/en
Publication of JP2000219987A publication Critical patent/JP2000219987A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

【要約】 【課題】 三相帯界面が増加した、著しく高性能のガス
拡散電極の反応層原料の製造方法を提供する。 【解決手段】 界面活性剤を含む水溶液中に疎水性カー
ボンブラック、親水性微粒子及びポリテトラフルオロエ
チレンディスパージョンを分散するに際して、該水溶液
中で分散した親水性微粒子の平均粒径をrs 、疎水性カ
ーボンブラックの平均粒径をrc 、使用するポリテトラ
フルオロエチレンディスパージョンの平均粒径をrp
するときに、該水溶液にその平均粒径rc がD=rc
p で0.5<D<2の範囲になるように疎水性カーボ
ンブラックを混合分散し、かつ平均粒径rs がrs <2
p の親水性微粒子を混合分散し、平均粒径rp のポリ
テトラフルオロエチレンディスパージョンを混合後、更
に、自己組織化剤を添加混合することを特徴とするガス
拡散電極の反応層原料の製造方法。
An object of the present invention is to provide a method for producing a reaction layer raw material of a gas diffusion electrode having an increased three-phase zone interface and having extremely high performance. SOLUTION: When hydrophobic carbon black, hydrophilic fine particles and polytetrafluoroethylene dispersion are dispersed in an aqueous solution containing a surfactant, the hydrophilic fine particles dispersed in the aqueous solution have an average particle size of r s and a hydrophobic fine particle. the average particle diameter r c sex carbon black, the average particle diameter of the polytetrafluoroethylene dispersion to be used when the r p, the average particle diameter r c in the aqueous solution D = r c /
r 0.5 <a hydrophobic carbon black to be in the range of D <2 were mixed and dispersed in p, and the average particle size r s is r s <2
were mixed and dispersed hydrophilic particles of r p, after mixing the polytetrafluoroethylene dispersion having an average particle diameter r p, further, the reaction layer raw material of the gas diffusion electrode, which comprises admixing a self-organizing agent Production method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高性能のガス拡散
電極の反応層原料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a reaction layer raw material for a high performance gas diffusion electrode.

【0002】[0002]

【従来の技術】従来、ガス拡散電極の一種として、親水
性微粒子、疎水性カーボンブラックおよびポリテトラフ
ルオロエチレン(PTFE)ディスパージョンから成る
反応層を有するガス拡散電極がある。このガス拡散電極
においては、そこで使用される疎水性カーボンブラック
は、一次粒子径が、0.04ミクロン程度であるが、二
次凝集しているので20〜300ミクロンとなってい
る。このガス拡散電極の製造工程において、この疎水性
カーボンブラックは、界面活性剤を含む水溶液中で数ミ
クロン程度に分散しており、これに平均粒径が0.3ミ
クロンのPTFEディスパージョンを混合、凝集、濾
過、シート化等を経て反応層が作製されていた。疎水性
カーボンブラックの分散状態は、平均粒径が数ミクロン
程度であれば実用的に充分な性能と製造再現性が確保さ
れている。その疎水性カーボンブラックを分散させるた
めの分散方法は超音波分散が最も優れているが、この方
法では作業性から1ミクロン以下の平均粒径とすること
は困難であった。
2. Description of the Related Art Conventionally, as one type of gas diffusion electrode, there is a gas diffusion electrode having a reaction layer composed of hydrophilic fine particles, hydrophobic carbon black and polytetrafluoroethylene (PTFE). In this gas diffusion electrode, the hydrophobic carbon black used therein has a primary particle diameter of about 0.04 μm, but has a secondary aggregation of 20 to 300 μm. In the production process of the gas diffusion electrode, the hydrophobic carbon black is dispersed to about several microns in an aqueous solution containing a surfactant, and a PTFE dispersion having an average particle diameter of 0.3 microns is mixed with the dispersion. The reaction layer has been produced through aggregation, filtration, sheeting, and the like. As for the dispersion state of the hydrophobic carbon black, if the average particle diameter is about several microns, practically sufficient performance and production reproducibility are secured. Ultrasonic dispersion is the best dispersion method for dispersing the hydrophobic carbon black, but it is difficult to reduce the average particle diameter to 1 micron or less by this method due to workability.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記したよう
な20〜300ミクロンと0.3ミクロンというような
粒径差を持つ疎水性カーボンブラックとPTFEディス
パージョンを含む分散液が自己組織化して反応層となっ
た時の状態は、大きな疎水性カーボンブラックの二次粒
子の回りに十分の一ほどの小さなPTFE微粒子が存在
する構造となって疎水部を形成しているものである。こ
の疎水部の領域が大きいので、親水性微粒子が自己組織
化した親水部も大きくなり、その結果、反応に関与する
三相帯界面は小さくなってしまう。すなわち、材料の持
つ電極性能が極限まで発揮されていないことになる。
However, the dispersion containing the PTFE dispersion and the hydrophobic carbon black having a particle size difference of 20 to 300 microns and 0.3 microns as described above reacts by self-assembly. The state when the layer is formed is a structure in which one-tenth of small PTFE fine particles are present around secondary particles of large hydrophobic carbon black to form a hydrophobic part. Since the area of the hydrophobic part is large, the hydrophilic part in which the hydrophilic fine particles are self-organized also becomes large, and as a result, the three-phase band interface involved in the reaction becomes small. That is, the electrode performance of the material is not exhibited to the utmost.

【0004】本発明は、このような従来の問題点に鑑み
てなされたものであり、疎水性カーボンブラックの分散
微粒子径をPTFEディスパージョンの平均粒径と同程
度にして、三相帯界面を増加することによって、高性能
のガス拡散電極の反応層原料の製造方法を提供すること
を課題とする。
The present invention has been made in view of such a conventional problem, and the three-phase band interface is formed by making the dispersed fine particles of the hydrophobic carbon black approximately the same as the average particle size of the PTFE dispersion. An object of the present invention is to provide a method for producing a reaction layer raw material for a high-performance gas diffusion electrode by increasing the amount.

【0005】[0005]

【課題を解決するための手段】ガス拡散電極の高性能化
には、三相帯界面を増加させることが必須である。本発
明者は、前記課題を解決すべく鋭意研究した結果、この
三相帯界面の増加方法は、疎水性カーボンブラックとP
TFE微粒子の混合状態で大きく左右されることを見出
した。すなわち、使用するPTFEディスパージョンと
ほぼ同程度の粒径に疎水性カーボンブラックを分散さ
せ、親水性微粒子はPTFEディスパージョンより小さ
な粒径とし、これらをPTFEディスパージョンと攪拌
混合したのち、アルコール等で自己組織化すれば、サブ
ミクロンの三相帯界面が形成されることを知見した。す
なわち、本発明者は、三相帯界面をミクロン以下の親水
部で構成させる方法として、界面活性剤を含む水溶液中
で、親水部と疎水部となる材料をPTFEディスパーシ
ョンとほぼ同程度の粒径に分散させ自己組織化すること
でミクロな構造を作製できることを見出した。本発明者
は、前記の知見に基づいて上記の課題を解決でき、その
結果上記の目的を達成できることを見出して本発明を完
成するに至った。
In order to improve the performance of a gas diffusion electrode, it is essential to increase the three-phase zone interface. The present inventor has conducted intensive studies to solve the above-mentioned problems.
It has been found that it greatly depends on the mixed state of TFE fine particles. That is, the hydrophobic carbon black is dispersed to a particle size substantially the same as the PTFE dispersion to be used, and the hydrophilic fine particles are made to have a smaller particle size than the PTFE dispersion. It was found that a submicron three-phase zone interface was formed by self-organization. That is, as a method of forming the three-phase zone interface with a hydrophilic portion of a micron or less, the present inventor has proposed that a material to be a hydrophilic portion and a hydrophobic portion in an aqueous solution containing a surfactant has a particle size substantially equal to that of PTFE dispersion. It has been found that a microstructure can be produced by dispersing in diameter and self-organizing. The present inventors have found that the above problems can be solved based on the above findings, and as a result, the above objects can be achieved, and have completed the present invention.

【0006】すなわち、本発明は、次の構成からなるも
のである。 (1) 界面活性剤を含む水溶液中に疎水性カーボンブ
ラック、親水性微粒子及びポリテトラフルオロエチレン
ディスパージョンを分散するに際して、該水溶液中で分
散した親水性微粒子の平均粒径をrs 、疎水性カーボン
ブラックの平均粒径をrc 、使用するポリテトラフルオ
ロエチレンディスパージョンの平均粒径をrp とすると
きに、該水溶液にその平均粒径rc がD=rc /rp
0.5<D<2の範囲になるように疎水性カーボンブラ
ックを混合分散し、かつ平均粒径r s がrs <2rp
親水性微粒子を混合分散し、平均粒径rp のポリテトラ
フルオロエチレンディスパージョンを混合後、更に、自
己組織化剤を添加混合することを特徴とするガス拡散電
極の反応層原料の製造方法。
That is, the present invention has the following configuration.
It is. (1) Hydrophobic carbon powder in aqueous solution containing surfactant
Rack, hydrophilic fine particles and polytetrafluoroethylene
When dispersing the dispersion, the dispersion is dispersed in the aqueous solution.
The average particle size of the dispersed hydrophilic fine particles is represented by rs, Hydrophobic carbon
The average particle size of black is rcThe polytetrafluo used
The average particle size of the ethylene dispersion is rpThen
The aqueous solution has an average particle size rcIs D = rc/ Rpso
Hydrophobic carbon bra so that 0.5 <D <2
And the average particle size r sIs rs<2rpof
The hydrophilic fine particles are mixed and dispersed, and the average particle diameter rpPolytetra
After mixing the fluoroethylene dispersion,
Gas diffusion electrode characterized by adding and mixing a self-organizing agent
A method for producing a raw material for a reaction layer of an electrode.

【0007】[0007]

【発明の実施の形態】界面活性剤を4%含む水に疎水性
カーボンブラックを軽く分散させ、ジェツトミルを用
い、1000kg/cm2 の圧力で0.2mm径の2つ
のノズルで高速流を衝突させることで平均粒径0.45
ミクロンに分散した。このカーボンブラック分散液に平
均粒径0.1ミクロンの銀コロイド分散液を添加攪拌混
合し、更に、PTFEディスパージョンを添加、攪拌混
合するだけで分散操作を行い、最後にエチルアルコール
を添加混合して自己組織化させる。これを濾過して、乾
燥し、ロール法でシート化し、界面活性剤を除去し、乾
燥してから、銀網とガス供給層とを合わせ、ホットプレ
スしてガス拡散電極を得る。
BEST MODE FOR CARRYING OUT THE INVENTION Hydrophobic carbon black is lightly dispersed in water containing 4% of a surfactant, and a jet mill is used to collide a high-speed flow with two nozzles having a diameter of 0.2 mm at a pressure of 1000 kg / cm 2 . Average particle size 0.45
Dispersed in micron. A silver colloid dispersion having an average particle size of 0.1 micron is added to this carbon black dispersion, and the mixture is stirred and mixed. Further, a PTFE dispersion is added and the mixture is stirred and mixed, and a dispersion operation is performed. Finally, ethyl alcohol is added and mixed. And self-organize. This is filtered, dried, formed into a sheet by a roll method, the surfactant is removed, dried, and then the silver mesh and the gas supply layer are combined and hot pressed to obtain a gas diffusion electrode.

【0008】親水性微粒子は、親水性カーボンブラッ
ク、金属微粒子、金属酸化物、ZnO 2 、CaCO3
アルミナ、シリカ、チタニア等の水、アルコールに溶解
せず、380℃の高温で安定なものが好適に用いられ
る。触媒として白金、銀をこの親水性微粒子上に担持し
て用いる。これらの微粒子は0.3ミクロン以下の粒径
が望ましい。
[0008] The hydrophilic fine particles are hydrophilic carbon black.
Metal, metal fine particles, metal oxide, ZnO Two, CaCOThree,
Dissolves in water and alcohol such as alumina, silica and titania
It is preferable to use a material which is stable at a high temperature of 380 ° C.
You. Platinum and silver are supported on the hydrophilic fine particles as a catalyst.
Used. These particles have a particle size of less than 0.3 microns
Is desirable.

【0009】[0009]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし、本発明は、これらの実施例のみに限定され
るものではない。なお、全実施例および比較例を通じ
て、部は全て重量部を、%は全て重量%を意味する。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to only these examples. In all examples and comparative examples, all parts are parts by weight, and all parts are% by weight.

【0010】実施例1 4%トライトン(界面活性剤、以下同様)200部に疎
水性カーボンブラック(デンカブラック、平均粒径39
0オングストローム、電気化学工業社製)2部を添加攪
拌分散した。このカーボンブラック分散液をジェットミ
ル(ジーナス製、ノズル径0.2mm)で1500kg
/cm2 の圧力で5回通過させた。その結果、平均粒子
径は0.4ミクロンとなり、1ミクロン以上の粒子がな
いシャープな分布になった。この高分散液に銀コロイド
(田中貴金属社製試作品、平均粒径0.1ミクロン)1
0部を加え、攪拌混合した。更に、PTFEディスパー
ジョン(D−1、平均粒径0.3ミクロン、ダイキン工
業社製)1.5部を加え、攪拌混合した。この分散液に
イソプロピルアルコールを300部加え自己組織化さ
せ、濾過して反応層原料とした。ロール法で反応層とガ
ス供給層から成るガス拡散電極シートを製造し、80℃
で3時間乾燥し、界面活性剤をエタノール抽出装置で除
去した。乾燥後、銀網と共に50kg/cm2 で350
℃、60秒間プレスして電極を得た。この電極の酸素還
元性能を80℃、32%NaOH中で測定したところ、
30A/dm2 で0.846V(vs.RHE)の高い
性能が得られた。
Example 1 200 parts of 4% Triton (surfactant, the same applies hereinafter) was added to a hydrophobic carbon black (Denka Black, average particle size 39).
(0 Angstrom, manufactured by Denki Kagaku Kogyo KK) was added and dispersed by stirring. 1500 kg of this carbon black dispersion was jet-milled (Genus, nozzle diameter 0.2 mm).
5 passes at a pressure of / cm 2 . As a result, the average particle diameter was 0.4 μm, and a sharp distribution without particles of 1 μm or more was obtained. A silver colloid (prototype made by Tanaka Kikinzoku Co., average particle size 0.1 micron)
0 parts were added and mixed with stirring. Further, 1.5 parts of a PTFE dispersion (D-1, average particle diameter: 0.3 μm, manufactured by Daikin Industries, Ltd.) was added and mixed by stirring. 300 parts of isopropyl alcohol was added to this dispersion to form a self-assembly, and filtered to obtain a reaction layer material. A gas diffusion electrode sheet comprising a reaction layer and a gas supply layer is manufactured by a roll method,
For 3 hours, and the surfactant was removed with an ethanol extractor. After drying, 350 kg / cm 2 with silver screen
Pressing at 60 ° C. for 60 seconds gave an electrode. The oxygen reduction performance of this electrode was measured at 80 ° C. in 32% NaOH.
High performance of 0.846 V (vs. RHE) was obtained at 30 A / dm 2 .

【0011】比較例1 4%トライトン200部に疎水性カーボンブラック(デ
ンカブラック、平均粒径390オングストローム、電気
化学工業社製)2部を添加攪拌分散した。このカーボン
ブラック分散液を水で冷却しながら超音波分散機(ブラ
ンソン製、500W)で5分間分散させた。その結果、
平均粒子径は1.6ミクロンとなった。この分散液に銀
コロイド(田中貴金属社製試作品、平均粒径0.1ミク
ロン)10部を加え、攪拌混合した。更に、PTFEデ
ィスパージョン(D−1、平均粒径0.3ミクロン、ダ
イキン工業社製)1.5部を加え、攪拌混合した。この
分散液にイソプロピルアルコールを300部加え自己組
織化させ、濾過して反応層原料とした。ロール法で反応
層とガス供給層から成るガス拡散電極シートを製造し、
80℃で3時間乾燥し、界面活性剤をエタノール抽出装
置で除去した。乾燥後、銀網と共に50kg/cm2
350℃、60秒間プレスして電極を得た。この電極の
酸素還元性能を80℃、32%NaOH中で測定したと
ころ、30A/dm2 で0.793V(vs.RHE)
の性能しか得られなかった。
Comparative Example 1 To 200 parts of 4% Triton, 2 parts of hydrophobic carbon black (Denka Black, average particle size: 390 angstroms, manufactured by Denki Kagaku Kogyo) were added and dispersed by stirring. The carbon black dispersion was dispersed for 5 minutes by an ultrasonic disperser (500 W, manufactured by Branson) while cooling with water. as a result,
The average particle size was 1.6 microns. To this dispersion, 10 parts of silver colloid (produced by Tanaka Kikinzoku Co., Ltd., average particle size: 0.1 micron) was added and mixed by stirring. Further, 1.5 parts of a PTFE dispersion (D-1, average particle diameter: 0.3 μm, manufactured by Daikin Industries, Ltd.) was added and mixed by stirring. 300 parts of isopropyl alcohol was added to this dispersion to form a self-assembly, and filtered to obtain a reaction layer material. Producing a gas diffusion electrode sheet composed of a reaction layer and a gas supply layer by a roll method,
After drying at 80 ° C. for 3 hours, the surfactant was removed with an ethanol extractor. After drying, the resultant was pressed with a silver mesh at 50 kg / cm 2 at 350 ° C. for 60 seconds to obtain an electrode. When the oxygen reduction performance of this electrode was measured at 80 ° C. and 32% NaOH, it was 0.793 V (vs. RHE) at 30 A / dm 2.
Only the performance of was obtained.

【0012】実施例2 2%トライトン350部に親水性カーボンブラック(A
B−12、平均粒径400オングストローム、試作品、
電気化学工業社製)7部、疎水性カーボンブラック(N
o.6、平均粒径500オングストローム、試作品、電
気化学工業社製)3部を添加攪拌分散した。このカーボ
ンブラック分散液をジェットミル(ジーナス製、ノズル
径0.2mm)で1500kg/cm2 の圧力で5回分
散させた。その結果、平均粒子径は0.45ミクロンと
なった。更に、PTFEディスパージョン(D−1、平
均粒径0.3ミクロン、ダイキン工業社製)4部を加
え、攪拌混合した。この分散液にイソプロピルアルコー
ルを300部加え自己組織化させ、濾過して反応層原料
とした。ロール法で反応層とガス供給層から成るガス拡
散電極シートを製造し、80℃で3時間乾燥し、界面活
性剤をエタノール抽出装置で除去した。乾燥後、銀網と
共に50kg/cm2 で380℃、60秒間プレスして
電極を得た。この電極に塗布法で白金を0.56mg/
cm2 担持した。この電極の酸素還元性能を80℃、3
2%NaOH中で測定したところ、30A/dm2
0.850V(vs.RHE)の著しく高い性能の電極
が得られた。
Example 2 A hydrophilic carbon black (A) was added to 350 parts of 2% Triton.
B-12, average particle size 400 Å, prototype,
7 parts, manufactured by Denki Kagaku Kogyo Co., Ltd., hydrophobic carbon black (N
o. 6, 500 parts of average particle size, prototype, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 3 parts were stirred and dispersed. This carbon black dispersion was dispersed five times with a jet mill (Genus, nozzle diameter 0.2 mm) at a pressure of 1500 kg / cm 2 . As a result, the average particle size was 0.45 microns. Further, 4 parts of a PTFE dispersion (D-1, average particle size: 0.3 μm, manufactured by Daikin Industries, Ltd.) was added and mixed by stirring. 300 parts of isopropyl alcohol was added to this dispersion to form a self-assembly, and filtered to obtain a reaction layer material. A gas diffusion electrode sheet comprising a reaction layer and a gas supply layer was manufactured by a roll method, dried at 80 ° C. for 3 hours, and the surfactant was removed by an ethanol extraction device. After drying, it was pressed at 380 ° C. for 60 seconds at 50 kg / cm 2 together with a silver screen to obtain an electrode. 0.56 mg of platinum was applied to this electrode by a coating method.
cm 2 . The oxygen reduction performance of this electrode was
When measured in 2% NaOH, an electrode with a remarkably high performance of 0.850 V (vs. RHE) at 30 A / dm 2 was obtained.

【0013】比較例2 2%トライトン350部に親水性カーボンブラック(A
B−12、平均粒径400オングストローム、試作品、
電気化学工業社製)7部、疎水性カーボンブラック(N
o.6、平均粒径500オングストローム、試作品、電
気化学工業社製)3部を添加攪拌分散した。このカーボ
ンブラック分散液を水で冷却しながら超音波分散機(プ
ランソン製、500W)で5分間分散させた。その結
果、平均粒子径は1.5ミクロンとなった。更に、PT
FEディスパージョン(D−1、平均粒径0.3ミクロ
ン、ダイキン工業社製)4部を加え、攪拌混合した。こ
の分散液にイソプロピルアルコールを300部加え自己
組織化させ、濾過して反応層原料とした。ロール法で反
応層とガス供給層から成るガス拡散電極シートを製造
し、80℃で3時間乾燥し、界面活性剤をエタノール抽
出装置で除去した。乾燥後、銀網と共に50kg/cm
2 で380℃、60秒間プレスして電極を得た。この電
極に塗布法で白金を0.56mg/cm2 担持した。こ
の電極の酸素還元性能を80℃、32%NaOH中で測
定したところ、30A/dm2 で0.80V(vs.R
HE)の性能しか得られなかった。
Comparative Example 2 A hydrophilic carbon black (A) was added to 350 parts of 2% Triton.
B-12, average particle size 400 Å, prototype,
7 parts, manufactured by Denki Kagaku Kogyo Co., Ltd., hydrophobic carbon black (N
o. 6, 500 parts of average particle size, prototype, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 3 parts were stirred and dispersed. This carbon black dispersion was dispersed with an ultrasonic disperser (500 W, manufactured by Pranson) for 5 minutes while cooling with water. As a result, the average particle size was 1.5 microns. Furthermore, PT
4 parts of FE dispersion (D-1, average particle size 0.3 micron, manufactured by Daikin Industries, Ltd.) were added and mixed by stirring. 300 parts of isopropyl alcohol was added to this dispersion to form a self-assembly, and filtered to obtain a reaction layer material. A gas diffusion electrode sheet comprising a reaction layer and a gas supply layer was manufactured by a roll method, dried at 80 ° C. for 3 hours, and the surfactant was removed by an ethanol extraction device. After drying, 50 kg / cm with silver screen
Pressing at 380 ° C. for 2 seconds at 2 gave an electrode. 0.56 mg / cm 2 of platinum was supported on this electrode by a coating method. When the oxygen reduction performance of this electrode was measured at 80 ° C. and 32% NaOH, it was 0.80 V (vs. R) at 30 A / dm 2.
HE).

【0014】[0014]

【発明の効果】本発明によれば、疎水性カーボンブラッ
クの分散粒子径をPTFEディスパージョンと同程度に
し、親水性微粒子の平均粒径をPTFEディスパージョ
ンの平均粒径よりも小さくしたことにより三相帯界面が
増加したガス拡散電極の反応層原料が得られた。この反
応層原料を用いれば著しく高性能のガス拡散電極を製造
することができる。
According to the present invention, the dispersed particle size of the hydrophobic carbon black is made substantially equal to that of the PTFE dispersion, and the average particle size of the hydrophilic fine particles is made smaller than the average particle size of the PTFE dispersion. A reaction layer raw material for a gas diffusion electrode having an increased phase zone interface was obtained. By using this reaction layer raw material, a gas diffusion electrode having extremely high performance can be manufactured.

フロントページの続き (56)参考文献 特開 平9−302493(JP,A) 特開 平7−207482(JP,A) 特開 平2−30784(JP,A) (58)調査した分野(Int.Cl.6,DB名) C25B 1/00 - 15/08 Continuation of the front page (56) References JP-A-9-302493 (JP, A) JP-A-7-207482 (JP, A) JP-A-2-30784 (JP, A) (58) Fields investigated (Int .Cl. 6 , DB name) C25B 1/00-15/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 界面活性剤を含む水溶液中に疎水性カー
ボンブラック、親水性微粒子及びポリテトラフルオロエ
チレンディスパージョンを分散するに際して、該水溶液
中で分散した親水性微粒子の平均粒径をrs 、疎水性カ
ーボンブラックの平均粒径をrc 、使用するポリテトラ
フルオロエチレンディスパージョンの平均粒径をrp
するときに、該水溶液にその平均粒径rc がD=rc
p で0.5<D<2の範囲になるように疎水性カーボ
ンブラックを混合分散し、かつ平均粒径rs がrs <2
p の親水性微粒子を混合分散し、平均粒径rp のポリ
テトラフルオロエチレンディスパージョンを混合後、更
に、自己組織化剤を添加混合することを特徴とするガス
拡散電極の反応層原料の製造方法。
When dispersing hydrophobic carbon black, hydrophilic fine particles and polytetrafluoroethylene dispersion in an aqueous solution containing a surfactant, the hydrophilic fine particles dispersed in the aqueous solution have an average particle size of r s , the average particle diameter r c hydrophobic carbon black, the average particle diameter of the polytetrafluoroethylene dispersion to be used when the r p, the average particle diameter r c in the aqueous solution D = r c /
r 0.5 <a hydrophobic carbon black to be in the range of D <2 were mixed and dispersed in p, and the average particle size r s is r s <2
were mixed and dispersed hydrophilic particles of r p, after mixing the polytetrafluoroethylene dispersion having an average particle diameter r p, further, the reaction layer raw material of the gas diffusion electrode, which comprises admixing a self-organizing agent Production method.
JP11024164A 1998-11-12 1999-02-01 Method for producing reaction layer raw material for gas diffusion electrode Expired - Fee Related JP2990516B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11024164A JP2990516B1 (en) 1999-02-01 1999-02-01 Method for producing reaction layer raw material for gas diffusion electrode
US09/600,114 US6428722B1 (en) 1998-11-12 1999-06-28 Gas diffusion electrode material, process for producing the same, and process for producing gas diffusion electrode
CNB998021105A CN1134556C (en) 1998-11-12 1999-06-28 Gas diffusion electrode material, process for producing same, and process for producing gas diffusion electrode
EP99972265A EP1055748A4 (en) 1998-11-12 1999-06-28 Gas diffusion electrode material, process for producing the same, and process for producing gas diffusion electrode
PCT/JP1999/003440 WO2000029643A1 (en) 1998-11-12 1999-06-28 Gas diffusion electrode material, process for producing the same, and process for producing gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024164A JP2990516B1 (en) 1999-02-01 1999-02-01 Method for producing reaction layer raw material for gas diffusion electrode

Publications (2)

Publication Number Publication Date
JP2990516B1 true JP2990516B1 (en) 1999-12-13
JP2000219987A JP2000219987A (en) 2000-08-08

Family

ID=12130716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024164A Expired - Fee Related JP2990516B1 (en) 1998-11-12 1999-02-01 Method for producing reaction layer raw material for gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP2990516B1 (en)

Also Published As

Publication number Publication date
JP2000219987A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
EP1306913B1 (en) Polyelectrolyte fuel cell and production method therefor
US9120087B2 (en) Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising same
JP3422377B2 (en) Method for manufacturing polymer electrolyte fuel cell and polymer electrolyte fuel cell obtained by the method
US8309276B2 (en) Process for preparing of a catalyst solution for fuel cell and a membrane electrode assembly using the same
JPH08257417A (en) Husk catalyst,its preparation,method for hydrogenation or oxidation of double bond,method for reduction of n-o-compound,and method for hydrogenation decomposition of c-o-compound,c-n-compound and c-halogen-compound and electrode catalyst
US6428722B1 (en) Gas diffusion electrode material, process for producing the same, and process for producing gas diffusion electrode
JP2990516B1 (en) Method for producing reaction layer raw material for gas diffusion electrode
JP3826867B2 (en) Catalyst supporting particle for fuel cell and method for producing catalyst electrode for fuel cell
Chien et al. Noble metal fuel cell catalysts with nano-network structures
JP3002987B1 (en) Manufacturing method of gas diffusion electrode
JP4326973B2 (en) Catalyst paste for fuel cell and method for producing the same
JP3373174B2 (en) Manufacturing method of gas diffusion electrode by self-organization
JP7190099B2 (en) Supported metal catalyst and its production method, fuel cell
Sakthinathan et al. Activated graphite supported tunable Au–Pd bimetallic nanoparticle composite electrode for methanol oxidation
JP2990515B1 (en) High-performance silver-based gas diffusion electrode and reaction layer raw material for the electrode
JP3434739B2 (en) Method for producing gas diffusion electrode material
JP3074476B1 (en) Method for producing raw material powder for gas diffusion electrode
JPH0778617A (en) Gas diffusion electrode and manufacture thereof
JP4011330B2 (en) Electrocatalyst layer formation method
JP2001011679A (en) Production of gas diffusion electrode raw material
JP7359192B2 (en) Ionomer-modified hydrophobic particles, catalyst layer, catalyst ink and manufacturing method thereof
JP2909539B1 (en) Gas diffusion electrode
JP3373177B2 (en) Method for producing raw material dispersion for gas diffusion electrode
JPH10189005A (en) Electrode for fuel cell and manufacture of power generation layer
US20230163319A1 (en) Catalyst, electrode, membrane electrode assembly, fuel cell, and method for manufacturing catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees